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The factorization method of Bar-Shalom, Klapisch, and Oreg [Phys. Rev. A 38, 1773 (1988)] is extend-

ed to relativistic-distorted-wave cross sections for ionization by electron impact. This leads to a very

great simplification for complex ions. In particular, when mixing is confined to the states in a complex

(having the same set of n values, parity, and J value), the ionization cross section takes the form of a
summation over states of the product of a readily calculated quantity that depends only on target-ion

properties, such as mixing coe%cients and angular momenta, and a cross section having exactly the same

form as a hydrogenic cross section except that the radial functions should be calculated using the ap-

propriate potential for the ion being considered. Similar results are obtained for intermediate coupling

using LS-coupling notation and for totally nonrelativistic calcu1ations. On1y slightly more complicated

formulas apply when mixing is included outside a complex. It is also noted that similar expressions apply
for photoionization. Sample numerical results are obtained and compared with relativistic calculations

of Moores and Pindzola [Phys. Rev. A 42, 5384 (1990)]. Quite good agreement is obtained when mixing

is included among the same set of states.

PACS number{s): 34.80.Kw

I. INTRODUCTION

Recently there has been increased interest in the prop-
erties of highly charged ions with very large values for
the nuclear charge number Z, partly due to the interest in
developing ultrashort-wavelength lasers. Also, increas-
ingly accurate measurements of various electron-ion
scattering processes involving very highly charged ions
are being made as a result of technological advances asso-
ciated with ion sources, traps, and storage rings [1,2].
For such ions with Z ~ 25 or 30, the j dependence of the
radial functions for some orbitals becomes significant so
that a fully relativistic approach based on the Dirac equa-
tion should be used in calculating their properties.

One of the processes of interest is ionization of highly
charged ions by electron impact. Recently several fully
relativistic computer programs have been obtained and
applied to the calculation of cross sections for ionization
of highly charged ions by electron impact [3—9]. Since
relativistic ionization cross sections tend to be lengthy to
compute and many are needed, it is desirable to have a
very rapid method of calculation. Our purpose here is to
show how such an approach can be obtained by extend-
ing the recent factorization method of Bar-Shalom, Klap-
isch, and Oreg [10] for excitation to ionization. For exci-
tation this approach leads to a huge reduction in the an-
gular part of the calculation. This is very beneficial when
that part of the calculation is large in a conventional
treatment. This occurs when a small number of orbital
transitions contribute to a very large number of transi-
tions, such as in the case for inner-shell excitation of Na-
like ions and transitions between excited levels of Ne-like
and Ni-like ions, all of which are of interest for x-ray-
laser research. Also, as pointed out in Ref. [11]and used
in large-scale calculations in Refs. [12—17], the factoriza-
tion method is ideal for calculating cross sections for a

given class of transitions simultaneously for a large part
of an isoelectronic sequence by using fits of the radial
part to a power series in Z. As we will show, similar
benefits occur for ionization when the factorization
method is used. In fact, the simplification in the ap-
propriate formula for ionization is even somewhat
greater. Moreover, similar simple formulas apply for
photoionization and for semirelativistic or totally nonre-
lativistic calculations expressed in LS-coupling notation.

In the next lengthy section the pertinent theory is out-
lined. Then in Sec. III A discussion of results and com-
parison with other work is given. In the final section we
give a brief summary and conclusions.

II. THEORY

In outlining the appropriate theory we will follow the
procedure used in Ref. [18], where results for ionization
were obtained by first considering excitation to a highly
excited bound level. Also many of the equations of Ref.
[18]apply with only slight modification because the angu-
lar part of the matrix elements of the Coulomb interac-
tion between electrons 1/r; is the same in jj coupling for
a relativistic treatment as for a nonrelativistic treatment.
Since considerable use of these equations will be made,
equation (x) of Ref. [18) will be designated equation (S,x).

First we will obtain the result for hydrogenic ions using
the factorization method. There is little advantage in this
for calculating hydrogenic cross sections. We do it be-
cause, in later considering complex ions by the factoriza-
tion method, we will see that the result for ionization
takes the form of a summation of the product of a readily
calculated quantity that depends only on the ion proper-
ties and a cross section having exactly the same form as a
hydrogenic cross section except that the radial functions
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should be calculated using the appropriate potential for
the actual ion.

A. Hydrogenic ions

the relativistic expression

a
k =e(Ry) 1+ e(Ry)

The nonrelativistic cross section for excitation of hy-
drogenic ions is expressed in jj coupling by Eq. (S,20).
This also applies for relativistic calculations of excitation
of hydrogenic ions after a few modifications are made.
First the impact electron energy in Rydbergs, which
occurs in the denominator of Eq. (S,20) and which we will
designate E(Ry), should be replaced by k, where k is the
impact electron wave number. It is related to c,(Ry) by

where a is the fine-structure constant e /Sic. Also the
"direct" and "exchange" radial integrals D and E
given by Eqs. (S,14) and (S,18) should be replaced by the
relativistic expressions, Eqs. (9) and (10) of Ref. [11].

We digress for a moment to repeat these equations and
other related equations for convenience and later refer-
ence

D (nl,j,E,lj; n,'1,'j,'E'1'j')

oo oo r (=2 [P„ I ~ (r, )P, I, . , (r, )+Q„& J (r, )Q, &, . , (r, )] z+, [P,&~(r2)P, IJ (r2)+Q«j(r2)Q, &~ (r2)']dr, dr~, (2)
O 0 aaja "a ha~a "a aju nu la~a r

and

E ( n, l,j,8lj; n,
'
1,'j,' E'1j'' )

oo 00 r (=2 [P„ I (r&)P, I, (r&)+Q„ I (r&)Q, I. (r&)] & &
[P«J(r2)P, &,, (r2)+Q«(r2)Q, .(r2))dr, dr&, (3)

a la Ja a la~a

where r & (r & ) is the lesser (greater) of r, and r2 In thes. e
equations (l„l) and (j„j)are the initial orbital and total
angular momentum quantum numbers for the bound
electron and the impact electron, respectively. n, is the
initial principal quantum number. Primes on symbols in-
dicate corresponding final-state quantities. The "large"
and "small" components P„& =P„, and —

Q„ I,"a aja a a "a aja

=Q„, of the radial function satisfy the coupled Dirac
u a

equations

P r + r dr=1.

f [P,.„(r)P,„(r)+Q, „(r)Q,„(r)]dr =m 5(e —e') .
0

(8)

Although the free-electron radial functions P, I =—P„and
Q« =—Q,„satisfy equations analogous to Eqs. (4)—(6), the
normalization condition is

and

d Ka+ P„, =—E„, —V+ Q„,a 4

dry naa2aa&2naa (4)

Now we return to a consideration of Eq. (S,20) and
separate the sums over A, in the direct and exchange con-
tributions, letting A, ~A, ' in the latter. Also in order to
apply the factorization method, we make use of the well-

known formula [19]

d
dr

Ka Q„„=—( V —c.„,)P„,
a a a a

J k J

Ja J J y( 1 )t A,
' +J(2++r1 )

where E„ is the energy eigenvalue and K, is the relativ-
a a

istic quantum number satisfying
X '

J J' J j
j j ~ jr, r

(9)

&, =l„j,=1, ——,', ~, = —(1,+ 1), j,= 1, + —,
' (6)

For the special case of hydrogenic ions, V= —2Z/r,
where Z is the nuclear charge number. The bound-state
radial functions satisfy the normalization condition

Then applying all this to Eq. (S,20) and dropping the Z
factor because we do not assume that the principal Z
dependence has been scaled out, we have the relativistic
expression for the cross section for electron-impact exci-
tation of a hydrogenic ion
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QH(n, l,j, n—,'I,'j,') =
T

8m.a o Ja ~ Ja

2 X(~+1)X X, J . D (n, l,j,clj;n,'I'j,'c'I'j')(J IIC IIJ & &JIIC IIJ(2j, +1)k J
J~J

j, j' A,
' j, t j,'

y y ( 1)zj'+a+~(2t+1) '

J J

XE (n, l,j,clj;n,'I,'j,'c'Ij'')& j.IIC Ilj'&& jIIC Ilj' &

2

(10)

where

&A IIC'llj2 &
= —

(
—1}" [(2j +1}(2j+1)]'"

ji ~ J2
X

0
2 2

Then, after interchanging the labeling A.
' and t in the ex-

change contribution so that the results look more like the
factorization results in Ref. [10], and using the fact that
(
—1}~ = —1 because j' is a half integer, the result can be

written

QH(n, l,j, n,'I—,'j,')

We note that the compact result given by Eq. (11) is
equivalent to that given by Eqs. (S,12), (S,13), and (S,19),
except for a slight change in the phase factor because we
here assume l is coupled before s =

—,'.-
The result given by Eq. (10) can be considerably

simplified by performing the summation over J using the
formula [19]

where

8mao
Y 0 (n, l,„i„n,'I,'i,'),

(2j, +1)k

Q (n, l,j„n,'I,'j,') =g P (n, l,j,clj;n,'I,'j,'c'Ij'')2
l, I'

J~J

(13)

(14)

Ja
g(2J+1) '

.,
J .J

Ja Ja

2a+ 1
(12}

and

P (n, l,j,clj;n,'I'j,'c'I'j')=(2k+1) ' D (n, l,j,clj;n,'I,'j,'c'Ij'')( j, llC Ilj,
'

&(j IIC Ijl'&

J J
+g( —1) +'(2k+1)' ' ', E'(n, l j,cjl;n,'I'j,'c'I'J')(j, llC'IIJ'&(JIIC'll j,' & .

t J Ja

(15)

In order to obtain the relativistic cross section for ion-
ization from sublevel n, l,j, in a hydrogenic ion we sim-

ply replace the final excited bound electron with an eject-
ed electron, sum over its angular momenta, and integrate
over its energy. Also the min Eq. (13) is. omitted due to
the different normalization for a free-electron function,
see Eq. (8). The result can be written

2

QH(n, l,j,}= f dc"QQ (n, l,j, ),
(2j, +1)k

I

in which P is given by Eq. (15) with n,', I,', and j,' every-
where replaced by c", I", and j". This also means that
the D~ and E in Eq. (15) should be given by Eqs. (2) and
(3) with P, , , and Q, , , everywhere replaced by P, I ~'"a aJa ~a la Ja

and Q,-I"'. Finally we note that this procedure corre-
sponds to using the "natural" phase approximation as
defined in Ref. [5].

&. Complex ions

where I is the ionization energy and

Q (n, l,j, )= g P"(n, l,j,clj;c"I"j"c'I'j')

(16)

(17)

Now we consider complex ions and again we first ob-
tain results for excitation to a highly excited bound level.
The distorted-wave cross section for an excitation transi-
tion h, J, —6',J,' can be expressed in terms of the reac-
tance matrix R. For ions more than a few times ionized
the elements of the reactance matrix are small, especially
for excitation to very highly excited levels. Hence, uni-
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tarization is unnecessary. Then the cross section is given

by

R (b, ,J,Elj J;b, ', J,'E'I'j')
1

g b '(b, „P,)b '(b, I,PI)

Q (h,J, —b', J,')

27M p
2

g (2J+ 1)g lR (E,J,EljJ;6',J,'E'1'j')l
g, k I, I'

(18)

Here J, and J are the total angular momentum quantum
numbers of the target ion and the total system, respec-
tively. g, is the statistical weight of the initial level of the
target ion and 5, designates all quantum numbers in ad-
dition to J, that are necessary to specify the initial level

of the target ion. Other symbols have the same meanings
as in Sec. II A. Primes on symbols indicate correspond-
ing final-state quantities. In general the initial and final
levels of the ion will each be mixtures of pure states hav-

ing the same total angular momentum and parity. Thus

XR (p,J, c,ljJ;p', J,'E'1j''),
where p, designates all quantum numbers in addition to
J, necessary to specify the pure state p, J„which contrib-
utes to h, J, with corresponding mixing coefficient

b '(4„p, ). Again, primes on symbols indicate corre-
sponding final-state quantities.

The reactance matrix has a direct and an exchange
part

(19)

(20)

In obtaining detailed results for the pure or unmixed ex-
pressions for R and R ' we first consider the case where
there are only filled, or closed, subshells in addition to the
active one, which we label a. Again the results of Ref.
[18] apply with singlet modifications. Specifically, Eqs.
(S,32)—(S,38) are applicable after modifications analogous
to those of Sec. II A are made. In particular, in order to
use the factorization method, the 9-j in Eq. (S,38) should
be reexpressed using the formula [19]

JII
a

' Ja

J, j, J, t

j A, =g( —1) '(2t+1) '
.,j' J

J j'

J. t J. J. J

J,' J," J, j j,' t
(21)

where the factor (
—1) ' can be omitted because here t is an integer. Then applying the resulting expressions for R and

R ' to Eq. (20), the result can be written

R (P,J,clj J;P',J,'s'1'j') =R (n, l,j,"a,J,EljJ;n, l,j, 'a,"J,"n,'1,'j,'J,'e'1'j'J)
I II . I

=2&co(j, 'a,"J,"l jj, a,J, )[(2J,+1)(2J,'+1)]' )( —1) '

J, k J,' j, A. j,'
x y( —1)" ' '

~ - D'(n. 1.J.E1J;n.'1.'J.'E'1'J')(J. lllc'lip. '&(Jllc'lip'&

J,
+g g (

—1)~(2t +1)
.J

ja

j J,'
~ t

Ja Ja J

J Ja

xE'(n. 1.J.s1J;n.'1.'J.'s'1'j')&j. llc llj'&& jllc llj'& (22)

In giving the exchange contribution in Eq. (22) we used
the fact that since j' is an integer (

—1) ' = —1. In writ-
ing Eq. (22) all symbols used previously have retained the
same meanings and D, and E are given by Eqs. (2) and
(3). However, now the potentials used in Eqs. (4) and (5)
determining P„„and Q„„and in the analogous equa-

a a 1l K

tions determining P,„and Q, should be those appropri-
ate for the complex ion being considered. Here J, is the
initial total angular momentum of the active subshell a
with occupation co, while J," is the final total angular
momentum of this subshell with occupation co —1. The

( l j ) is a coefficient of fractional parentage. The a, stands

for any additional quantum numbers, such as the seniori-

ty number, required to completely specify the state when

there are several states with the j, configuration having

the same J, value. An analogous statement applies to a,",
J,", and the j ' configuration.

In giving the final detailed form of the right-hand side
of Eq. (22) we have largely replaced the subscript a with
the subscript t as compared with Eq. (21) and Eqs.
(S,32)—(S,38), which lead to Eq. (22). Our reasons for do-

ing this should be explained. Of course, in the present
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case, where any spectator electrons are in closed sub-
shells, J,=J„ the total angular momentum of the ion,
and J,"=J,", the total angular momentum of the remain-
ing core after one electron has been removed and put in
the excited final level n,'l,'j,'. Also J,', which is formed by
coupling j,' to J,", is equal to the final total angular
momentum of the ion J,'. Thus it was valid to replace J„
J,", and J,' with J„J,", and J,'. The reason for doing so is
that when we go to more complex cases with spectator
electrons in particularly filled subshells, the factors where
these replacements have been made remain unchanged
and we only need add additional factors to account for
the presence of the spectator electrons.

These additional factors all come from the fact that in
order to use irreducible tensor techniques to evaluate the
matrix elements, as done, for example, in Eqs.
(S,32)—(S,37), the coupling must be of the same type for
the initial and final states. This was considered in Ref.
[18] and leads to Eqs. (S,52) and (S,58). Here as in Ref.
[18] it will be assumed that the final excited level n,'1,'j,' is
always higher than any partially filled spectator subshells
because our intention is eventually to replace n,'I,'j,' by a
free-electron state in order that we may have ionization.

By the same arguments that lead to Eq. (S,53) one finds
that, if there are only lower partially filled subshells than
the active subshell a and these have total angular rnomen-

turn Jb, then the extra factor that should multiply the
right-hand side of Eq. (22) is

~ II

( —1) ' ' ' '[(2J,"+1)(2J,+1)]'~

In this case the initial total angular momentum of the ion
J, equals Jb„where Jb, is formed by coupling Jb to J, .
Similarly the final total angular momentum of the core
J," equals Jb,', which is formed by coupling Jb to J,". We
note that Eq. (23) also applies for the case where there are
no partially filled lower subshells than subshell a, but
there is a single partially filled inactive higher subshell
with total angular momentum Jb, provided the phase fac-

Jb+j +J +J,tor is replaced with ( —1) ' ' ' ' . Of course, ac-
cording to standard practice one would then couple J,
first in the coupling of J, to Jb so J, and J," would equal
J,b and J,'b, respectively.

If there are partially filled lower subshells than subshell
a having total angular momentum Jb and also a single
partially filled higher subshell having total angular
momentum J„ then the extra factor multiplying the
right-hand side of Eq. (22) should be

II
II II

' [(2Jb,'+ I )(2J, + 1)(2J,"+1)(2Jb, + I ) ]'~2 '

b ba ba

ja Jba Jba
24

In this case, the initial total angular momentum of the ion J, equals Jb„, which is formed by coupling Jb, to J„and the
final total angular momentum of the core J," equals Jb,'„which is formed by coupling Jb,

' to J, . If, in addition to the
situation for which Eq. (24) applies, there were yet another still higher partially filled subshell with total angular
momentum Jd, then the extra factor multiplying the right-hand side of Eq. (22) would be

( 1) b c d a ba bac a bac c [(2J»+1)(2J +)(I2&J' +1)(2J +1

j, J," J,
X '

Jb Jb. Jb.

)(2J,"+1)(2Jb„+1)]'

ja Jba Jba ja Jbac Jbac
(25)

Jc Jbac Jbac Jd Jt Jt

in which J," and J, would equal Jb,',d and Jb„d, respec-
tively. This pattern can be continued for any number of
partially filled inactive subshells. For example, if in addi-
tion to the situation for which Eq. (25) applies there were
still one other higher partially filled subshell with total
angular momentum J„ the extra factor multiplying Eq.
(22) could be obtained by replacing J, and J," in Eq. (25)
with Jb„d and Jb,',d and then multiplying the result by
the factor

Now we apply Eq. (22), with the appropriate
modifications just discussed for more complex cases, to
Eqs. (19) and (18). In doing this we can omit the phase

J, +j+J
factor ( —1) ' because J is formed from coupling J,
and j so J, +j +J is an integer. Also we will again inter-
change the labels t and k' in the exchange part in order
that the result be more like that obtained in Sec. IIA.
The summation over J can be performed immediately us-
ing the formula [19]

ja
X '

II
Jba«

J, J,"

( —1) ' ' "" ' [(2J"+1)(2J +1)]'

(26)

J, C J,' J, C' J,'
(2J+1)

2C+t (27)

where J,"and J, here equal Jbac«and Jb««, respectively.
Then the result for the cross section can be written in the
factorized form
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Sm.a
Q(U —U')= g gB"(U,SS„.U', S'S', )Q ((n, l,j„n,'1,'j,';n„l„j„,n,', 1,',J,', ),

(2J, +1}k
I

11 2

(28)

where we used g, =(2J, + 1). In order to simplify the no-
tation we used U=A, J, and U'=5', J,' for the initial and
final levels. Also, we let S =13,J, and S, =P, iJ, indicate
pure states contributing to U, while S' =/3I J,' and
S', =PI,J,' indicate pure states contributing to O'. Thus,

O=yb(OS)~S&, O'=gb(O', S')(S'&,
S'

(29)

=g P"(n, l,j,Elj;n,'1,'j '„e'Ij'')
I, I'

J~j

XP (n„l„j„Elj;n,', 1,',j,', E'1j'') (30)

where the P are given by Eq. (15), but, of course, the ra-
dial functions entering Eqs. (2) and (3) should now be cal-
culated using the appropriate potentials for the actual
complex ion being considered. The B in Eq. (28) are
readily calculated quantities depending only on the prop-
erties of the ion. In particular, we can write

B~(U,SSi, O', S'S'i )=F (US, U'S')F (USi, U'Si),

(31)

while the b s in Eq. (29) are the mixing coefficients for-
I

mally written b '(b, „P, ) and b '(b, '„P't). Similar to Eq.
(14), except that now due to mixing, nondiagonal terms
contribute,

Q ( na la Ja & na la Ja dna i la iJa i~ na 1 la 1Ja 1 )

ion with one less bound electron and is a good quantum
number, the phase factor in Eq. (33) with j,' replaced byj" will not contribute to the cross section because J,' is
formed from J," and j"so J,'+J,"+j"is an integer. Also
the summation over J,' can be performed using the analog
of Eq. (27)

Ja
g(2J,'+1) '

gl

J Jg) 5.
(34)

2j, + 1

Generally only states with the same parity can mix. In
order that this be satisfied for both the initial and final
levels of the ion, while Eq. (34) is also satisfied, it is neces-
sary that I, &

= I, . Moreover, it is usually valid for highly
charged ions to include mixing only among states in a
complex, that is, with the same set of n values, as well as
parity and J value. In addition, for ionization both
n,'I,'j,'~c"I"j"and n,'&I,'&j,'& ~c"I"j".Hence, it is ap-
parent that only diagonal terms contribute to Eq. (30) in
this case. Thus, collecting results, the relativistic cross
section for ionization from initial ion level U to final ion
level U" with one less bound electron can be expressed in
the very simple form

Q(U —U")= g B(U,SSi,'U", S"S", )Qg(n, l,j,),
S,S"

S, , S1

(35)

where

F ( US, U'S') =b ( U, S)f (S,S')b( U', S') .

For the case that Eq. (22) directly applies

f (S,S')=[(2J,+1)(2J,'+1)]' (
—1) '

X&co(j, 'a,"J,"~ ]j,a,J, )

(32)

where QPg is given by Eqs. (15), (16), and (17), except that
now the I in Eq. (16) is the actual ionization energy of the
complex ion, and the radial functions entering the expres-
sions for D and E are those calculated using the ap-
propriate potential for the complex ion being considered.
Here, similar to Eq. (31),

B ( U, SSi', U",S"S"
, ) =F( US, U "S")F( US„U"S"

, ),
(36)

Ja ~ Jg

JI JII
t

(33) where

and in this special case J„J,', and J,", equal J„J,' and
J„", respectively. For more complex cases all that is re-
quired is that the right-hand side of Eq. (38) be multiplied
by the appropriate one of Eqs. (23)—(25), or in the most
complex case discussed, by Eq. (25) modified as discussed
in connection with Eq. (26).

As in Sec. II A, in order to obtain results for ionization
by electron impact we simply replace the final excited
bound electron with a free ejected electron having energy
E" and orbital and total angular momenta I" and j".
Then we sum over, J,', I", and j", integrate over ejected
electron energy and divide by ~ to account for the
different normalization for a free electron [see Eq. (8)].
Since now J," is the total angular momentum of the final

F ( US, U"S") = b ( U S)f(SS")b( U",S") . (37)

f (S,S")=&co(j, 'a,"J,"~ ]j,a,J, ) . (38)

Again for more complex cases all that is required is that
the right-hand side of Eq. (38} be multiplied by the ap-
propriate one of Eqs. (23)—(25), or for the most complex

As before, S, and S& are states contributing to the initial
target-ion level U. Similarly S" and S", are states with
total angular momentum J," contributing to final ion 1ev-

el U" with corresponding mixing coefficients b (U",S"}
and b ( U",S i' ). For the simple case where there are only
filled subshells in addition to the active subshell a the fac-
tor f (S,S") is given by
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case considered, by Eq. (25) modified as discussed in con-
nection with Eq. (26).

One might have thought that the summation over S& in

Eq. (35) would not be necessary due to the 5 . in Eq.
~anal

(34); however, the same orbital transition can occur from
different states contributing to the initial ion level. For
example, in oxygenlike ions, ionization from the 2p3/2
subshell can occur from any of the states
(2s, ~z2p, n2p ized )o, (2s, &22p iz2 }o, and (2p, &22p3zz }o,

2 2 2 2 4 2 4

which all contribute to each of the even-parity levels with
J, =O. Also, ionization from 2p&&2 can occur from the
first and last of these three states.

By procedures like that given in the Appendix of Ref.
[18], one finds that Eq. (35) also applies for photoioniza-
tion if the collisional ionization cross sections on both
sides of the equation are replaced with corresponding
photoionization cross sections. Of course, Eq. (35) ap-
plies as well when nonrelativistic calculations have been
made and expressed in jj coupling notation. The only
difference would be that the radial integrals D and E in
Eq. (15) would be calculated nonrelativistically. Also in
that case the Qg in Eq. (35) becomes independent ofj,
and one would usually want results expressed in LS-
coupling notation. Both of these matters will be dis-
cussed in Sec. II C.

C. Modifications for near-neutral atoms or ions

Although our interest here is principally in relativistic
results for highly charged ions, the convenient expres-
sions obtained in Sec. II B also apply with slight
modification for distorted-wave ionization calculations in
general. In particular, we consider here the modifications
that may be needed in treating near-neutral atoms and
ions of either high or low Z. For such cases there are two
kinds of modifications that might be required. One of
these is that one might not want to restrict the mixing to
states in the same complex. This is especially true if Z is
quite large, so that even ionization from the ground level
involves ionization from shells with large n for which
states with neighboring n values have quite nearly the
same energy. The other is that one might want results
expressed using LS-coupling notation, which is far more
familiar to most workers, rather than jj coupling nota-
tion, which is natural for relativistic calculations.

First we consider inclusion of mixing outside the states
in a complex. In this case, Eq. (34) and the argument fol-
lowing it regarding parity still apply, so j„=j, and
l, &

=I, . Thus, the angular part of the calculation is un-
changed and Eq. (35) still applies, except that in perform-
ing the summation over states in Eq. (35) there will be ad-
ditional contributions. These are terms in which
Qg(n, l,j, ) is replaced by Qg(n, n„l,j, ), where the
latter is also given by Eqs. (16) and (17), except that
Q (n, l,j, ) is replaced with

Q (n, n„l,j, )= g P (n, l,j,Elj;e"1"j"e'1'j')
1,1', I"

XP (n, &l,j,elj;E"l"j"e'1j'') .

(39)

where again Eqs. (36) and (37) apply. However, the states
S (or S, ) and S" (or Si') contributing to the initial and
final ion levels are now pure LS-coupled states. Hence,
the mixing coefficients now entering Eq. (37) will differ
from those in the jj coupling case, but the numerical
values obtained for Q(U —U") will be the same if the
same physical approximations have been made in the cal-
culations.

Also in the case where LS coupling is used, the
f (S,S")in Eq. (37) must be given by

f (S S")=[(2L,+1)(2S,+1)(2J,"+1)(2j,+1)]' 2

co(l, 'a,"L,"S,"
~ I 1, a,L,S, }

L," l, L,

X 'St 1/2 S

j, J,
(41)

in place of Eq. (38). In Eq. (41) the LS-coupling
coefficients of fractional parentage ( ~ ] ) will generally
differ froin the jj coupling ones in Eq. (38). In addition,
the initial occupation co of the active subshell a will usual-
ly differ (be larger) for LS coupling because the subshell is

Now we consider the modifications to Eq. (35) that are
required if LS-coupling notation is used in place of jj
coupling. Similar considerations were made in Sec. IV B
of Ref. [18] and again we can make use of some of the
equations in that reference. Of course, in using LS cou-
pling one couples the orbital angular momenta of all elec-
trons in each subshell nl to get a total orbital angular
momentum for each subshell. Then these are coupled to-
gether successively, working outward from lower to
higher subshells until a total orbital angular momentum
L, for the atom or ion is obtained. Similarly, spins are
coupled in an analogous manner until total spin S, is ob-
tained. Then L, and S, are coupled to give total angular
momentum for the ion J, . However, for the final state of
the ion we use this procedure only for the core, which
corresponds to one less electron in the active subshell a.
For the final excited electron in the subshell a' we couple
I,' and spin s,'= —,

' to form j,', as for jj coupling, because
we will eventually go to the limit that this becomes a free
(ejected) electron to give ionization. Then in order to use
irreducible tensor techniques to evaluate the reactance
matrix, one must recouple the initial ion wave function so
that it is coupled in the same way. For the case where
there are only filled subshells in addition to the active
subshell a, the appropriate equations are given by Eqs.
(S,45}—(S,48). Evaluation of the pure or unmixed reac-
tance matrix elements then proceeds as in the jj coupling
case because it is only the inactive electrons that are LS
coupled. The final result for the cross section when one
proceeds to ionization is given by an equation like Eq.
(35)

Q(U —U")=g g B(USS,;U",S"S", )Qg(n, l j,),
j SS"

S),S)

(40)
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indicated by n, l, instead of n, l,j, .
The extra factor in Eq. (41) as compared with Eq. (38)

arises from the recoupling of the initial target-ion wave
function discussed above Eq. (40) [see Eq. (8,48)]. How-
ever, it is important to note that the 9-j in Eq. (41) differs

by a phase factor from that in Eq. (S,50) because here we
have assumed L is coupled before S, rather than S before
L as in Ref. [18].

Of course, Eq. (41) directly applies only when there are
filled or empty subshells in addition to the active one.
For that case we have used the fact that L, =L„S,=S„

a
=Jt La =

t a =S,", and Ja =Jt in writing the
recoupling factor. This was done because this factor then
remains unchanged when one considers more complicat-
ed cases in which there are partially filled subshells in ad-
dition to the active subshell. In such cases additional
recoupling of the initial target-ion wave function is neces-

sary in order to use irreducible tensor techniques in

determining matrix elements, as considered in Ref. [18] in

connection with Eq. (S,54). This results in the right-hand
side of Eq. (41) being multiplied by extra factors.

These extra factors are factors like those given by Eqs.
(23)—(26) for the similar situation when jj coupling is
used, except that for each factor in the jj coupling case
there are two factors. These are each exactly like the jj
factor except that in one of them spins everywhere re-
place corresponding total angular momenta and in the
other, orbital angular momenta replace corresponding to-
tal angular momenta. For example, we consider the case
that there are no partially filled higher subshells, but
there are lower subshells with total spin Sb and total or-
bital angular momentum L& The.n, analogous to Eq. (23)
for the similar jj coupling case the extra factor multiply-
ing the right-hand side of Eq. (41) is

tl l.
(
—1) ' ' ' '[(2L,"+1)(2L,+ I)]'~ ' „'(—1) ' ' '[(2S"+1)(2S +1)]'

Lb L, L t 0 Sb S, S,"

(42)

In this case the initial total orbital and spin angular mo-
menta of the target ion are L, =Lb, and S, =Sb„while
the total orbital and spin angular momenta of the final
ion are L,"=Lb,' and S,"=Sb,'. Of course, Lb,

' is obtained
by coupling Lb to L,", and Sb,

' is obtained by coupling Sb
to S,". As is the case of Eq. (35), if mixing is included
among states outside the complex, then there will be con-
tributions to Eq. (40) from additional terms in which

Qf(n, l,j, ) is replaced with QPg(n, n„l,j, ), determined
as discussed in connection with Eq. (39).

From comparison of Eqs. (41) and (42) with the analo-
gous Eqs. (38) and (23), it appears that f (S,S") is consid-
erably more complex when LS coupling is used than
when jj coupling is used in writing the basis states. How-
ever, there are many more subshells when they are la-
beled by n, l, and j values, as in jj coupling, than when

they are labeled by n and l, as in LS coupling.
When LS-coupling notation is strictly appropriate, the

radial functions are calculated nonrelativistically, as in
the well-known University College London program, "su-
perstructure" [20], or semirelativistically as in Cowan's
well-known program [21]. Then intermediate coupling
effects are calculated perturbatively. In either case the
radial functions depend only on n and l, rather than on n,
l, and j, as in a fully relativistic treatment based on use of
the Dirac equation. When the radial functions are in-

dependent of j values, the same is true of the Qg or Q~
given by Eqs. (16) and (17). This is considered in the Ap-
pendix and leads to Eq. (A10), or when mixing is included
among states outside the complex, to Eq. (A10) modified

by Eqs. (A13)—(A15).
For very low Z atoms and ions it is well known that

pure LS couphng becomes a good approximation. That
is, intermediate coupling effects become negligible and

1

(2L, + 1)(2S,+ 1)
(43)

This leads to a result for pure LS coupling that has a
form like Eq. (35)

Q ( U —U" ) = g B ( U SS, ; U",S"S"
, )Qg(n, I, ),

S,S"

Sl,Si

(44)

where QPg(n, 1, ) is given by Eq. (A10) with, of course, the
nonrelativistic radial integrals D {n,l cl;c."I"c'l') and
E {n, l, c.l; c"l "E'l '

} determined using the appropriate po-
tentials for the ion being considered. Also the 8 in Eq.
(44) has the same form as given by Eq. (37), and, if there
are only filled subshells in addition to the active one,

f (S,S")=&co(l, 'a,"L,"S,"~ jl, a,L,S, ), (45)

which has an appearance like Eq. (38). For more compli-
cated cases this should be multiplied by the appropriate
factor discussed in the paragraph containing Eq. (42). If
mixing outside a complex is included, similar to the dis-

I

the energies of the initial and final ions become indepen-
dent of J, and J,". Then the only dependence on j„J,",
and J, is in the f factor given by Eq. (41). Also L„S„
L,", and S," are good quantum numbers in this case.
Then one can sum Eq. (40) over j, and J," using [19]

L," I, L,

(2J,"+1)(2j,+ 1) S," —,
' S,

/C

JII
t ja t
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cussion of Eqs. (35) and (40) for this situation, the sum-
mation over states in Eq. (44) will include contributions
from terms in which QPg ( n, l, ) is replaced with

QPg( n, n„l, ) given by Eq. (A10) modified by Eqs.
(A13)—(A15).

On another topic we note that in applying Eq. (35) to
ionization by electron impact in complex cases, where
several transitions involve ionization from the same sub-
shell n, 1,j„considerable computing time can be saved if
for each impact electron energy the Qg(n, i,j, ) [and
Qg(n, n„i,j, ) if mixing outside a complex is included]
are calculated using three values for the transition energy
spanning the range of actual transition energies. Then
the results for the exact energy of each ionization transi-
tion are obtained by Lagrangian interpolation. Our tests
indicate that this is accurate to better than 1%. Analo-
gous statements apply to Eqs. (40) and (44).

III. ILLUSTRATIVE RESULTS AND DISCUSSION

With the use of Eq. (35) we have calculated relativistic
cross sections for ionization of carbonlike and nitrogen-
like uranium and for inner-shell ionization of neonlike xe-
non initially in an excited level. Results are given in
Tables I-III, where comparison is made with corre-
sponding relativistic calculations of Moores and Pindzola
[8], made using the multiconfiguration Dirac-Fock
(MCDF) approximation [22,23].

The present results were obtained using the more ap-
proximate Dirac-Fock-Slater atomic structure program
of Ref. [24], but modified, as discussed in Ref. [16], to in-
clude the generalized Breit interaction and other QED
corrections. In this program the potential V used in Eqs.
(4) and (5) determining the radial functions is the Dirac-
Fock-Slater potential given by Eqs. (4)—(6) of Ref. [16].
In considering a given class of transitions this potential is
determined using a single mean configuration with frac-
tional occupation numbers for some subshells corre-
sponding to approximately splitting the occupation of the
active electron between initial and final subshells. For
ionization we assume an occupation number of 0.5 for a
very high subshell to mock up the effect of the ejected
electron. The same potential is used for all electrons,

bound and free. Hence, all orbitals are automatically or-
thogonal and exchange is treated in a consistent manner,
which can be important near threshold for some transi-
tions.

The mean configuration used in determining the poten-
tial in the present calculations was

1 2 2 '2'8f
for ionization of C-like uranium,

ls22g22P 0.832' 1.678f0. 5

for ionization of N-like uranium, and

ls 22' 1.62@ 1.62' 3.3350.23—0.23 0.23d 0.23d 0.28f 0.5

(46)

(47)

(48)

1s 2s' 2p
'

2p 3s 23—o.23 o.23d o.23do. 2

and for the final F-like ion it was the same except the oc-
cupations of the 2s, 2p, and 2p subshells were reduced by
0.25, 0.25, and 0.5, respectively.

for inner-shell ionization of excited Ne-like xenon. Here
and in the tables we have used nl and nl to indicate nlj
with j =1—

—,
' and j =l+ —,', respectively, as done in Ref.

[8]. We note that results are insensitive to how a given
total occupation is distributed among the subshells of a
given shell. Also, they are insensitive to the precise high
subshell used to mock up the effect of the ejected elec-
tron. For example, replacement of 8f with 6f or
10f had no effect on the results given in the tables.

Ordinarily in considering excitation, as in Refs.
[12—17] the same mean configuration is used in determin-
ing the potential for the orbitals entering the radial
scattering integrals given by Eqs. (2) and (3) and for the
bound orbitals entering the analogous integrals that
occur in diagonalizing the ion Hamiltonian to determine
the energy levels. However, for determining ionization
energies we used a different appropriate mean
configuration for each ion. For N-like, C-like, and 8-like
uranium considered in Tables I and II this was
s 2s 2p2p 1s 2s 2p 662p' and 1s 2s 2p

'
2p

respectively. For excited neonlike xenon considered in
Table III, it was

TABLE I. Comparison of ionization cross sections for U +. Present results are labeled SZ. Those
of Moores and Pindzola (Ref. [8]) are labeled MP.

Threshold energy (keV) Cross section (10 cm ) at 2 th. u'

Transition

2p (0) ~2P(1/2)
2p2p (1)—+2p(1/2)
2p2p (2)~2p(1/2)
2p2p (1) 2p (3/2)
2P2p (2)~2p (3/2)
2p (2)~2p(3/2)
2p (0)~2p(3/2)

SZ

31.06
27.08
27.06
31.17
31.15
27.11
27.02

MP

31.06
27.08
27.06
31.17
31~ 15
27.11
27.02

SZ

43.5
29.3
29.3
21.7
21.7
58.4
58.6

MP

45.2
31.6
31.6
23.3
23.3
62.0
62.0

th. u. stands for threshold units, the incident energy divided by the threshold energy.
Here nl and nl mean nlj with j= I —

2
and j= l + 2, respectively. The quantity in parentheses is the

total angular momentum of the ion.
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TABLE II. Comparison of ionization cross sections for U +. Notation as in Table I.

Transition SZ

Threshold energy
(keV)

MP

Cross section
(10 cm ) at 2 th. u

MP

2p 22p (3/2)~2p 2(0)

2p 22p (3/2) ~2p2p (1)
2p 2p(3/2)~2p2p(2)
2p2p2(3/2) ~2p2p {1)
2p 2p'(3/2) ~2p 2p(2)
2p2p {5/2) 2p2p(1)
2p 2p 2(5/2) ~2p 2p (2)
2p2p~{ 1/2) ~2p2p (1)
2p2p (1/2) ~2p2p (2)
2p2p (3/2) ~2p'(2)
2p2p (5/2)~2p (2)
2p2p (1/2)~2p (0)
2p '(3/2) ~2p'(2)
2p (3/2)~2p (0)

26.59
30.57
30.59
26.63
26.65
26.61
26.63
26.53
26.55
30.69
30.67
30.68
26.63
26.72

26.59
30.57
30.59
26.63
26.65
26.61
26.63
26.53
26.55
30.69
30.67
30.68
26.63
26.72

30.2
16.8
28.0
45.3
15.1

7.6
52.8
22.7
37.9
22.3
22.3
22.3
75.5
15.1

31.4
17.4
29.1

47.0
15.7
7.8

54.8
23.5
39.1

23.2
23.2
23.2
78.0
15.6

It should be emphasized that the mean configurations
are used solely in determining the potentials to be used in
calculating the radial functions with Eqs. (3) and (4) or
the analogs for free electrons, and that basically the cal-
culations are multiconfiguration calculations. Usually we
include all the mixing among the states in a complex.
This was done in making the present calculations, but for
comparison purposes calculations were also made with
the more limited amount of mixing included by Moores
and Pindzola [8]. Hence, our values given in Tables I and
II and the SZ2 entries in Table III were calculated the
latter way. For ionization of C-like and N-like uranium,
as noted in Ref. [8], configuration mixing has very little
effect, and we found the cross sections to be changed by
less than 1%, usually much less, when mixing among all
states in a complex was included. However, this is not
true for the more complex case of inner-shell ionization
of excited neonlike xenon for which results are given in
Table III. The MP and SZ2 values in the table were ob-
tained including only the mixing of the 2s 2p 2p 3s and
2s 2p2p 3s states with J, =1 for the initial ion and the
2s 2p 2p 3s, 2s 2p2p 3s, and 2s 2p 3s states with J,"=

—,
'

for the final ion. Actually as given in Table I of Ref. [24]
and Ref. [16] there are seven states contributing to the in-

itial levels and 15 contributing to the final levels of these
transitions when all mixing within a complex is included.

This was done in obtaining the SZ1 entries and one sees
by comparison SZ1 and SZ2 entries that this has a
significant effect on ionization cross sections for some
transitions.

For the MP and SZ2 entries in Tables I and II, where
mixing was allowed among the same sets of states in both
sets of calculations, the differences in physical approxi-
mations made in the two sets of calculations are of two
kinds. These are that (i) different potentials were used in
calculating the radial functions with Eqs. (3) and (4) and
their analogs for free electrons in the two sets of calcula-
tions, and (ii) the Breit interaction was included in calcu-
lating the scattering matrix elements in the MP calcula-
tions, while it was not in the present calculations. As
found in Refs. [5] and [8], the effect of (ii) is generally
small for ionization unless very high impact electron en-
ergies ( +250 keV) are considered. Of course, this effect
is most likely to be important for high Z. It may be the
principal reason for the differences in Tables I and II be-
tween SZ and MP entries, which are rather small. For
ionization of Xe + considered in Table III the agree-
ment between MP and SZ2 entries is also quite good, but
worse than the agreement for U + and U +. In the
case Xe +, with a lower Z and larger number of bound
electrons, the differences are probably mostly due to the
effect of (i).

TABLE III. Comparison of ionization cross sections for Xe +. Notation as in Table I except that SZ1 and SZ2 designate present
results obtained with inclusion of all mixing in a complex and with the more limited amount of mixing included by MP, respectively.

Cross section {10 crn )

Threshold energy (keV) 1.25 th. u 1.50 th. u

Transition

2p 2p 3s(1)~2p 2p 3s(1/2)
2p '2p 3s(1)~2p2p'3s(1/2)
2p 2p 3s(1)~2p 3s{1/2)
2p2p43s{1)~2p 2p 3s(1/2)
2p2p 3s (1)~2p2p'3s (1/2)
2p2p 3s(1)~2p 3s(1/2)

SZ1

7.81
8.11
8.47
7.48
7.78
8.14

SZ2

7.81
8.11
8.47
7.48
7.78
8 ~ 14

MP

7.81
8.12
8.48
7.48
7.78
8 ~ 15

SZ1

92
111

0.17
0.38

99
91

SZ2

92
112

0.24
0.51

124
168

MP

75
120

0.31
0.48

130
170

SZ1

132
160

0.24
0.55

142
131

SZ2

133
162

0.35
0.73

178
241

MP

140
160

0.44
0.69

180
250
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Finally, we note that a program for computing cross
sections for jonization to specific magnetic sublevels of
the final ion has been written [26]. This was also used to
calculate numerical results for the total ionization cross
sections for the transitions considered in the tables.
Agreement with the results calculated with Eq. (35) was
obtained to four or five significant figures. Since the same
physical approximations are used, but the angular parts
of calculations are done in completely different ways, this
is a good check that no errors were made in either com-
puter program.

IV. SUMMARY AND CONCLUSIONS

The factorization method of Bar-Shalom, Klapisch,
and Oreg [10] for excitation has been extended to ioniza-
tion by electron impact. This leads to a very large
simplification for complex ions. If the mixing is confined
to that among states in a complex, as is usually valid for
highly charged ions, the ionization cross section reduces
to a very simple form. This is Eq. (35) for jj coupling no-
tation, as appropriate for relativistic calculations, Eq. (40)
for LS-coupling notation, and Eq. (44) for pure LS cou-
pling, in which intermediate coupling effects are negligi-
ble. In these equations the B factors, which depend only
on target-ion properties such as mixing coefficients and
angular momenta, are very readily calculated. The
Qpg (n, I,j, ) or Qg(n, I, ) are ionization cross sections of
exactly the same form as those for hydrogenic ions given
by Eqs. (16) and (17) or Eq. (A10), except that the radial
integrals D and E' should be evaluated using radial
functions calculated with potentials appropriate for the
particular ion being considered.

If mixing is included with states outside the complex,
the results are nearly as simple. The only difference is
there will be additional contributions in the summation
over states in Eqs. (35), (40), or (44) that involve terms
with Qpg(n, l,j, ) or Qg(n, I, ) replaced with

Qg(n, n, ~l,j, ) or Qg(n, n, &I, ), which are determined as
described in the discussion regarding Eq. (39) or Eqs.
(A13}—(A15).

It is of interest to point out that these results apply, as
well, to photoionization, if collision cross sections are
everywhere replaced with corresponding photoionization
cross sections. We also note that it was shown in the Ap-
pendix of Ref. [26] that a result like Eq. (35) applies in
special cases, but it was not realized that it applies in gen-
eral when mixing is confined to the states in a complex.

In addition to the fact that Eqs. (35), (40), and (44) are
well suited for rapid calculations of ionization cross sec-
tions, they have the additional advantage that, when the
Qg are expressed in terms of "reduced cross sections, " it
appears that simple fits convenient for plasma modeling
calculations can be made. In particular, as discussed in
Ref. [9], it appears that the "reduced cross section" can
be fitted to simple functions of the impact electron energy
in threshold units, like those made to nonrelativistic
Coulomb-Born-exchange results in Ref. [27], but with
coefficients that are slowly varying functions of Z and N
or an effective Z.

Results with the program based on Eq. (35) were com-

pared in Tables I—III with recent relativistic distorted-
wave calculations of Moores and Pindzola [8]. The
agreement was found to be quite good when the same de-
gree of mixing was allowed. The fairly small differences
in results for these cases could be attributed to the fact
that different potentials were used in calculating the radi-
al functions and that the Breit interaction was included in
calculating the scattering matrix elements in Ref. [8],
while it was not in the present calculations.

As an additional check on Eq. (35), another relativistic
distorted-wave ionization program [25], which is based
on the very different and more lengthy formation of the
angular part of the calculation needed for calculating ion-
ization to specific magnetic sublevels, was also used to
calculate ionization cross sections for the cases con-
sidered in the tables. The two methods, which use the
same physical approximations, gave exactly (to within 4
or 5 significant figures} the same numerical results.
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APPENDIX

Here we outline the demonstration that the QH(n, I,j, )

given by Eqs. (16) and (17) becomes independent of the j
value when the radial functions are independent of the j
value, as one would expect to be true. Of course, in this
case the radial integrals are independent of the j value,

D (n, l,j,slj;r,"I"j"s'I'j ')~D (n, l, l;sic" Is'), (Al)

E (n, I,j,slj; e"I"j"s'Ij'') ~E (n, I, sl; e"I"c.'I') . (A2)

&J, llc'llj~) =&Ii —Allc"III, —'j, )

=( —1) ' ' [(2j,+1)(2j2+1)]'
I, A, l2x,. & I, llc'llI, ) (A3)

for the angular factors in the application of Eq. (15}with

n,'I,'j,' ~c."I"j" to Eq. (17) for ionization. Also we write

Then one needs to show that when this is true the angular
part of Eq. (16) also becomes independent ofj values. In
doing this, instead of using Eq. (11), one uses the more
lengthy form [19]
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ygil. —ygk+ygk +ygi, (A4)

Ja J
g(2k+1) '

J J
&u

J ~. 2t+1 (A5)

l,
g(zj'+1) ' .,

J

I
g(zj"+1)

II J

ll 2

Ja

1

21.+1 '

1

21 +1

(A6)

where the first part comes from the square of the part of
P [see Eq. (15)] proportional to D, the second part is
the interference part due to cross terms proportional to
D E', and the last part is the pure exchange part involv-
ing terms proportional to E'E'. We consider the latter
first and use [19]

2(2j, +1) 1
&Q' =

(zl. +1) &,&,. zt+1

X [E'(n, I, cl; c"I"c'I')

X ( I, //
C'f/ I'

&& ll I C'[[I"& ]' .

(AS)

A very similar result is obtained for the "direct" part, the
first part of Eq. (A4), by summing over j' and j" using
equations analogous to Eqs. (A6) and then using Eq. (A7).
The interference terms, which involve a product of five
6-j s is most diScult to evaluate. By introducing a factor
(
—1)( —1) ~, which equals unity because j' is a half in-

teger, one can perform the summation over j' and ex-
press the product of three of the 6-j's as a 9-j in analogy
to Eq. (S,3S). Then the product of this and one of the
remaining 6-j's can be summed over j to lead to a prod-
uct of two 6-j's in analogy to Eq. (S,42). One of these
equals the remaining of the original 6-j s. These two are
then eliminated by summing over j". Specifically,

and

g(zj + 1)=2(21+ 1) .

This leads to

(A7)

I, k 1"
g(zj"+1) ' .„

IP J 2 J,
1

2l. +1 (A9)

Finally, applying all these to Eq. (16) one finds that, when
the radial functions are independent of j values, it
reduces to

QH ( n, l,j,—n,
' I,'j,' )~Q (Hn, I, )

216a0 1
D (n, l, cl;c"I"c'I') [( I))C ()I")(I))C [)I')]

I, I', I" A,

—g g ( —1) +'D (n, l, cl;c"I"c'I')E'(n, l, cl;c"I"c'I')

1' 1X,„, , (I.iiC'ill- &(IiiC'i'll &(I, iiC'ill &(li[C'ill" &

(A10)

where

l, A, 12

(li ~[c ~~12) =( 1) [(zli+1)(zip+1)] () () ()
(A 1 1)

~e note that Fq. (A10) is consistent with Eq. (S,24) for excitation to a high level n,'I,', except that in the interference
part of Eq. (S 24) the factor (l, ~~c ~~I') (I~~c ~~1,

') should have been replaced with

l' 1
(A12)

a a

Of course, if mixing is included with states outside a complex, similar to the discussion connected with Eq. (39), there
will be additional contributions to the summation over states in Eq. (40). These are terms in which Qg(n, l,j, ) is re-

placed with Qg(n, il,j, ), but, if the radial functions do not depend on the j value, this reduces to Qg(n, n„l, ) given by
Eq. (A10) with the replacements

D (n, l, cl;c,"I"c'I') ~D "(n, l, cl;c"I"c'I')D (,il, cl'c"I"c'I'), (A13)



45 RAPID-IONIZATION APPROACH BASED ON THE. . . 1669

D (,l, cl;c"I"c'I')E'(n, l, cl;c"I"c'I')

—+ —,'[D (,I,cl;c"I"c'I')E'(n, il, cl;c"I"c'I')+D (n„l,cl;c"I"c'I')E'(n, l, clj;c,"I"j"c.'I'j ')],
and

E'( n, I,cl; c"I"c'I') ~E'(n, I,cl; c"I"c'I')E'( n„l,cl; c"I"c,'I')

(A14)

(A15)
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