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Arbitrary-order three-turning-point phase-integral formula for the S matrix in Regge-pole theory
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In this paper we give an arbitrary-order phase-intergral formula for the 5 matrix in Regge-pole theory.
This formula is valid for a particular situation when there are three relevant transition points, two of
which may lie at an aribtrary distance from each other, possibly close together, but far away from a11

other transition points, the pole at the origin inclusive. When the formula is particularized to the erst
order of the phase-integral approximation, it agrees with formulas given by Connor, Jakubetz, and Suku-
mar [J. Phys. B 9, 1783 (1976)] and by Brink and Takigawa [Nucl. Phys. A 279, 159 (1977)], after these
formulas have been rewritten conveniently.

PACS number(s): 34.40.+n, 03.65.Nk, 03.65.Sq

I. INTRODUCTION

Regge states, which may exist for particular complex
values of the angular momentum quantum number, cor-
respond by definition to regular solutions of the radial
Schrodinger equation which behave as purely outgoing
waves at infinity. Such wave functions correspond to
poles (Regge poles) of the one-by-one scattering matrix (S
matrix) in the complex angular momentum plane. The
quantities that determine the contribution of the Regge
states to the scattering cross section are the positions l
and residues r of the Regge poles, where m is a non-
negative quantum number [1]. Numerical [2—5], semi-
classical [6—9], and phase-integral [10—14] methods for
calculating l and r in elastic heavy-particle scattering
have been developed during the past twenty years; see
Ref. [13], and some further references given there, for
short comments on this development. However, the sys-
tematic investigation of the accuracy of these methods is
incomplete. Until recently, only results obtained by the
semiclassical approximation and by the numerical com-
plex coordinate method due to Sukumar and Bardsley [3]
had to some extent been compared with each other.

The application of the phase-integral method in
Regge-pole theory started with the work by Thylwe and
Froman [10] and by Thylwe [11],in which exact general
representations of the scattering matrix were derived
within the framework of the rigorous F-matrix method.
The recent derivation of arbitrary-order phase-integral
formulas [12—14] in Regge-pole theory has provided
means for estimating the accuracy of previous analytical
as well as numerical results. The investigation in Ref.
[14] of the accuracy of the arbitrary-order formula for
the positions [11] and the likewise arbitrary-order, uni-
form formula for the residues [12] shows that these for-
mulas are extremely accurate and that some of the previ-
ous numerical results, which have earlier been used for
investigating the accuracy of semiclassical results, are not
reliable. The investigation in Ref. [13], concerning the
application of the uniform residue formula [12] to ion-
atom scattering, demonstrates that this formula, already
when used in the first-order approximation, considerably

II. GENERAL, EXACT FORMULAS
FOR THE SMATRIX AND THE REGGE POLES

For the background and the notations we refer to pre-
vious papers by Thylwe and Froman [10] and by Froman
and Froman [12]. According to Eq. (3.27) in Ref. [10] or
Eq. (1.1) in Ref. [12] the elastic one-by-one scattering ma-
trix St (the S matrix) is given by the exact formula

F„(+~, +0)
St =i exp(2i 5& ),F))(+~, +0)

where

(2.1a)

(2. 1b)

By definition the Regge poles are the poles of the S ma-
trix in the complex I plane. From (2.1a) and (2.1b) one
therefore finds that the condition determining a Regge
pole I is

improves the previously existing semiclassical Regge-pole
description of rainbow scattering.

It has thus been found that the phase-integral method,
involving the use of the arbitrary-order phase-integral ap-
proximation generated from an a priori unspecified base
function [15], provides a powerful tool for the develop-
ment of Regge-pole theory. However, with the use of this
tool one has so far treated only nonresonant situations,
i.e., situations in which only two transition zeros have to
be taken into account in the phase-integral treatment.
The purpose of the present paper is to derive phase-
integral formulas for resonance scattering, when three
transition zeros are of significant importance.

In Sec. II we quote general, exact formulas for the
one-by-one S matrix and the Regge poles. For the two
F-matrix elements appearing in these formulas we derive
in Sec. III approximate expressions. Section IV presents
the final arbitrary-order phase-integral formulas for the
Regge-pole positions and residues, which are then, for the
first-order approximation, in Sec. V compared with the
corresponding semiclassical formulas derived by previous
authors [7—9].
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F2, (+ oo, +0)=0 for 1 =l

and that the residue r of this Regge pole is

Fii(+ 00, +0)
BF,(+,+0)/Bl

(2.2)

(2.3)

Complex r pliny

In Ref. [10] the exact formula (2.1a) with (2.1b) was used

for the derivation of an approximate formula for SI on
the assumption that one needs to take into account only
one simp/e complex transition zero. In such situations
there exist, however, no Regge poles. In Ref. [12] the ex-
act formulas (2.2) and (2.3) were applied to a situation
when there exist Regge poles and were used for the
derivation of approximate formulas for l and r on the
assumption that there are two relevant transition zeros, ly-

ing at an arbitrary distance from each other, possibly
close together, but far away from the origin and from
other transition points. The resulting formulas were used
in particular applications by Thylwe and Amaha [13]and

by Amaha and Thylwe [14]. Starting from the situation
treated in Ref. [12], we now assume that the two transi-
tion zeros t, and t2 do not lie close together, which
means that the quantum number m is not too small. As
the energy decreases, a third transition zero t3 may ap-
proach the cluster consisting of the transition zeros t,
and t2 such that all three transition zeros t, , t2, and t3
finally form a cluster. We shall assume that the distance
between ri and r& (like the distance between ti and rz}
remains suSciently large, while there is no restriction on
the distance between t2 and t3. In the present paper we

shall use the exact formulas (2.2) and (2.3) for the treat-
ment of such a cluster of three relevant transition zeros t„
t2, and t3,' see Fig. 1.

III. APPROXIMATE EXPRESSIONS
FOR F)) ( + +0) AND F2] ( + 00 +0)

We assume that the three relevant transition zeros t„
tz, and t3 (simple zeros of the square of the base function
[15]) lie far away from the origin and from other transi-
tion points, and we consider the situation that t& is well

separated from both t2 and t3, while t2 and t3 may lie at
an arbitrary distance from each other, i.e., even close to-
gether; see Fig. 1. To make q(r) single valued we intro-
duce in the complex r plane a cut between t, and tz and
another cut from t3 along an anti-Stokes line proceeding
toward +00, and to make also w(r}, to be defined in
(3.1), single valued, we continue the former cut from t2
toward infinity; see Fig. 1. We now define

w (r) =
—,
' j q (r)dr =f q (r)dr, (3.1)

'2

where the contour of integration I, (r), which starts'2

from the point corresponding to r, but lying on a
Riemann sheet adjacent to the complex r plane under
consideration, encircles the transition zero t2, and ends at
the point r in the complex r plane, is chosen such that the
function w (r) can in the first order of the phase-integral
approximation be written as an integral starting at t2 on
the right hand lip of th-e cut in Fig. 1 (that starts at t, and

FIG. 1. Three transition zeros t j, t2, and t3 in the complex r
plane and the first-order anti-Stokes lines emerging from these
points. The point t, is assumed to lie far away from both t2 and

t3, but t2 and t3 may lie at an arbitrary distance from each oth-
er, possibly close together. In order not to have too many lines
in the figure, we have drawn it for the case that the quantity y'»,
defined by (3.3), is real and positive, which implies that there is
an anti-Stokes line joining f,

&
and t2. To make q {z)single valued

we have introduced a cut (wavy line) between t, and t2 and
another cut (wavy line) along the first-order anti-Stokes line em-

erging from t3 and proceeding toward + ~. To make also w (z)
single valued we have introduced a further cut (wavy line) along
the first-order anti-Stokes line emerging from t2 and proceeding
upward. By ro, r&, r2, r3, and rz we denote points on some of
the first-order anti-Stokes lines emerging from t„ t2, and t3. In
the derivation in the present paper there is no assumption of an
anti-Stokes line joining t, and t2, although the figure has been
drawn for such a case.

F»(r„+0)=1+0(1),
F2, (r„+0)=0(1)exp( —2m.iy»),

where

(3.2a)

(3.2b)

(3.3)

via t2 continues to infinity) and ending at r. The last
member of (3.1) is by definition a simplified notation for
the contour integral in the second member. This
simplified notation, reminding of an ordinary integration
from tz to r, which also makes it convenient to use a cor-
responding language, was introduced by Froman,
Froman, and Lundborg [16],pp. 160 and 161, and will be
used in the present paper. It makes it possible to use, for
an arbitrary order of the phase-integral approximation, a
similar simple notation and almost the same simple
language (although in a generalized sense} as for the first
order of the phase-integral approximation. This really
simplifies the treatment of concrete problems.

It is assumed that q (r) tends to a positive constant k as
r tends to + ~, and therefore, with w (r) defined by (3.1)
and r2 lying on the anti-Stokes linc emerging from t2 to-
ward + ~, w(r2) is positive and increases as r2 moves
away from t2, while Rew (r, ) decreases as r, moves away
from t, ; see Fig. 1. The origin is assumed to lie in (or on
the border of) the region limited by the two anti-Stokes
lines emerging from t

&
toward the left.

According to Eqs. (3.3a) and (3.3b) in Ref. [12]we have
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with the integration performed below the cut from t, to

t2 in Fig. 1, and hence on the same side of the cut as the

point ro lies; see Fig. 1 . This explanation of the path of
integration is strictly valid for the first order of the

phase-integral approximation, and (as explained above) it

can also be used in a generalized sense when a higher-

order approximation is used. The integral in (3.3) is (ac-

cording to its definition) actually equal to half of the in-

tegral along a closed contour encircling in the positive

sense t, and tz by disregarding the cut from t2 toward

infinity. We also recall that the symbols o(1) in (3.2a)
and (3.2b) and in the following denote quantities which to

F(ro, r, )=
i exp( —27ri y, z )

(3.4)

As a result of arguments analogous to those leading to
Eqs. (2.3), (2.15), and (2.17) in Ref. [12]we obtain approx-
imately (see Fig. 1)

their absolute values are small compared to unity.
Assuming Rey, 2 to be positive and suf5ciently large,

we have, according to Eq. (2.4b) in Ref. [12], the approxi-
mate formula

o(1)exp(+2miy, z)

and

F(r3 rp)=
i exp( —2niy3z)f(y3z)

o(1)exp(+2m. iy3z)
(3.5a)

F(rz, r3) =

where

o ( 1 ) exp( —2n.iyzz)

o(1)exp( —2n.iy&z)

i exp(+2niy3z)f (y3ze
'

)

i exp(+2niy&z)[1+exp(+2miy&z)]/f (yzz)
(3.5b)

(t2)
f32 q r dr

'3
(3.6)

and f (y) is a simplified notation for the function f (yo, . . . , yz~) given up to the fifth-order approximation by Eqs.
(2.14), (2.13a), (2.13b), and (2.11a)—(2.11c) in Ref. [12] and up to the 13th-order approximation by Eqs. (2.7), (2.9), and
(2.10a)—(2.10g) in Ref. [14]. With matrix multiplication we obtain from (3.5a) and (3.5b} approximately

F(rz, ro) =F(rz, r3)F(r3, ro)
—exp(+2ni y3z) i exp(+2miy3z) j [1+exp(+2miy3z)] If (y3z)+o (1)}

1+o(1)i exp( —2miy&z)[f (y3z)+o(1)]

Using the approximate formula (3.7) and the exact formula (see Fig. 1)

(3.7)

F(rz, r'z ) = i exp( ——2niy3z)

i exp(+2—m iyzz)
(3.8)

we obtain with the aid of matrix multiplication the approximate formula

F(r» ro }=F(rz r z }F( '» o }=
f (y3z)+o (1) i exp(+2m—iy&z)[1+o(1)]

[1+exp(+2niy3z)]l f (y3z)+o (1)
(3.9)

To be able to proceed further, we now introduce the as-

sumption that neither t2 nor t3 lies too far above the
first-order anti-Stokes line emerging from t I toward the

right. Noting that this assumption implies that the abso-
lute value of neither exp( —2m.iy, z) nor

exp[2~i(y3z —y, z}] is too large, and using matrix multi-

plication, we finally obtain from (3.2a), (3.2b), (3.4), and

(3.9) in the limit as rz ~+ ao the approximate formulas

F~~(+ ~, +0)=f(y3z)+exp[+2mi(y3z —y, z)], (3.10a)

Fz)(+ ao, +0)

=i [1+exp( —2miy&z)

X[1+exp(+2miy3z)]/f (y3z)} . (3.10b)
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IV. PHASE-INTEGRAL FORMULAS
FOR THE SMATRIX AND THE REGGE POLES

Xexp(2i5I ), (4.1)

from which, in the limit when f(yz3) tends to unity, we
obtain the S-matrix formula derived by Thylwe [11] for
the case when the three relevant transition zeros are all
well separated from each other.

Inserting (3.10b) into (2.2), we obtain approximately

1+exp(+ 2m.i y3z }
exp[+ 2m i(y ~z

—
—,
'

) ]= f (y3z)

Inserting (3.10a) and (3.10b) into (2.1a), we obtain the
approximate formula

f(y»)+exp[+2~i(y3z y]z)]S=
1+exp( —2~i y») [1+exp(2~~ y3z) ]/f (y»)

i.e.,

1+exp(+2mi y3z)
y)2=m+ —,'+ ln2' f(y3 )

for 1=1 (4.2')

for l =I (4.3a)
1+exp(2m. iy3z)

where m is an integer. When t3 lies far away from t, and

tz, the quantum number m must, according to Eq. (3.5) in
Ref. [12],be a non neg-atiue integer, and if t3 approaches
t2, the value of m must for continuity reasons remain un-

changed and thus be a non neg-atiue integer also in (4.2').
Using (4.2), we obtain from (3.10a} and (3.10b} the ap-
proximate formulas

F,&(+ ~, +0)=exp[ —2mi(y&z —
—,')]

for 1=1 (4.2) and

a+z](+ ~ +0} aylz +
al 1+exp( —2n.iy3z)

'r32 af(y»)
2m —i exp[+2~i(y» —y3z)]

ay&z 2m exp(2niy») ayzz alnf(y32)= —27r + +i for I =l
1+exp(2m iy3z)

(4.3b)

Inserting (4.3a) and (4.3b) into (2.3), we obtain approximately

Pm

-exp(2i5( )1+exp(2n. iy3z)

ay&z a lnf (y3z) 2m i exP(2m i@») ay»
2&l +

al a/ I +exp(27ri y ) al

(4.4)

f (y3z)exp(2i5I )

a lnf (y3z) a(ylz y32) ay32
[1+exp(2miy3z)] +2mi +2ni

(4.4')

alnf(y»} alnf(y3z) ay3z

a1 q~„a1 (4.5)

while, when a higher-order appraximation is used, the
calculation of the derivative in question is more compli-
cated.

where it should be recalled that f (y3z) is a simplified no-
tation, as was explained directly following (3.6). In fact,
f ( y 3z ) depends not only on y 3z itself, which is a sum of
contributions from the successive orders of approxima-
tion, viz. y3z=(y3z)0+ . . +(y3z)z~, but depends explic-
itly also on the contributions (y3z)z„ to y3z from the vari-
ous orders of approximation; see Eqs. (2.14), (2.13a),
(2.13b), and (2.11a)—(2.11c) in Ref. [12]. As a conse-
quence of this, it is only for the first-order approximation
that the derivative a lnf /al in (4.4) can be obtained from
the simple formula

When t3 moves away from t2 in such a way that
exp(2miy 3z)~0 and f (y3z)~1, it is seen that, in the
limit, (4.2 ) goes over into Eq. (3.5) in Ref. [12] with y re-
placed by y, z, and (4.4) goes over into Eq. (3.6) in Ref.
[12] with f(y , .o. . , y z)zreplaced by unity and y re-
placed by y&z. Thus, as is to be expected, (4.2') and (4.4)
transform into the two-turning-paint formulas pertaining
to the case that t, and t2 are well separated and that all
other transition points lie far away from the cluster con-
sisting of t, and t2.

V. COMPARISON WITH RESULTS
OBTAINED BY PREVIOUS AUTHORS

Using semiclassical techniques, Delos and Carlson [7]
obtained approximate results for the positions and resi-
dues af the Regge poles. The pole positions were accu-
rate, but there was a discrepancy of about m/2 in the
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ln( e)—=ln(ie)+in/2. , (5.2)

and using the reflexion formula for the I function, we ob-
tain

+ I+exp[2mi(ie)]
A e =exp +ere (5.3a)

phase of the residue, as was pointed out by Connor, Jaku-
betz, and Sukumar [8]. These authors also resolved the
discrepancy and brought the semiclassical results into
good agreement with accurate numerical results. For the
S matrix Connor, Jakubetz, and Sukumar [8] obtained a
formula [their Eq. (19a)] which in their notation reads

(
'

)A ( )+ ( 7Te)
[

~

fi(l)]
exp( i—a ) A +(e)+exp( ia —

m e)

exp(me)A (e)+exp( —2ia) [2.5(1)] (5 1)
1+exp(me 2i—a) A+(e)

Putting in the definition of A *(e) on p. 1788 in the paper
by Connor, Jakubetz, and Sukumar [8]

Putting in (5.5)

a=«7'i2 F—32»

(5.5)

(5.6a)

(5.6b)

we obtain our formula (4.1) with St replaced by S(l) and
fit replaced by 5(1). It is thus seen that the formula for
the S matrix given by Connor, Jakubetz, and Sukumar [8]
agrees with the first-order version of our formula (4.1).

Brink and Takigawa [9] have also obtained a formula
for the S matrix [their Eq. (2.10)] which in their notation
reads

is our function f (y') for the first-order approximation, as
is easily seen from Eqs. (2.14), (2.13a), (2.13b), and (2.1 la)
in Ref. [12]. Inserting (5.3a) and (5.3b) into (5.1), we ob-
tain

f (ie)+exp( 2—i a)
1+exp[ —2i (a+ice)]{I+exp[2sti(iE)] }/f (iE)

and

A (E)=exp( ne) f—(i e), (5.3b)

1+N(ie)exp(2iS» )

N (is) +exp(2iS32 )

where N(ie)+exp( 2iS3—2)
1+exp( —2iS32 )N(i e)

(5.7)

(5.4) Using the reflexion formula for the I function, we can
rewrite Eqs. (2.11a) and (2.11b) in Ref. [9] as follows:

1+exp( 2mize —'
) . 1+exp(+2nize '

)=exp 2miz
f(ze '

) f(ze '
)

N(z)=f(ze ' ),

(5.8a)

(5.8b)

where f (z) is defined according to (5.4) with y replaced by z. The function f in (5.8a) and (5.8b) is thus our function f
for the first-order approximation. Using (5.8a) and (5.8b), we can rewrite (5.7) into the form

[f(ice ' )+exp( —2iS32)]exp(2i5, )

1+exp[ 2i(S32—inc)]{—1+exp[+2mi(ice ' )]}lf(ice '
)

(5.9)

Inserting into (5.9)
32 ~F13 ~(7 12 r32) (5.10b)

ie=y„e+'" (S.loa)

and (since the transition zeros in Ref. [9] are related to
those in the present paper such that r„r2, and r3 corre-
spond to t2, t3, and t„respectively)

we obtain our formula (4.1) with S& replaced by g. It is
thus seen that also the formula for the S matrix given by
Brink and Takigawa [9] agrees with the first-order ver-
sion of our formula (4.1).
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