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Electron-impact excitation of electric octnpole transitions in positive ions:
Asymptotic behavior of the sum over partial-collision strengths
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An investigation has been made, for the case of octupole transitions, of the dependence of the partial-

collision strength on the orbital angular momentum of the colliding electron. It is shown that, similar to
the dipole and quadrupole transitions, the sum over partial-collision strengths is asymptotic to a
geometric series of common ratio E, /E;, where E; and E, are the initial and final energies of the collid-

ing electron, respectively. For large incident energies (E,. /E; —1) the convergence of the sum to the

geometric series is rather slow, since the geometric-series method only starts to become valid for large

values of angular momentum. This difhculty is overcome by developing an alternative method in which

the approximation is made that E, /E; =1. An analytic formula is then obtained to estimate the contri-

bution to the total-collision strength from large values of angular momentum. Results of partial- and

total-collision strengths are presented for direct electric octupole transitions in Ca+ and Sr+.

PACS number(s): 34.80.Kw, 34.80.Dp

I. INTROOVn ION

Optically forbidden E3-type transitions in positive ions
[1,2] may be excited by electron impact. It is already
known that in the case of dipole [3,4] and quadrupole [5]
transitions the sums of partial-collision strengths are
asymptotic to a geometric series with common ratio
E /E, . The object of this paper is to show that octupole
transitions follow the same pattern; and the sum of
partial-collision strengths, for a colliding electron angular
momentum I ))E,/(E, E), is —also asymptotic to a
geometric series with the same common ratio E /E;,
where E; and E are the initial and final energies of the
colliding electron, respectively. As E, increases, the ratio
E /E; —1 and the convergence of the sum to the
geometric series is rather slow. In this case a different
method is implemented to complete the sum. The ap-
proximation used in this procedure is E /E, = 1, and con-

sequently several expressions from the general theory of
Coulomb excitation reduce appreciably. It is shown that
for l large, terms in the infinite sum decrease as l, l
and l . The collision problem has been formulated in
atomic units, except for energies where we have used

Rydberg units.

II. THEORY

The initial work closely follows that of a previous pa-
per [5]. We give, without derivation, the expressions
used in calculating the dimensionless quantity collision
strength for electron-impact excitation of positive ions.
The total-collision strength 0(nl, ~n 'I,' ) has the
partial-wave expansion

Q(nl, ~n'I,') =g Q, .,
1, 1'

where nl, and n'l,' are the initial and final target states,
and l and l' are the initial and final quantum numbers for

the angular momentum of the colliding electron. The ex-
pression for Ql.l in terms of the transmission matrix T is
given by

Q(nl, ~n'I,')=At +At +i, (3)

where

10

Qi =g QQi.i,
1=0 1'

and

(4)

& fbi i"'
~

i=la+1 l'
(5)

The sum from l =0 to lo may be evaluated in any desired

approximation, e.g., R-matrix method, close coupling,
Coulomb distorted wave, etc. The sum from l =lo+1 to
~ is estimated using the Coulomb Bethe weak-coupling
approximation (CBel} to the transmission matrix. In the
limit of large I the ratio (Qi.&/Qt &' ) —1, and then I~ is

chosen so that this condition is fulfilled. Since relativistic
effects have been neglected in the collision Hamiltonian
and the effect of exchange between the colliding and
bound electron is negligible when lo is large, the
transmission matrix T does not depend on S and

0 "=2g (2L + 1)
~
T "(n'I,'k'I'L, nl, kIL)

~
. (6)

L

g —,'(2S+1)
~

T(n'I,'k'I'LS, nl, kI, LS}~2, (2)
S=0, 1 L

where k and k' are the wave numbers of the incident and
scattered electron, respectively, and I. and S the con-
served total angular momenta and total spin quantum
number, respectively. The transmission matrix T is of
block-diagonal type with each block corresponding to a
given LS symmetry for the total system (i.e., target ion
plus colliding electron}.

The infinite sum in Eq. (1) is split into two parts
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Standard techniques of Racah algebra reduce the previ-
ous expression to

0, "=32(21, +1}(21,'+1}(2/+1)(21'+1)
I

(C a a Cll'2, }2000 000

(2A, + 1)

Fkl(r) k sin kr+ (2kr) — +oI'—1/2 . (z —1) I~
r~ 00

with

. (z —1)o.
&
=argI 1+1—i

k

(13}

(14)

XB (n/„n'I, ';A, )I (KI,K'I', A, ), (7)

where C0'00 and C000 are Clebsch-Gordan coefficientsll'A,

[6], A, satisfies the selection rules ~I
—I'~ &A, &l+I' and

I, —I,'~ ~A, ~I, +I,', and (z —1) is the ion charge. The
integral B (nl„n'I,';A, ) is given by

A. Electric-octupole- (E3-) type transitions

For transitions between target states involving A, )3
and considering only the lowest multiple order A, =3, Eq.
(7) reduces to

B(nl„n'Ia';A, )= J P„l (r)r P, (r)dr, (8) IIcBel l20 (z —1 ) B2( nl, n I ' 3 )

where P„& and P,&, are the radial wave functions of the
a

initial and final states of the atomic system. Details re-
garding the numerical evaluation of these single orbital
wave functions have been given elsewhere [5]. The
Coulomb integrals I(KI,K'I', A, } are defined as

I(KI,K'I', A, )= J P(«l ~p)P(K'I'~p)p " 'dp,
0

where

and

I, ) (I, ) —1}(l,) —2) (/) + 1 )I ) (/) —1)
X

(21, ) —1)(2/, ) —3) (21) —3)(2/) +3)

XI (KI,K'I;3), I =/+1

IIcBel 200(z 1)4B2(n/, n I '3)

I, ) (I, ) —1)(l, ) —2) I ) (/) —1)(/) —2)
X

(21, ) —1)(2/a ) —3) (21) —1)(21)—3)

(15)

9'(K/~p) =(z —1)'~ Fkl(r) (10) XI (KI, K I';3), I'= 1+3, (16)

and

kK=
(z —1)

and p=(z —1)r .

where I, & and I & are the greater of I, and I,' and of I and
l', respectively.

Using Eqs. (15}and (16) in Eq. (5), Ql + I reduces to
0

and

Fkl(0) =o (12)

The Coulomb functions Fk& are subject to the boundary
conditions

Ql +I= ~(z —1) B (nl„n'I,';3)

I, )(I, ) —1)(1,) —2)

(21, —1)(21, —3) '0+' '

where

(17)

~l, +I =
1=l0+1

I'(K/ «'I —1 3)+3 I (Kl K'I +1 3)
(21 —3)(2/+3) ' '

(2/ —1)(21+5)

+5 I(l —1)(l —2) I (Kl K'I —3'3)+5 (I+3)(1+2)(1+1 I ( I, 'I+3;3)
(2/ —1)(21—3) ' ' (21+5)(21+3) (18)

B. Limit of large orbital angular momentum

1. Geometric-series method

In the limit of large angular momentum (I ))1) the Coulomb integral becomes [7]

I (Kl, K'I', A, )-exp —
~ r/ g'

~ I0(KI,K'I', A—), ,

where 1, 1
y 9 (20)
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and Io(al, a'l', A, ) is the integral in Eq. (9) evaluated in the Born approximation. The radial wave functions V(~l~p) are
in this case related to the spherical Bessel functions. The connection is given through the relation

P(lrllp) &—lrpJI(lrp) .

By employing the further relation
1/2

(21)

7T

j,(ap)=
2Kp

~i+I n~~p} (22)

between the spherical Bessel functions and ordinary Bessel functions one obtains

Io(Kl K l;A, ) — I Jl+1/2(i~p)JI'+ I2/(K p)p dp
0

(23)

The integral is of the Weber-Schafheitlin type and has a discontinuity in the expressions for I0 at ~=~ . Using the ana-

lytic continuation of the 2F1 Gauss hypergeometric function given by

N
zF&(a, b;c;u)=(1 —w) zF, c a, b;—c;

N
(24)

one readily finds from Watson [8] that for 0&x'&a.
I'+ 1/2

Io(irl, a'1'; A, }= „— a.~

K

' —[(I' —I —A. + 1)/2]
I ((l +l' —

A, +2)/2)
I'(l'+ —,

' )r{(l —l'+ A, + 1)/2)

X F
l' —I+k+1 l' —l —1+1 'l'

2 1 2 2 g 2
K K

(25)

and for 0(~(.'z'

Io( a I, a.'l', 1, ) =
' I + 1/2

K
K K

&2

' —[(1—1' —A, +1)/2] I'{(l + l' —A, +2)/2)
r{l + —,

' )I {(l'—l +A, +1)/2)

l —l'+k+1 l —l' —A, +1
2 1 2 IC K

(26}

Substituting A, =3 into Eqs. {25)and (26) it is shown that

K&
Io(~l, ir'l —1;3)=

16
I

' I +1/2 —p
2

K&

' 1/2+p
K) K(

2
K&

I (l —1)
r{l+ —,

' —p)r{—', +p)
2K(

X2F1 p, p;l+ p~
5 1 3

2 2 2 g' g'
(27}

Io(~l, x'1+ 1;3)=
16 v)

' I + 1/2+P '
2 2 3/2 —PK) K&

K& 2
K&

2
K&3 3 . 3

X2F1 —+p, ——+p;l +—+p;
K K

(28)

0 if ]c(~'

and

Io(zl, «'l —3;3 }=
16 ~)

1+1/2 —p
2K)

2 2
K& K&

2
K&

' —1/2+ p I (l —2)
I (I +—', —p)I ( —,'+p)

2
K&

X2F1 p&
—p;l +——p

3
2 2 2 /C&

—K)
(29)
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Io(al, a'I +3;3)=
16 K)

1+1/2+p
2

K&

z z '5/'2 p
K& K&

2
K&

I (1 +1)
r(l +-,'+p)r(-', —p)

2
K&1 5 3

X2F& —+P, ——+P;l +—+P;2 1 2 2 2 '
K2 K2

(30)

where

0 if K(K'
P=

3 if K&K'.

K( (K& ) is the smaller (greater) of ~ and a'. The behavior of 2F, (a, b;c;w) for fixed a, b, w, and large ~c~ is described by

,F, (a,b, w)= "" y "'+"'"'+"'w +0(ici---').
r(a)r(b) „, r(c+n)n!

Using the previous asymptotic expansion and the limit property of the I function

, r(n +s)
lim n'
n- r(n+t)

(31)

(32)

it is possible to show that, for excitation of octupole transitions (a & ~ ) and I large (I &&Ir &
/(a &

—a.
& ) =E /(E;—E)), —

I-dependent terms in Eq. (18) behave as

K&

(21 —1)(21—3) ' ' 720 Ir&

21 —5 ' ~ 2 5
K& K&

K& 2
e

K&
(33)

(I +1)l(1—1) 2 I
n

(21 —3)(21 +3) ' ' 192

K&

K)

' 21 —1

4
K&

2 2 3
n!g

I e
K&

(34)

and

(I +2)(1+1)l 3 3n
(21 —1}(21+5) ' ' 256

r

K&

K&

r

21 +3
4

K&

K2 K2

2
K&

4e (35)

r

(I +3)(l +2)(l +1),
(21+5)(21+3) ' ' 1024 a'&

21+7

4K)
2 2K) K&

2
K&

e (36)

Substituting Eqs. (33)—(36) into S, +, [Eq. (18)] gives

9
~lg, —g, l

K&

720 K5,

1
K&x

1 =10+1

2 2
K& K&

2
K&

2
' —2 —4 2 2

' —6

4 Ir3 16 Ir( 64 a-(
r

(37)

and for I »K((K) K( } ' the infinite sum in SI ~, is asymptotic to a geometric series of ratio a(/~) =E~/E;.0
Therefore the main contribution to the sum over I, in Eq. (17), arises from the partial-collision strength

0I —3 I (K (,K & ). The completion of the summation over partial-collision strength is then straightforward and leads to
the result

2
K&

+I +I +I —21 +1(+&r+& } r 10 »CBeI
0 0 ' 0 1 —x K K

(38)

where

2
K&

2K) k E; (39)

and E; and E are the energies of the free .electron before and after the collision. For an s ftransition the additional a-p-
proximation is made that

QI +, -Q(nl, ~n'I,';L =10+1}/(1—x} . (40)
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2. The method of sum of reciprocal powers

For large incident energies, such as for, e.g., E =10.92411 Ry and a transition energy E;- =E; —E =0.145 51 Ry
(5s 4f i-n Ca+), x =E /E; =0.987 or E, /(E; —E 1=75, and the series method becomes impractical because this method
is valid for partial waves I & lo, where lo »E /(E, E—) =75. Numerical quantal calculations of partial waves [Eq. (4)]
in the different approximations, R-matrix method, close coupling, Coulomb distorted wave, become prohibitive at such
large values of l.

To obtain an estimate of Sl +1, at high incident electron energies, the approximation is made that K=K and
0

K —(K +K )/2. In this case, the octupole integrals I(tt/, a'/', 3) in Eq. (18) simplify considerably [7] and reduce to
—3

I+a. I+1
31(/+1)(1 +2)(21 +1)(2/+3)

l 2

X —[I+17 (1+1) ] n(1 —e /") '+t7
K .=0 1+K $

—3

I 17/, a./ —1;3 = I+17 /
3(/ —1 )I (I + 1)(21—1)(2/+1)

r

—I(/+1)(2/+1) (41)

l $2
(1+t72/2) ~(1 e

—2vrlr7) —1+a3
K 1+K2$2

—(I —1)1(2/ —1) (42)

I (tt/, tt/ —3;3)=

—5

I(tr/, rc/+3;3) =
15[1 +P2(/ + 1 )2]1/2[ 1+P2(/ +2)2]1/2[1+—2(1 +3 )2]1/2

K
—5

I 5 [ I + t72( / 2 )
2

]
1/2

[ I + t72( / I )
2
]

1 /2( I +1t21 2
)

1 /2

(43)

(44)

These expressions may be further simplified if the as-
sumption is made that l K )) 1 and

$' l

where

a5(t7) =
—,', a.

—3

(
—

)
+ ~

(1
—2n/r7) —1

(46)

(47)

The final expression obtained for Sl +, is
0

a (tt)=-'tr'sr (1—e '"/")
8

(48)

00
1

00

S1 +,= as(t7) g —+a6(t7)10+1 5
l l +1/5 6

l =l +1 l6

00

+a7(t7)
l =lo+1

(45)

The sums of reciprocal powers gt" t +11 ~ with
0

p =5,6,7 have been calculated using the relation

00 lo

I t'=g(p) —g I
l =10+1 l=1

TABLE I. CDWII partial-collision strength 01, for the 4s 4f and Ss 4f transitions -in Ca . -Energy of the colliding electron after
excitation EJ (Ry).

4s4f-E, =0.129 11

Ss4f- 4s4f-E~ =1.22631

Ss4f- EJ =6.310 10

4s4f-Ss4f-
9

10
11
12
13
14
15
16
17
18
19
20
21

1.514X 10
3.406 x 10-'
6.986 x 10
1.344 X 10
2.484 x 10-'
4.466 x 10-'
7.908 X 10
1.390X 10
2.420 X 10
4.192x10-'
7.252 X 10
1.262 X 10-"
2.178 X 10

1.370
9.000 X 10
5.182X 10
2.746 x 10-'
1.383 x10-'
6.752 X 10
3.234 x10-'
1.531x10 '
7.196x10-'
3.368 X 10
1.572 x10-'
7.320x 10-'
3.408 X 10

29
30
31
32
33
34
35
36
37
38
39
40
41

5.984x10 '
3.912x 10
2.560 X 10
1.676 x10-'
1.098 x10-'
7.198x10-'
4.720 x 10-'
3.098 x 10-'
2.036x10-'
1.337X 10
8.788 X 10
5.780x 10-'
3.802 X 10

4.012x 10-'
3.380x 10-'
2.860x 10-'
2.428 X 10
2.066x 10-'
1.765 X 10
1.511x 10
1.297 x 10-'
1.116X10 '
9.618x 10
8.306x 10-'
7.186x 10-'
6.228 X 10

39
40
41
42
43
44
45
46
47
48
49
50
51

2.644 x 10-'
2.318x 10-'
2.036x 10-'
1.791x 10-'
1.578 x 10
1.392x 10-'
1.230x 10-'
1.088 X 10
9.642 x 10-'
8.554 x 10
7.596x 10
6.752 x 10-'
6.008 x 10-'

1.037x10-'
9.246 X 10
8.258 x10-'
7.386x 10
6.618x10 '
5.938x10-'
5.338X10 '
4.808 X 10
4.338x10-'
3.922x 10 '
3.552 X 10
3.224X 10
2.930x 10-'
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TABLE II. CDWII partial-collision strength 0, for the Ss 4f-and 6s 4f-transitions in Sr . Energy of the colliding electron after

excitation EJ (Ry).

Ss 4f-
EJ =0.105 13

6s 4f- Ss 4f-
E =1.20328

6s 4f-
EJ =6.035 14

Ss 4f-
9

10
11
12
13
14
15
16
17
18
19
20
21

1.433 x10-'
3.308 x 10-'
6.908 x 10
1.331x10-'
2.414X 10
4.208 X 10
7.152x10-'
1.194x 10-'
1.966x 10-'
3.210X 10
5.218 X 10
8.486x10-"
1.355 X 10

1.424
9.656x 10-'
5.846 X 10
3.252 x 10-'
1.701x 10-'
8.546 x 10-'
4.174x 10-'
2.002 x 10-'
9.494x 10-'
4.466x10-'
2.092 x10-'
9.764 x 10
4.548 x 10-'

29
30
31
32
33
34
35
36
37
38
39
40
41

1.477 x 10
9.980x10-'
6.748 X 10
4.566x 10-'
3.092 x10-'
2.094X 10
1.419x 10-'
9.618x10-'
6.522 x 10
4.424 X 10
3.004 X 10
2.040 X 10
1.385 x 10-'

4.744 x 10-'
3.946 x 10-'
3.360X 10
2.874 X 10
2.466 x 10-'
2.122X10 2

1.833 x 10-'
1.587 x 10-'
1.378X10 2

1.200X10 2

1.047 X 10
9.156x 10
8.024x 10-'

39
40
41
42
43
44
45
46
47
48
49
50
51

4.060x 10
3.576 x 10-'
3.154x10 '
2.786 X 10
2.466 X 10
2.186X 10
1.940x 10-'
1.725 X 10
1.535 X 10
1.368 x 10
1.221 X 10
1.090x 10-'
9.750x 10-'

1.104X 10
9.850 X 10
8.796x 10-'
7.864 x 10-'
7.044 X 10
6.320x10-'
5.678 x10-'
5.112X 10
4.610x10-'
4.166x 10-'
3.772 x10-'
3.420 x 10
3.106x10-'

where g(p) is the Riemann zeta function. The calcula-
tions were carried out using the symbolic computation
program MAFLE [9], to a high degree of accuracy. Here-
after Si +& [Eq. (45)] is inserted into Eq. (17) to yield

0

~i +i ~

0

III. RESULTS

Results are presented for two optically forbidden E3-
type transitions in Ca+ and Sr+. Collision strengths
were obtained using a unitarized nonexchange Coulomb-
distorted-wave (CDWII) seven-state approximation, 4s-
3d-4p-Ss-4d-Sp-4f in Ca+ and Ss-4d Sp-6s-Sd-6p-4f i-n

Sr+. The target valence orbitals P„i (r) are solutions of a
a

one-electron Schrodinger equation with observed binding
energies [10]. The collision approximation assumes I.S
coupling and takes into account a11 open channels based
on the lowest seven states of Ca+ and Sr+, respectively.
Tables I and II contain partial-collision strengths for the
excitation of the 4s-4f, Ss 4f transitions -in Ca and Ss-

4f, 6s 4f trans-itions in Sr+, respectively. The asymptotic
behavior of the collision strengths for large angular mo-
menta was checked using the data in Tables I and II. In
Tables III and IV the ratio Qi/IIi, has been tabulated
as a function of the colliding electron angular momentum
I, where Qi =pi Qi.i for diff'erent energies of the collid-
ing electron after excitation. For large I, nciiDWII-QiciB'i

and the ratio Qi /Qi .
&

tends to a constant x =E./E;,
where E, and E. are the energies of the free electron be-
fore and after excitation. Tables III and IV show results
for the excitation of the 4s 4f and Ss 4-f transitio-ns in
Ca and excitation of the Ss-4f and 6s-4f transitions in
Sr+, respectively. Also shown are the quantities
x =E//E, and a =Ei/(E, E). These table—s illustrate
the fact that for large values of the electron-impact ener-

gy, and/or for transitions in which the atomic states are
energetically close, e.g., the transition Ss 4f in Ca+ and-
the transition 6s-4f in Sr, the sum over partial-collision
strengths Qi + &

[Eq. (5)] is slowly convergent, to a
0

geometric series of common ratio E/ /E; The.
TABLE III. II&/Qi, for the 4s 4f and Ss 4f tran-sitions in Ca+. -x =E, /E;, a =E, /E;, Energy of t.he colliding electron before

excitation E; (Ry), energy of the colliding electron after excitation EJ (Ry). Excitation energy E;J(Ry) =E; —E,

EJ =0.129 11 EJ =1.22631 E, =631010

10
11
12
13
14
15
16
17
18
19
20
21

x =0.172
a -0.2
4s4f-
0.225
0.205
0.192
0.185
0.180
0.177
0.176
0.174
0.173
0.173
0.174
0.173

x =0.470
a -0.9
Ss4f-
0.657
0.576
0.530
0.504
0.488
0.479
0.474
0.470
0.468
0.467
0.466
0.466

30
31
32
33
34
35
36
37
38
39
40
41

x =0.664
a 2
4s4f-
0.654
0.654
0.655
0.655
0.656
0.656
0.656
0.657
0.657
0.657
0.658
0.658

x =0.894
a-8
Ss4f-
0.842
0.846
0.849
0.851
0.854
0.856
0.858
0.860
0.862
0.864
0.865
0.867

40
41
42
43
44
45
46
47
48
49
50
51

x =0.910
a —10
4s4f-
0.877
0.878
0.879
0.881
0.882
0.883
0.885
0.886
0.887
0.888
0.889
0.890

x =0.978
a -43
Ss4f-
0.892
0.893
0.894
0.896
0.897
0.899
0.901
0.902
0.904
0.906
0.908
0.909
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TABLE IV. Qi/Qi, for the Ss 4f-and 6s 4f-transitions in Sr+. x =El /E;, a =El /Es. Energy of the colliding electron before
excitation E; (Ry), energy of the colliding electron after excitation E, (Ry). Excitation energy E;,(Ry) =E; —E, .

Ei =0.105 13 EJ =1.203 28 EJ =6.035 14

10
11
12
13
14
15
16
17
18
19
20
21

E =0.160
a -0.2
Ss 4f-
0.231
0.209
0.193
0.181
0.174
0.170
0.167
0.165
0.163
0.163
0.163
0.160

E =0.470
a -0.9
6s 4f-
0.678
0.605
0.556
0.523
0.502
0.488
0.480
0.474
0.470
0.468
0.467
0.466

30
31
32
33
34
35
36
37
38
39
40
41

L =0.685
a
Ss 4f-
0.676
0.676
0.677
0.677
0.677
0.678
0.678
0.678
0.678
0.679
0.679
0.679

E =0.910
a —10
6s 4f-
0.832
0.851
0.855
0.858
0.861
0.864
0.866
0.868
0.870
0.873
0.874
0.876

40
41
42
43
44
45
46
47
48
49
50
51

E =0.916
a —11
Ss 4f-
0.881
0.882
0.883
0.885
0.886
0.888
0.889
0.890
0.891
0.892
0.893
0.894

E =0.981
—51
6s 4f-
0.892
0.893
0.894
0.896
0.897
0.898
0.900
0.902
0.904
0.905
0.907
0.908

TABLE V. CDWII total-collision strength Q for the Ss 4f transiti-on in Sr . The contributions Qi
0

and Ql + &
to 0 are shown separately. Ql + &

has been calculated using the geometric-series method.
0 0

E, (Ry)

0.105 13
0.214 94
0.462 83
1.203 28
1.642 54

I0

20
20
20
40
40

1.278
1.328
1.362
1.346
1.293

l0+ I

~0
~0
~0

2.223 x 10-'
3.831x 10-'

1.278
1.328
1.362
1.346
1.293

n, +, as
0

percentage
of 0
-0
-0
-0
-0
-0

TABLE VI. CDWII total-collision strength Q for the Ss 4f transition in-Ca . The contributions Qi and Q, +, to Q are shown
0 0

separately, together with error estimates. Ql + &
has been calculated using the reciprocal power method.

0

E) (Ry)

6.310 10
10.924 11

Ej /E;

0.977
0.987

I0

51
59

LCDWII ygCBeI
l0 '0

0.94
1.08

14.704
14.406

3.160x10-'
5.180x10-'

15.020
14.924

nl „as
0

percentage
of 0

Percentage

absolute error
in 0
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Transition 8(a() )

TABLE VIII. Electric octupole integral B (ns, nf;3). l2

gflnum y y fICDwii

I =ii+1 I'

Ca+

Sr+

4s 4f-
Ss 4f-
Ss 4f-
6s 4f-

—86.56
712.2
115.0

—770.0

which has been compared with the second estimate

EQ =QI + )
—QI +),

geometric-series method only starts to become useful for
l & lo, where lo »a =EJ /(E; E/) an—d 0& [Eq. (4)] then

requires contributions from a large number of partial
waves QI.I which are calculated in any desired quantal
approximation. For colliding energies near threshold,

i.e., 0.105 13 E & 1.642 54 Ry, lo has been chosen as the
value at which 0& '/0& I

'-x =EJ/E; within at

most a 4% error. In Table V, it is shown, for the transi-
tion Ss-4f in Sr+, for each incident electron energy and
angular momentum lo, the two contributions Q&

0

(CDWII approximation) and 0& +I to the total-collision
0

strength Q, as well as the percentage contribution to
QI +&. The quantal calculations become increasingly

0

diScult, from the computational point of view, as the
electron-impact energy and l increase. Therefore, to
avoid these difhculties, the alternative method of sums of
reciprocal powers [Eq. (45)] is used to estimate Si +, .0

A sample calculation, on the Ss-4f transition in Ca+,
of the contributions Ql and QI +, to the total collision

0 0

strength Q is presented in Table VI. Toe percentage con-
tribution of QI +& to Q is also shown, as well as an esti-

rnate of the percentage error in Q due to the use of the
analytic formulas (17) and (45}, found by the method de-
scribed below. The error estimate is only for this effect,
not for the CDWII approximation which is of the order
of 1%. An upper bound on the average error made by
using QI + &

to complete the infinite sum may be estimat-
0

ed in the following way. The contribution to Q from an-
gular momentum l, +1 to lz is denoted by EQ and is cal-
culated by two methods. The first estimate is

which uses the approximate formulas (17) and (45). It
has been then assumed that the error thus found in EQ is
constant for all 0& when I & l2. This is clearly an overes-
timate of the total error, because Eqs. (17) and (45}
represent better the contribution to the total-collision
strength 0 from large angular momentum, as l increases.
The percentage error in Q is obtained by dividing the
percentage error in QI by Q. The procedure to estimate

0

this error is similar to the one developed for quadrupole
transitions [11]. At the largest impact energy
E/=22. 469 11 Ry, and for the transitions Ss-4f in Ca+
and 6s-4f in Sr+, an estimate of the error is more difficult
since the convergence of the CDWII to the CBeI approx-
irnation has not been attained at an angular momentum
as large as l =58. These data points were not included in
Table IX. In order to show that the geometric-series
method does not give accurate results for the energies
listed in Table VI, the contribution QI +, that the

0

method would give is presented in Table VII, together
with the contribution QI . The percentage contribution

0

of QI + &
to Q is also shown, as well as an estimate of the

0

percentage error in 0 due to the use of formula (40}. Be-
cause the contribution of QI +& to Q is so large for

0

EJ =22.469 11 Ry, the scheme used to calculate the per-
centage error in Q no longer applies and the error shown
is undoubtedly too low. Values of the electric octupole
integral 8 ( ns; nf;3 ) [Eq. (8)] are shown in Table VIII for
both ions.

Total-collision strengths, for excitation of octupole
transitions in Ca+ and Sr+, obtained using a unitarized
seven-state CDWII approximation are given in Table IX,
including values at E = ~ obtained by the Born approxi-
mation.

In the limit of infinite electron-impact energy, the Born
approximation for the collision strength of an electric oc-

TABLE IX. CDWII total-collision strengths Q(ns, n'f) for Ca+ and Sr+. Energy of the colliding electron after excitation E, (Ry).
Transition energy E,,(Ry) =E;—E, .

0.129 11
0.385 10
0.764 51
1.226 31
1.693 43
6.310 10

10.924 11
22.469 11

Ca+

4s4f-
E;i =0.620 89

2.184
2.144
2.026
1.918
1.828
1.411
1.298
1.218
1 ~ 193

5s-4

E;~ =0.145 51

15.596
17.052
16.908
16.358
15.900
15.020
14.924

14.872

EJ

0.105 13
0.21494
0.462 83
1.203 28
1.642 54
6.035 14

10.427 74
21.409 24

Sr+

Ss4f-
E;1=0.553 76

2.556
2.656
2.724
2.692
2.586
2.126
2.020
1.947
1.936

6s-4

E;J =0.11850

16.132
17.646
18.196
17.046
16.746
15.638
15.530

15.477
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FIG. l. Scaled total-collision strength Q„d for the 4s 4f tran--
sition in Ca+, plotted against scaled energy E„„., reduced
data;, spline fit to the reduced data; CI, Born limit. Ad-
justable parameter C =4 with knot values 2.238, 1.919, 1.572,
1.290, 1.193.

FIG. 3. Scaled total-collision strength Q„,d for the Ss 4f tran--

sition in Sr+, plotted against scaled energy E„d. , reduced
data;, spline fit to the reduced data; 0, Born limit. Ad-
justable parameter C =6 with knot values 2.465, 2.75, 2.481,
2.095, 1.934.

tupole transition between nl, —n'1,' levels can be written
as

(50)

where the factor C3 =112 depends only on the quantum
numbers of the transition in question and I3 ' is an in-

tegral over momentum transfer given by

' =f f P„I P, ij 3(Kr)dr K dK, (51)

which is based on the method by Burgess and Tully [12]
for interpolating and compacting collision strengths.
Summaries of the method and the program are given else-
where [13—15]. The originality of the method hinges on
the use of scaling techniques which remove the main en-

ergy dependence from the data and map the entire range
of E onto the interval [0,1]. The scaled or reduced vari-
ables are denoted by E«d, Q«d. For an optically forbid-
den transition the data are reduced as

and where j 3(Kr) is a spherical Bessel function of the first
kind.

In order to interpolate the data in Table IX, use has
been made of the interactive graphics program QMEUps

E„d=(E;fE,J )l(EJ IE;J+C),
Q„d=Q,

(52)

(53)

where C) 0 and E =E; —E," is the free-electron energy
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FIG. 2. Scaled total-collision strength Q„d for the 5s 4ftran--
sition in Ca+, plotted against scaled energy E„d. , reduced
data;, spline fit to the reduced data; 0, Born limit. Ad-
justable parameter C =4 with knot values 13.04, 17.78, 17.88,
16.32, 15.46.

FIG. 4. Scaled total-collision strength Q„d for the 6s-4f tran-
sition in Sr+, plotted against scaled energy E„d. , reduced
data;, spline fit to the reduced data; 0, Born limit. Ad-

justable parameter C =6 with knot values 13.26, 16.81, 16.77,
15.45, 14.87.
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FIG. S. Total-collision strength 0 for the Ss 4f transitio-n in

Ca+, plotted against electron energy after excitation E,. 0,
original data;, spline fit to the data.

FIG. 6. Total-collision strength 0 for the Ss-4f transition in
Sr+, plotted against electron energy after excitation E, . ~, orig-
inal data;, spline fit to the data.

after excitation. The parameter C depends on the transi-
tion; its value can be adjusted in order to optimize the
plot of Q„d prior to making a spline fit. The spline curve
is defined by its values at the five equally spaced knots. A
short program for the spline interpolation and extrapola-
tion is given in Appendix C of a previous publication
[13]. Figures 1 —4 are examples, produced by an IBM
PSj2 of the reduced data and spline fit to the reduced
data for the s-f transitions in Ca+ and Sr+. A graphical
comparison of the original data (0) and the spline fit,
which represents the data typically to an accuracy of a
fraction of a percent, is shown in Figs. 5 and 6. It is
worth mentioning that, for the transition Ss-4f in Ca+,
the interpolation procedure of QMEUPS gives a collision
strength of 0=14.88 for the energy point E =22.469 11
Ry as compared to 0= 15.06 shown in Table VI.

IV. CONCLUSIONS

The convergence of the sum over partial-collision
strengths, for excitation of octupole transitions in posi-
tive ions, has been examined formally and by sample cal-
culations on Sr+ and Ca+. Two different methods, based
on the Coulomb-Bethe approximation, were obtained to
complete the summation over the infinite partial-wave
contributions. The first method, referred to as the
geometric-series method, makes use of the findings in this

paper, shared by dipole and quadrupole transitions, that
the sum over partial-collision strengths is asymptotic to a
geometric series of ratio E~ lE;, where E; and EJ are the
initial and final energies of the colliding electron, respec-
tively. The second method or method of sums of recipro-
cal powers, avoids the numerical difticulties encountered
at large colliding electron energies (EJ /E; —1) when the
convergence of the sum to the geometric series is rather
slow.

These methods have been incorporated into the calcu-
lation of total-collision strengths for electron-impact exci-
tation of s-f transitions in Sr+ and Ca+ ions. These
total-collision strengths, calculated in the nonexchange
Coulomb-distorted-wave approximation CDWII, have
been analyzed using the QMEUps method which removes
the main energy dependence from the data and maps the
entire range onto the interval [0,1]. The OMEUP8 method
also verifies that the analytic formulas derived to estimate
the contribution to the total-collision strength from large
values of angular momentum give data with the correct
high-energy behavior.
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