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Positiveness and monotonicity of continuum-continuum Coulomb dipole matrix elements
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We present a proof that there are no zeros in nonrelativistic Coulomb continuum-continuum transi-

tion dipole matrix elements. There is a positive singularity in these matrix elements as the case of equal

energies is approached. Considering one energy as fixed, matrix elements are monotonically increasing

(decreasing) functions of the other energy below (above) the singular case. This is an extension of our
earlier demonstration that the Coulomb dipole matrix elements, connecting a bound state to a state of
greater energy, never vanish and are monotonic. For the present proof, we utilize asymptotic expansions

of the matrix elements for large angular momentum, together with fixed energy recursion relations be-

tween pairs of successive angular momentum states (l, I +1) and (l —1,l).

PACS number(s): 34.80.—i, 32.70.Cs, 31.10.+z, 32.80.—t

We wish to report a proof that nonrelativistic Coulomb
dipole matrix elements connecting two continuum states
are always positive, with a positive singularity as the case
of equal energies is approached, and are monotonic func-
tions of either energy above and below the singularity, in-
creasing with c for c & c.', decreasing with c for e. & c.'. We
have presented similar demonstrations earlier that
Coulomb dipole matrix elements, connecting a bound
state to a state of greater energy, never vanish [1]and de-
crease monotonically as the transition energy increases
[2]. These transition matrix elements from a bound state
are related to the continuum case through an analytic
continuation in energy, so it is natural to ask whether the
continuum-continuum dipole matrix elements are also
positive and monotonic. Our previous proofs are not
directly generalizable, since they relied on the fact that
there is a maximum allowed angular momentum associat-
ed with bound states of a given energy. Here we will in-
stead utilize asymptotic large angular momentum expan-
sions associated with a given continuum energy.

Recently there has been considerable interest in
continuum-continuum dipole matrix elements which
represent the quantum mechanisms responsible for such
varied phenomena as the chaotic ionization of dynamical
atomic system [3,4], the above-threshold ionization of
atoms by high-power lasers [5,6], and the autoionization
of Rydberg states [7]. Explicit expressions for bound and
continuum dipole matrix elements associated with the
nonrelativistic hydrogenic atom were obtained by Gor-
don [8]. However, the analytic structure of the exact di-

pole matrix elements is fairly complex and not easy to
discern from the explicit expressions. In recent years
semiclassical formulas [9,10] for the continuum-
continuum Coulomb dipole matrix elements have been
obtained, exhibiting simpler analytic structure (and so
clarifying certain features of the matrix elements in re-
gimes for which the approximation is appropriate). A
large l dependence may be discerned in the semiclassical

work of Kramers [11];simple features were observed by
Tseng and Pratt [12] in a numerical examination of the
relativistic case. Here we prove certain mathematical
properties of the exact continuum-continuum Coulomb
dipole matrix elements: namely, that they are always

positive and monotonic.
The ordinary radial wave function of the Schrodinger

equation, which we now call R,'l', is analytic in energy

except for a normalization factor B, according to
Poincare's theorem [13]. In the Coulomb case, R',P can
be written as

"(r)=g '„"R„(r),
where

g,',"(r)=N„)B, ,

R,t(r)=r e' '"F(l +1 i I&a—, 21 +2; 2iv sr), —

with

21+1 l

N, t= P(1+as )'
(21+1)!,

( —s) for bound states
—2 /+e 1/2(1—e ')'~ for continuum states.

R,t(r)= R,'t' is normally —called the reduced radial wave

function. (In Gordon's work [8] for continuum states, B,
is replaced by s'~ B, )Here r.is in units of Zao with ao
the Bohr radius, and c is the energy in units of Z Ry;
c.= —1/n with integer principal quantum number n for
bound states and E=p /Z with p the momentum for
continuum states. The branch cut in the energy plane is
along the negative real axis and real negative energy is
approached from the upper plane. We also define an ad-
ditional radial wave function R ', t

' =g ', t 'R, t (r) with

g ',
~
'= (N, t ); this leads to a type of dipole matrix element

which we used in the proof of monotonicity of bound-
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continuum transition dipole matrix element in our previ-
ous work [2].

We now define general dipole matrix elements for a
transition from a state (c,, I) to (e', I'),

M"(e, l;E', I') = fR I'(r) r R',lI. (r)dr, (2)

f,M "(E,I; c,', I —1)=a, M "(e,I;e', I + 1)
(3)

with

+b, (21+1)M"(E,I + 1;e',I),

(1,1,C, ,~+, /P&, C, (+i/P~) for i =0

(d, ,f, , a, , b; )= (2IA,', 2IA,', 3,'+', 2', +') for i =I
(C,I, C, (, 1, 1) for i =2 .

1 I'
representing an ordinary dipole matrix element D,", for
i =1, an alternative dipole matrix element D,",. for i =2,
and a reduced dipole matrix element D,",. for i =0 with

g,'&'= 1. Note these matrix elements are symmetric under
the interchange of initial and final states; Eq. (2) also
represents the matrix element for a transition from a
state (e', I') to (e, l).

In our previous work [1,2] for the matrix elements of
the transitions from a bound state, we have used the re-
cursion relations for D,";given by Infeld and Hull [14]
and we also developed related recursion relations for D,',.
for our proof of monotonicity [15]. Related recursion re-

1, I'lations for D,', can also be obtained similarly. These
three versions of recursion relations, all of which we will

use here, can be expressed in the compact fashion:

d;M "(s,I —1;E',I)=a;(21+ 1)M"(E,I;s', I + 1)

+b, M"(e, I + I; c,', I),

D,"'," '=0. (The recursion relations for fixed e and E'

connect one pair of l~l+1 channels to the next pair
I ~I+ I with 1=1—1.) Since the coefficients in the recur-
sion relation are positive, if any pair of I~i+I matrix
elements is positive, all succeeding pairs are positive. (A
similar argument, utilizing D,', , demonstrated monotoni-
city. )

It does not look possible at first glance to use a similar
procedure to show that Coulomb dipole matrix elements
between continuum states are always positive, since there
is now no definite top angular momentum matrix element
of the chain for given energy, unlike in the case of bound
state n where the maximum l is given by n = l + 1. How-
ever, what we can do is to take the matrix elements for
asymptotic large l and recur down. If we can show that
the asymptotic large l dipole matrix elements for the
transitions from continuum states (c, l) to (e', I —1) and
from (E, l —1) to (e', I) are positive, independent of the
relative magnitude of EAs', each pair of (E, e') matrix ele-
ments are positive since the coefficients A,' of the recur-
sion relations are positive. We can use analogous argu-
ments for rnonotonicity.

We can obtain asymptotic large l dipole matrix ele-
ments starting from the explicit full expressions of Gor-
don [8]. Separate expressions for bound-bound, bound-
continuum, and continuum-continuum reduced dipole
matrix elements D,', ' (k =&e, k' =&e') are analytic
continuations of the common expression, valid for EAs

& (2I + 1)!(—1)'

2k (k +k')2" +"

X [F(a,a';21; 1 —u 2)

—u F(a —2, a';21;1—u )], (4)

Here A,'=(1+El )' /I is always real and positive for
e & —1/I ~

( I & 0);

2(1+El )

1(21 +1)(21+3)
P(=41(1+1)(21+1)/(21+5).

(We note that Price and Harmin [16] have recently con-
verted the i =1 recursion relations into a differential
equation in I, valid for small e and E'.) We can use any of
these sets of recursion relations to show the positiveness
of the continuum-continuum dipole matrix elements be-
cause the coefficients d, , f, , a, , and b; are positive for all
three cases. To prove the monotonic character in energy,
we use the recursion relations of D;; (D,'; ) for the ener-1,1' I, I'

gies c. & s' (e (E') with the fixed energy e', using the fact
that all the coefficients are also monotonic nondecreasing
functions of c,.

In the case of dipole matrix elements from a bound
state, we obtained an explicit proof that all Coulomb di-
pole matrix elements of finite transition energy e e %—0'
are positive by showing that the top dipole matrix ele-
ment of a sequence of angular momentum transitions for
fixed energies D,", '" with E = —1/n is positive;

where a=1+1 ilk, — a'=I+ilk', and
u =(k+k')/(k' —k). The continuum reduced dipole
matrix elements D,',"can be obtained from Eq. (4) by
simply interchanging e and e'. (The N«, but not the 8„
are also analytic functions of energy. ) This equation can
be rewritten for continuum-continuum reduced Coulomb
dipole matrix elements using the relation

F(a,b;c;x)=(1—x)' 'F(c a, b;c;—x)

and the fact that, in this continuum-continuum case, u is
real, denoting c & as the larger of E and c.', as

(21 + 1)!e
2(l+1)™ (5)

with

~i/V r—i VE/, '

XF(l +1+i/&E, l i&a', 21;—I —1/. u ) .

Remembering that c.,c') 0 and so, also, c&, the sign of
the matrix element in Eq. (5) is determined by the sign of
ImS. The asymptotic large I value of S,S (we will gen-
erally use corresponding script letters for the asymptotic
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large 1 limit of a quantity) can be obtained from Watson's
results [17] for the asymptotic expansion of hyper-
geometric functions for large parameters, obtained with
the method of steepest descents. The hypergeometric
function of concern here is of the form

F(a +l, a +1 —c + l, a —b +21+1;2/(1—z)).

[Here a, b, and c are 1+i /3/s, 2+i /3/E, and
2+i /3/c+, i /v 8', respectively, and z is—(e+c,')/(23/ee'). ] Let g be defined by z+'(/z —1
=e ~, together with the requirement that Re(g)&0.

I

Then the absolute value of e ~ is less than one:
1/2s+s' (c,—E')+

2(ss )
/ 4eE

1/2

where c& and c & represent the larger and the smaller of c
and c'. Thus, from the first equation on p. 289 of Ref.
[17]and Stirling's formula for I functions,

V(l +1+i/3/s, l —ii/e'21 2/(1 —z))=2 "+'+' '3/1/me
' 1+1+i /"(/e,

z —1
X

2
( 1 e

—
g)

—(3/2) —i / /)c —i /)/c

)( ( 1+e—j)—(3/2) —i/v @+i/)/c'—,- C,'r(s+-')
is+1/2s=p

with Co= 1 and coefficients C,
'

defined in Ref. [17]. In
this asymptotic case we may write

I

limit, the recursion relations for i =0 may first be
simplified to

with

3/s+&~' &a+3/s'

Qs
J

3/s-3/s' 41 2)' "=c.'2)"+'+—5'+"
2l

I

412@)l,I
—I & g)l, !+1+~l+ ), I

21 C)E' 7

(9)

(2s)!5'= —Imp '
C,

'

() (41)'s!1, 3= ——Im C'+ —C'+

using P)=41 and C, )=C«+)=s/21, where only the
leading term in l should be kept. It is easy to find from
Eq. (8) that

—4/3/s if e & E',
ImC', 0 if (7a)

The Ci term is given on p. 285 of Ref. [17] and, in our
case,

4l
2),', = 2),'," ' for both I'=1+1 .

F)

Inserting these forms in Eq. (9) yields
1, 1 —1

C

col —1,l
8) E&

(10)

Similarly the C2 term can be computed for the case c(c',
giving

—4/3/s if s& s'
ImC1 0 'f ( (7a)

Dp 1f c)c
DpX if E(z'

The resulting expressions for the dipole matrix element
between continuum states are

Equation (11) is indeed consistent with the asymptotic
values of Xl,', given in Eq. (8).

We now can complete an explicit proof that nonrela-
tivistic Coulomb dipole matrix elements between continu-
um states are positive. Namely, the coefficients d;, f;, a;,
and b; are all posit~~~ and both 2),", and 2)', ,"are po
itive:

Dp
if c)c

DpX if E.) c.
'

g)1
—1, 1

Dp cf c(c'
with

(8) 1,1 —1

E, C.
'

X if s&e'
C

(12)

8Mnl (21/e) 'e
1+1/2! r 3/28) ls El 21ls —e'I

'

We may verify the consistency of the result in Eq. (8)
with the recursion relations in Eq. (3). In the asymptotic

D()
X if c. & s'

~l —i, l—~

E

E,)E,

if s(E'
s
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with
1/2+ 1/4

where

2
a', I —I

4
JV, ,

—277./&EI —e

( E~ )3/2

—271/&E
1 —e

(e ss)5/2

' 1/2
sinhn. W's E'+'"

2m' l2 21

(2),',. for E & e' can be obtained by interchanging s and E'

in the above equations. } We can easily see from Eq. (13)
1, 1' ~

that Q,', , is monotonically decreasing as the energy s in-

creases, for c)c'. Referencing the recursion relations for
i =2 in Eq. (3), since d2 and f2 are rnonotonically nonde-

creasing in s, if the right-hand side pair of M' '(s, i, s', l')
is monotonically decreasing, so is the left-hand pair.
Thus, the fact that the asymptotic large I pairs of
M' '(s, l, s', I') are monotonically decreasing combined
with the recursion relations tell us that all M' '(E, l, c,', I'}
are monotonically decreasing for c&c'. The ordinary
matrix elements D,", and the reduced dipole matrix ele-

1, 1' '
~

ments D,', are also decreasing since N, 1 and N, 1B, are

Hence, using the recursion relations for i =1, all pairs of
D's will be positive. The same argument for positiveness
can be made for the other two kinds of dipole matrix ele-
ments.

To discuss the monotonicity in c. of the matrix ele-
ments in the energy region c)c' for fixed continuum en-

ergy c.', we consider

monotonically increasing [2].
Similarly, we can establish the monotonicity in c. for

1, 1'
c, & E' by considering 2),', and the recursion relations for
i =0 in Eq. (3). From Eq. (8), 2),",, is monotonically in-

creasing in this regime, and the recursion relations then
1,1'

show that all D, , have this property. The ordinary ma-

trix elements D,', are also increasing since N, &/B, is

monotonically increasing.
As the transition energies approach each other (E=a'),

the dipole matrix elements become singular for any fixed
I, increasing as the singularity is approached from both
above and below. We can show that the ordinary dipole
matrix element D,", ' approaches

in agreement with Veniard and Piraux [5], by calculating
the dipole matrix element in Eq. (4) in the limit as s~E .
Note this is different from the value one obtains from Eq.
(12), where ~E

—E*~ was fixed as we took the asymptotic
large I limit.

Thus, combining our previous and present work, we
conclude that Coulombic dipole matrix elements for a
transition from any bound or continuum state to a con-
tinuum state are positive. Further, for a fixed energy of
the lower state, they are monotonically decreasing as the
energy of the higher-energy state increases. We have also
shown that continuum-continuum Coulomb dipole ma-
trix elements are monotonically increasing, for fixed ener-

gy of the higher state, as the energy of the lower-energy
state increases.
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