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We combine an eigenchannel R-matrix calculation with an analytic description of electron motion in a
dipole field to predict photodetachment cross sections of the hydrogen negative ion, including resonant
structures up to the n =4 hydrogenic threshold. Partial cross sections for the production of hydrogen-
atom fragments in states with specific principal quantum numbers » are also presented for comparison
with a recent experiment. An analysis of the delay-time matrix indicates that the autodetaching Fesh-
bach resonances decay primarily into the nearest energetically accessible continuum channel, an obser-
vation which is not at all apparent from the calculated and observed partial cross sections, but has been
anticipated in previous theoretical work. We find, for instance, that the ,_,{v =0} resonant state
below the H(n =4) threshold decays 73% of the time to the ;{0} * photodetachment channel.

PACS number(s): 31.50.+w, 32.80.Dz, 32.80.Fb, 82.50.Fv

L. INTRODUCTION

The spectroscopy of the hydrogen negative ion remains
at the forefront of investigations of correlated electron
motion. The spectrum of H™ is simple in that it has only
one bound state, and in that the nature of its continua is
governed, in a large part, by the long-range interaction of
one electron with the induced “permanent” dipole of a
neutral hydrogen “core.” The permanent dipole results
from the mixing of degenerate orbital angular momentum
states of the excited H atom by the field of the distant
electron, and the field of this dipole can in turn either re-
pel or resonantly bind that electron. Despite the overall
simplicity of this spectrum, experimental investigations
continue to reveal a rich dynamics which has yet to be
fully incorporated in theory.

Doubly excited states of H™ have been observed pri-
marily by Bryant and co-workers using the Los Alamos
Meson Physics Facility (LAMPF) relativistic ion beam.
Since the later 1970s, Bryant and co-workers [1,2] have
excited H™ ions with high-energy photons using a tech-
nique based on the relativistic Doppler effect. The group
has recently observed resonant states of H™ which auto-
detach to H(rn)+e ™ continua with principal quantum
numbers up to and including n =8 [3,4]. By measuring
partial cross sections for the production of H-atom frag-
ments in particular n-manifolds, they have identified the
dominant photodetachment channels. Their results have
been interpreted qualitatively [5], but they have not yet
been reproduced in quantitative calculations.

Existing theory of H™ photodetachment is multifacet-
ed. Regularities of resonant structures have been un-
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covered and organized in group-theoretic classification
schemes [6-8], the hyperspherical adiabatic representa-
tion [9-12], and molecular-orbital (MO) models [13,14].
These studies reveal approximate symmetries of the two-
electron Hamiltonian, and serve to classify resonances ac-
cording to “radial” and “angular” correlation patterns.
While these approaches provide considerable insight into
experimentally observed regularities, they cannot provide
quantitative comparison with experimental cross sec-
tions. Other methods have aimed at providing accurate
resonance energies and lifetimes, principally the complex
rotation method [15,16] and the variationally adjusted
multiconfiguration Hartree-Fock approach [17].

Actual ab initio calculations of the photodetachment
cross sections are comparatively few [18-21], and no
theoretical calculation has yet been presented that in-
cludes resonance near the H(n =4) threshold. Aside
from Broad and Reinhardt’s original work [18] on the
1p°(n =2) shape resonance and the lowest 'P°(n =2)
Feshbach resonance, attempts to calculate the cross sec-
tions have been limited to the R-matrix method. The
enormous size of the high-lying resonances, which grow
in proportion to n2, and the need to incorporate the di-
pole character of the detachment channels complicate
this application. In this paper, we report results obtained
using the eigenchannel form of the R-matrix theory.

We present detailed results of an eigenchannel R-
matrix calculation of the photodetachment cross sections
of H™ in the vicinity of the n =2, 3, and 4 thresholds.
Our results verify that the spectrum in the vicinity of
each hydrogenic threshold is dominated by a single
ridge-riding resonance in which the two electrons are in
nearly equal radial orbits from the proton [22]. We also
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present partial cross sections for comparison with experi-
mental work. We find that dominant decay modes of the
individual resonances cannot in all cases be determined
from the partial cross sections. An analysis of the eigen-
vectors of the delay-time matrix [23] indicates that each
observed resonance decays primarily to the nearest ener-
getically accessible continuum with similar angular and
radial correlation.

The observed resonances have been classified [5,24,25]
according to the scheme ,{v};, where the vibrational
quantum number v =4(n —K —T —1) is related to
Herrick’s K and T correlation numbers [6,7]. The symbol
A =+ (—) specifies [26] that the two-electron wave
function has an antinode (node) in the radial degree of
freedom near the line r, =r,. This quantum number was
first introduced by Cooper, Fano, and Pratts [27]. The
label m denotes the degree of radial excitation of the
outer electron [24].

II. NUMERICAL PROCEDURE

The eigenchannel R-matrix method has been used ex-
tensive to describe photoabsorption spectra of atoms with
two valence electrons, namely the alkaline-earth-metal
[28-30] and the alkali-metal negative ions [31]. Adapta-
tion of this method to treat H™ photodetachment in LS
coupling follows these earlier studies to a large extent.
The ‘“‘accidental degeneracy” of H™ photodetachment
thresholds is, however, peculiar to this system, requiring
the incorporation of a long-range dipole interaction be-
tween the outgoing electron and the excited hydrogen
fragment.

A. The eigenchannel R matrix

This method aims to determine variationally a set of
normal logarithmic derivatives —bg, amounting to eigen-
values of the Wigner R matrix, which are constant across
a reaction surface S enclosing a reaction volume V. The
reaction volume is usually intended to contain the entire
region of configuration space over which the interacting
particles can exchange energy. For the two-electron sys-
tems treated along the lines of Refs. [29-31], the reaction
volume V is the portion of the six-dimensional
configuration space (r;,r,) for which both electrons lie
within a sphere of radius ;. The reaction surface S is the
set of points for which max{r,,r,}=r,. In practice, for
any given energy range of interest, the radius r, is taken
to be sufficiently large such that the probability of both
electrons escaping simultaneously beyond r, can be
neglected. The complicated dynamics of the two in-
teracting electrons inside the reaction volume is then
represented by a variationally optimized superposition of
many LS-coupled independent-electron basis functions.

In applications to date [29-31], the long-range mul-
tipole interactions between the electrons were sufficiently
weak outside the R-matrix box to permit neglect of angu-
lar momentum exchange (as well as energy exchange) at
r >ry,. The main difference between H™ photodetach-
ment process producing excited hydrogen atoms H(nl,)
and the systems treated in Refs. [29-31] is the degenera-
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cy of the n atomic energy levels E,,,1 having
1,=0,...,n—1. This degeneracy leads to angular

momentum exchange between the H™ electrons even out
to extremely large distances r >>r(, an effect which can
be described using the “dipole representation” of Seaton
[32] and of Gailitis and Damburg [33]. The effect of an
escaping electron on this degenerate hydrogenic manifold
is to superpose spherical channel functions (labeled by
i={n,l,1,}) by an orthogonal transformation X, thus
producing a permanent dipole moment a ; in the hydro-
gen atom. The interaction of this dipole with the escap-
ing electron at r, > r is represented by an effective poten-
tial
a;
Viry)——% . (1)
T3
Note that j denotes a pair of quantum numbers
Jj={n,u}, where p is a label distinguishing available di-
pole channels within the » manifold.
The channel dipole moments a; and the real orthogo-

J
nal transformation matrix X;; connecting dipolar chan-

1

nels and ordinary spherical cjhannels i={n,l,l,} for a
given L, S, and parity 7 are obtained using degenerate
perturbation theory [32,33]. Specifically, one collects all
terms in the large-r, close-coupling equations which are
of order 1/r3. Assuming r, is much larger than the inner
electron radius 7, we neglect exchange terms outside the
box which are decaying exponentially; the resulting in-
teraction potential matrix connecting degenerate spheri-
cal channels then takes the form (in a.u.)

1 N _ 1
—zr—%(d>i|l§+2r1-r2|<bi')=2—r%A,-,-, . )

The matrix element in (2) is a five-dimensional integral
over (r;,T,), where the spherical channel function is

q)i(rl’?z)anI“(rl )Yll,.IZiLM(?l’?Z) . 3)

The most important couplings in Eq. (2) are those con-
necting degenerate channels, i.e., those having the same
n. Accordingly we neglect the matrix elements coupling
nondegenerate channels, and diagonalize the resulting
real, symmetric matrix A4;.. The eigenvalues of this ma-
trix are the desired channel dipole moments a ;> and the
corresponding eigenvectors constitute the orthogonal
transformation matrix X;;. Note that the neglected off-
diagonal (in n) elements give rise to relatively short-
ranged multipole potentials decaying faster than r, 2 at
r,— . These, along with the exchange interaction, are
neglected outside the R-matrix box, a practical constraint
which determines the minimum acceptable size of the in-
teraction volume V.

The dipole representation thus obtained defines a new
set of channel functions ¢;, each of which is a linear com-
bination of spherical channel function within the » mani-
fold:

$;= 3 0.X, . @

Lty
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In the spirit of multichannel quantum-defect theory
(MQDT) [34,35] the asymptotic form of the Bth indepen-
dent solution to the time-independent Schrodinger equa-
tion at any given energy E can be written as a dipole
channel expansion at r, >r,

Vp=oAry " 3 ¢,(r,B)Fjelrs) - (5)
J

Here A denotes an antisymmetrization operator.
Neglect of long-range multipole effects, except for the di-
pole interactions among degenerate channels, implies
that each of the radial wave functions Fj4(r,) obeys the
simple equation

1 d* |, g

> dr%, ;%‘—8]- FjB(rz)—O . (6)
Here ¢;=E + 1/2n? is the asymptotic photoelectron en-
ergy in channel j in the hydrogenic manifold n. Note
that some of the channels included at any energy are
closed channels having ¢; <0; for these channels the wave
function in Eq. (5) diverges asymptotically as r,— .
The application of the physical boundary conditions, i.e.,
the quantization of the wave function in Eq. (5), is done
with the aid of quantum-defect methods.

Two independent solutions of the radial equation (6)
can be denoted (f;,g;). These are functions of the Bessel
class and are given explicitly elsewhere [36]. It is impor-
tant to remember that these solutions are qualitatively
different, depending on the sign of a;+;. When this
quantity is positive, channel j is said to have a repulsive
dipole moment such that the dipole potential cannot by
itself bind the outermost electron. When it is negative,
channel j has an attractive dipole moment and the dipole
potential in (6) supports an infinite number of quasibound
states converging exponentially to the threshold energy
—1/2n?. Equation (6) implies that the large-r, form of
the Bth independent solution is

‘yﬁzﬂ”z_l Z¢j(f1’?z)[fj(’2 M g—g;(r, )JjB] ,
j

r,>rg . (7)

The energy-dependent matrices ;3 and J;z are deter-
mined by matching the variational R-matrix solution to
the form (7) at r,=r,. From these a dipole representa-
tion reaction matrix K. =3 /51 _I)Bj, is constructed.
[In the present paper the base pair (f},g;) is taken to be
the energy-normalized solutions of Ref. [31]. Substantial-
ly smoother energy-dependent reaction matrices are ob-
tained using radial functions which are analytic in energy,
but since our main goal is to specify the photodetachment
dynamics we will not make use of them in the following.]
Standard references [34,35,37] describe how the reaction
matrix and a set of dipole matrix elements dg are used to
evaluate observable quantities in the photodetachment
process.

B. The delay-time matrix

Smith [23] has shown that a natural way of calculating
the lifetime and decay modes, for a quasistable compound
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state formed as an intermediate state in a collision pro-
cess, utilizes the lifetime of delay-time matrix

ds
dE ’

where S is the short-range unitary scattering unitary
scattering matrix and —i(d/dE) is the quantum time
operator. For single-channel elastic-scattering processes,
the quantity Q (E) expresses the ratio of the excess num-
ber of electrons in the reaction zone to the out-going flux.
The delay-time matrix constructed in this fashion is Her-
mitian and its largest eigenvalue q,,,(E) can be identified
with the decay time of a resonant state. The absolute
squares of components of the eigenvector corresponding
to gm.x represent the probabilities for the quasistable
state to decay into different available continua.

Components of the scattering matrix in the dipole rep-
resentation are given in the language of MQDT (see Egs.
17-20 in Ref. [34]) as

Q(E)=—is" ®)

N
SAE)= 3, ijezm"Tj,p R 9)
p=1
where 7, are the collision eigenphase shifts common to all
fragmentation (detachment) channels j. T, are the col-
lision eigenvectors which form a real orthogonal matrix
and N, is the number of energetically accessible open
channels.

The energy profile of the largest eigenvalue of the
delay-time matrix is Lorentzian (Breit-Wigner) given by
(23]

_ r
(E—EyP+(r/22’

Imax(E) (10)

with E; the resonance energy having a full spread of I" at
half maximum.

III. RESULTS AND DISCUSSIONS

A. Classification scheme

To aid with the classification of the resonances in the
photodetachment spectra (see below) and with the deter-
mination of the R-matrix reaction box size, we display in
Fig. 1 the diabatic hyperspherical potential curves up to
the H(n =4) threshold [5,9,24]. Only a select number of
the 'P° diabatic potential curves are shown. The cross-
ings of the diabatic curves between the 4 =+ and —
channels, first recognized by Macek [9] and Lin [10], in-
dicate the minimal coupling between such curves. In the
lowest state (labeled by m =n) in the 4 =+ potential-
energy curve, the two electrons spend considerable time
at comparable distances from the nucleus—they interact
strongly via a repulsive Coulomb interaction—and are
accordingly quite unstable, autoionizing rapidly. These
comparatively broad resonances form a ridge series con-
verging to the double continuum threshold [38]. Higher-
lying energy levels in these channels (labeled by
m=n+1,n+2,...0) form dipole series converging to
different n hydrogenic thresholds. In contrast, one elec-
tron typically roams far from the excited H atom in the
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FIG. 1. Diabatic 'P° hyperspherical potential curves for the
single-photon detachment of H™. Only the “+” and “—”
channels are shown. The asymptotic (large R) identification of
these curves is according to the sequence ,{v}*=,{0}7,
A0} (1) (1),

A =— resonances, interacting only weakly with it—
predominantly through the long-range dipole potential.
This relatively weak interaction enhances the stability of
the resonance against autoionization. Of the possible
A = — channels, those with the largest dipole moments
have the strongest interaction with the core and are ac-
cordingly most unstable producing visible resonant struc-
ture. For these strongly attractive dipole channels,
infinite series of narrow resonances are labeled by
m=n+1,n+2,...,o. Roughly speaking, n and m
can be viewed as principal quantum numbers of the inner
and outer electrons, respectively.

All the resonance observed in H™ photodetachment to
data can be classified as having v =0 quantum number
(described in Sec. I), meaning that they have only zero
point motion in the “bending”  coordinate
6,,=cos_!(%,T,). This propensity for pure radial excita-
tion was recently emphasized in a hyperspherical coordi-
nate interpretation of the LAMPF spectra [5]. This
quantum number and its alternative form as the number
of nodes n, in the elliptical angular coordinate in the MO
picture of Briggs and co-workers [13,14] takes on values
of 0,1,2,... for consecutive “+” or “—” channels in
each hydrogenic n manifold. Hereafter, we use the nota-
tion ,{v ] used in Ref. [24] to label the resonances. The
Gailitis-Damburg channel indices of Sec. II can also be
approximately identified with j=,{v}4, since each hy-
perspherical channel evolves adiabatically into a dipole
channel as R — o [39].

B. Computational details

The results of this work stem from three separate cal-
culations appropriate to each hydrogenic threshold re-
gion. Calculations near the n =2 threshold were per-
formed with a reaction box size of r, =25 a.u. (The size
of the R-matrix matching radius is chosen for the 'P°
final-state channels somewhere beyond the diabatic cross-
ing of + and — channels for each n of interest.) The to-
tal number of “‘closed” two-electron configurations (those
configurations whose amplitudes vanish on the surface
r =ry) was 158 and 250 in the initial and final states, re-
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spectively. With 158 initial state configurations retained
inside the R-matrix box, the ground-state energy of H™
was computed to be —0.52403 a.u., a value about 100
meV too high. In this region, there are four relevant
photodetachment channels (N,=4, one for n =1 three
for n =2). Two “open-type” orbitals were included in
each of these four channels to represent the escape of
photoelectrons [30,31].

For calculations near the n =3 threshold, the box size
was increased to r,=235 a.u. The number of basis func-
tion was likewise increased to 300 and 514 closed
configurations in initial and final states, respectively. As
demonstrated below, this was sufficient to obtain agree-
ment between length and velocity forms of the total pho-
todetachment cross section. Two open-type orbitals for
each of the nine accessible channels were also included.

Near the n =4 threshold, a 16-channel MQDT calcula-
tion with a box size of r, =65 a.u. was needed. A total of
372 and 646 configurations were retained in the initial
and the final state, respectively. With this box size and
basis set, total cross sections calculated in length and ve-
locity form are spread by roughly 30%, though the shape
of resonance features appears to be similar in the two cal-
culations. Pilot calculations with smaller box sizes
ro~30 a.u. suggest that the velocity form is reasonably
converged. (Length and velocity forms in these calcula-
tions agree to within 2%.)

We now turn our attention to giving the details of the
resonance structures and their interpretation.

C. Partial and total cross sections

Our calculated total photoabsorption cross section of
H™ (velocity form), spanning the n =2, 3, and 4 thresh-
olds of the hydrogen atom fragment, is shown in Fig. 2.
A nonlinear energy scale has been used to separate the
—1/2n? threshold by integer quanta. Note that Fig. 2
displays the results of three separate calculations

The total photoabsorption cross sections near the
n =2, 3, and 4 thresholds are presented in Figs. 3(a)-3(c),
respectively. Both length and velocity forms are given,

1.5 T T T T

o(a,’)

0.5 \ N

FIG. 2. Total resonant cross section of the excitation of the
doubly excited states of H™ converging on the hydrogenic
thresholds, at integer values of v=(—2E)~'/? at 2, 3, and 4.
The height of the Feshbach and the shape resonances near v=2
has been clipped.
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except for the n =2 spectrum [Fig. 3(a)] where they are
indistinguishable on the scale shown.

Focusing on the region of the n =2 threshold, Fig.
3(a), three resonances are apparent, labeled, respectively,
,{0}5, »{0}4, and ,{0};. The two 4 =— resonances
are sequential members (m =3,4) of an infinite series of
dipole resonances converging exponentially [see Egs. (11)
below] to the n =2 threshold. There is also a single
broad shape resonance lying above the threshold. These
n =2 resonance features have been the focus of a number
of studies [10,18,20(b),20(c)], notable among which is the
calculation of Broad and Reinhardt [18], which gave ear-
ly and excellent agreement with experiment. Here, we

8.0 T T T —

o(as’)
IS
o
T
1

2.0r -

0.0 ——_FJ L . |
10.85 10.90 10.95 11.00 11.05

E(eV)

11.10

0.8 T ; ™ T

0.6 (b)n =3 .

o(a,)
=}
>
T
Il

0.2+ 1
0.0 n L . L
12.55 12.65 12.75 12.85 12.95 13.05
E(eV)
0.4 ! T
(c)n =4
0.3 N

13.35 13.45 13.55

E(eV)

FIG. 3. Total cross sections near (a) the H(n =2) threshold
at 10.9530 eV, (b) the H(n =3) threshold at 12.8417 eV, and (c)
the H(n =4) threshold at 13.5027 eV. The dotted lines are the
length form cross sections and the solid lines give the velocity
forms.
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simply note that our calculation confirms the Broad-
Reinhardt result that the height of the narrow ,{0}; res-
onance (we obtain ~95a3) is much higher than the height
of the shape resonance.

In Table I, the position and width of these states are
tabulated along with the value of the dipole moments a;
for the respective Gailitis-Damburg channels j =, {0} 4.
Comparison is also made with other calculations. The
energies and width of the dipole members of the ,{0}*
and , {0}~ series are well approximated by the dipole for-
mula [33]

€m +1 _ I-‘m-!—l _e—21r/a/-

, (11a)
8"l Fm

where a; is related to a particular dipole moment by

Resonant structure in the vicinity of the n =3 thresh-
old, Fig. 3(b), already shows the appearance of two dis-
tinct series, labeled 3{0}3, 5 and 3{0};5 . Note that the
two lowest member of the — series lie between the two
lowest members of the + series. A larger effective dipole
moment associated with the channel results in slower
convergence of the series to threshold, in accordance
with Egs. (11). Our results are compared with the experi-
mental spectrum of Bryant and co-workers [20] in Fig. 4.
The narrow resonance have not yet been experimentally
resolved, but agreement with the dominant + resonance
is excellent.

The total cross section near the H(n =4) threshold,
shown in Fig. 3(c), is once again dominated by a single
series of resonances lying in the ,{0] ' channel. Note
that narrow — resonances are seen in the length form of
the cross section (which weights large distances), but are
not quite visible in the velocity form (which we believe to
be better converged). The position and width of the first
member of the series, the ,{0}; Feshbach resonance, in
Table I, compete quite favorably with values from other
calculations, and are in substantial agreement with the
recent observation of this resonance [40]. Note that this
resonance and the ;{0}; resonance have opposite asym-
metries. To interpret this and other features of the total

(11b)

0.5 T T T T

0.4

0.3

o(a;)

0.2

0.1F -

0.0{
12.55

12.75 12.85 12.95

E(eV)

12.65 13.05

FIG. 4. Comparison of the total cross section spectrum of
Ref. [2] with the present calculation. The broad ridge reso-
nance ;{0}; is almost entirely reproduced.
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cross sections, we turn now to an analysis of the partial
cross sections and the delay-time matrix.

Figure 5(a) displays partial cross sections (velocity
form) for the production of H atoms in either the n =1 or
2 states, for photon energies near the n =2 threshold.
Below threshold, of course, only the n» =1 state can be
produced. However, the strong ,{0}," shape resonance
can decay to either threshold. The figure clearly indi-
cates that substantial production of ground-state atoms is
limited to a range of roughly 0.03 eV above threshold.
The ,{0}, shape resonance, which has a repulsive dipole
interaction at large distances, decays principally by tun-
neling through the dipole barrier, producing n =2 H-
atom fragments. (The height of the barrier calculated in
an adiabatic hyperspherical approach [10] is ~65 meV
above the threshold.) Note that the tail of the resonance

1.0 T T T T

3.0~ n =2 ... -

10.85  10.90  10.9 11.00  11.05 11.10
E(eV)

0.3 T T T T

0.2+

a(a,’)

0.1k g
0.0 . ‘ oot
12,55  12.65 12.75 12.85 12.95 13.05
E(eV)
0.20 ; . ; .

a(ay)

0.05+ .
1
% ————— BN //( ————————— ‘\: .!
0.00| LN . S
13.25 13.30 13.35 13.40 13.45 13.50 13.55

E(eV)

FIG. 5. The partial cross section for the production of indivi-
dual states of hydrogen n at energies near (a) the n =2 thresh-
old, (b) the n =3 excited state of hydrogen, and (c) the n =4 ex-
cited state.

TABLE 1. Energies (E) relative to the double-escape threshold, widths (I"), and Gailitis-Damburg Eigenvalues (a;) in a.u. for the 'P° resonances in H™

Calculated

Experiment

Present

1.20X1073¢
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1.16 X107 32
1.26X 10732
9X107%2
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—0.126014
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—0.055832
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—0.034388

2.000
—3.708
—5.220
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—5.220

6.85X107°°¢
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—0.037139°
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2Reference [19].

®Reference [40].
“Reference [41).

dReference [2].
“Reference [15].
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extends for some distance above threshold, so that near
E=11.1 eV the n =2 production is roughly three times
as likely as is the population of ground-state H atoms.
As will be shown below, the populations of the n =1 and
2 states become comparable at higher energies.

Partial cross sections for the production of H atoms in
n =1, 2, and 3 states are shown in Fig. 5(b) for the energy
range near the n =3 threshold. This plot aids consider-
ably in the interpretation of decay mechanisms. Consider
first that the resonances affect the otherwise smooth
background of ground-state production as a series of
dips—or window resonances with small asymmetries.
The dips do not, however, reduce the cross section to
zero. This suggests that the n =3 resonances decay pri-
marily to n =2 states; this will be put on a more quantita-
tive footing in the discussion of the delay-time matrix.
Above the H(n =3) threshold, the H(n=1) and
H(n =2) continua are, however, populated with equal
efficiency. Note, furthermore, the beautifully asymmetric
profiles of the resonances seen in the partial cross section
for production of H(n =2). The near vanishing of these
resonances near their minima indicates the existence of a
single dominant continuum for their decay.

The situation changes markedly for the resonances
near the n =4 threshold, shown in Fig. 5(c). Note once
again the nearly equal background values of the n =1
and 2 partial cross sections and the smooth joining of the
H(n =1) and H(n =2) production cross sections through
the range of energies covered in Figs. 5(a)-5(c). The par-
tial cross section for production of n =3 fragments is
roughly % of either n =1 or 2, and all resonances have
“window” resonance profiles in the n =3 decay channel.
In opposition, the n =2 partial cross sections show reso-
nant “spikes” with small asymmetries.

The large value of the H(n =2) production cross sec-
tion compared with the production of the n =3 excited
state of hydrogen appears to contradict earlier predictions
[5,6,14,25] that the main decay continuum for the auto-
detachment of the doubly excited resonant states is the
nearest available one. We show below, however, that
there exists no inconsistency with these predictions for
the resonant decay.

In Fig. 6(a), the energy profile of the largest eigenvalue
of the delay-time matrix, q.,,(E) in Eq. (10), is shown.
The energy range covers the lowest members of the +
and — series in the n =4 manifold, namely the ,{0}; and
4{0}5 resonances. There are two prominent peaks, de-
scribed completely by the Lorentzian profile in Eq. (10),
as isolated resonances with width T'=4/q,, [(E =E,).
In Fig. 6(b) we show the absolute square of the two larg-
est components of the corresponding delay-time eigenvec-
tor as a function of energy. These components belong to
the j=,{0}" and ,{0}" detachment channels. It is
readily verified that the ,{0}; resonance decays 73% of
the time to the ;{0} " channel and 18% to the ,{0}*
channel at the position of the resonance, —0.037 181 a.u.
Hence the decay pathway ,{0}* —,{0}" is favored 4 to
1 over the mode ,{0}*—,{0}*. A similar situation
occurs for the decay of 4,{0}5 resonance with a probabili-
¢y of 0.96 to the ;{0} ~ channel.

In Fig. 7(a) the partial cross sections for the production

1593

of the ;{0}* and ;{0} ~ channels are shown in the energy
range near the H(n =4) threshold. Two prominant
features are present. The first is the well-known general
dominance of + channels over the — channels [10,27];
the ;{0]* continuum is excited with more than an order
of magnitude probability than the ;{0]~ continuum.
More importantly, the vanishing of the cross section at
the position of the ,{0}, with m =4,5,6. . ., resonance
series emphasizes once more that the main decay mecha-
nism takes place via their coupling to the ;{0} * continu-
um.

A similar analysis of the delay-time matrix shows that
the probability for the decay of the ;{0}; resonance to
the ,{0} * photodetachment channel is 0.89 and less than
0.05 to each of the remaining detachment channels. Fig-
ure 7(b) shows likewise the vanishing of the cross section
for the excitation of the ,{0}* continuum at the positions
of the ,{0} resonance series, as in Fig. 7(a). The 3{0},
resonance also decays primarily to the ,{0}~ channel
with 94% efficiency. Moreover, we found that the ,{0}5
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FIG. 6. The parameters of the delay-time matrix Q(E) near
the H(n =4) threshold; (a) the energy profile of the largest ei-
genvalue of the delay-time matrix showing the Lorentzian
Breit-Wigner shape; (b) the two largest absolute square eigen-
vector components corresponding to g.,,,(E) as a function of
energy. The ,{0}; and ,{0O}5 resonance positions are, respec-
tively, at —0.037 181 and —0.034 388 a.u. The results of (b)
verify that the 4{0}; resonance is four times more likely to de-
cay via nonradiative autodetachment to the ;{0}* channel than
to the ,{0}* channel. Note also the negligible excitation of the
3{0}* and ;{1}* continua at the position of the ,{0}; reso-
nance.
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FIG. 7. Partial cross sections for populating the individual
photodetachment channels , {v} 4=, {0}4; (a) the rate of excita-
tion of the ;{0}* channel is an order of magnitude larger than
the rate for exciting the ;{0} ~ channel at photon energies near
the n =4 state of hydrogen; (b) similar plot as in (a) for the
channels ,{0}* and ,{0} " near the H(n =3) threshold. Note
the vanishing of the cross sections at the positions of the , {0},
resonances in the , {0} © channels.

shape resonance [see Fig. 5(a)] tunnels most effectively to
its parent continuum, namely the ,{0}* channel, with a
probability of 0.89. The electrons remain trapped in this
shape resonance for approximately 35 fs.

What the study of the delay-time matrix and the par-
tial cross sections have revealed are that (a) the partial
cross sections provide us with information on the contin-
uum population of the hydrogenic states via direct “verti-
cal” electric dipole transitions, and (b) the delay-time ma-
trix Q appears to be the variable for study of the excita-
tion and decay of such quasistable states. The resonant
excitation of the highly excited states proceeds according

to predictions of Ref. [5] via nonadiabatic coupling
through avoided crossings of diabatic potential curves.
These nonadiabatic transitions approximately conserve
the v and 4 quantum numbers, as expected from Refs. [5]
and [24].

IV. SUMMARY

In this work we present an extensive analysis of the H™
excited states using the eigenchannel R-matrix method.
The agreement of the total cross sections with the ob-
served spectra near the energies below the H(n =2) and
H(n =3) thresholds is exceptionally good. The partial
cross section for the production of the H(n =2) excited
states for incident photon energies near the H(n =4)
threshold also shows nice accord with the very recent ob-
servation of this spectrum [40]. Comparisons with the
energy positions and widths of other calculations are
rather satisfying.

We show in a quantitative manner the autodecay
mechanisms for the doubly excited states of H™ and give
probabilities for such decays. Our study based on Smith’s
derivation of the delay-time matrix establishes quite con-
vincingly that the ,{0};} resonances decay most readily
to the ,_;{0}" continuum, i.e., the nonradiative decay
mode is via coupling to the nearest energetically available
detachment channel with the same v and 4 quantum
numbers.

The partial cross sections for the production of the hy-
drogen atom in the ground and excited states join on as a
smooth background in the whole range of energies stud-
ied. At high energies, the rate of production of H(n =1)
and H(n > 1) states appears to be roughly equal and is in-
terpreted in terms of continuum excitation via direct di-
pole transition from the H™ ground state. High-lying
resonant states can, however, be excited only via nonadia-
batic transitions through the avoided crossings shown in
Fig. 1 and discussed in Refs. [5] and [24].
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