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Semiclassical quantization of the hydrogen atom in a generalized van der Waals potential
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A semiclassical quantization of the hydrogen atom in a generalized van der Waals potential is carried
out using the Kustaanheimo-Stiefel transformation and Birkhoff-Gustavson normal-form procedure, em-

ployed by Kuwata, Harada, and Hasegawa [J. Phys. A 23, 3227 (1990)]for the diamagnetic Kepler prob-
lem. We derive here the generalized approximate Solov ev constant of motion. By using appropriate
action-angle variables in the normal Hamiltonian, we derive four canonically equivalent action integrals
that take an especially simple form for the three classically integrable cases and provide exact quantum
numbers. For near-integrable cases the semiclassical spectrum can be generated by integrating the ap-
propriate action integrals numerically.

PACS number(s): 34.30.+h, 03.65.Sq, 12.15.—y, 32.60.+ i

I. INTRODUCTION

The Hamiltonian of the hydrogen atom in a general-
ized van der Waals potential [1] (in atomic units
e =Pi =m, = 1) can be written in the form

2
H= ——+y(x +y +P z ),

2 T

where y and P are constants. The special cases of it in-
clude (i) the quadratic Zeeman effect [2] (yAO, P=O), (ii)
the spherical quadratic Zeeman problem [3] (y%0, P= 1),
(iii) the instantaneous van der Waals potential [1,4]
(y@0, P=&2), and (iv) the standard hydrogen-atom
problem [5] (y=0, P=O). The classical dynamics of (1)
shows a rich variety of nonlinear phenomena [6]. Also
the problem can be converted into that of a system of
two-coupled sextic anharmonic oscillators using a Levi-
Civita regularization. Using the Painleve singularity
analysis and Lie symmetry invariance analysis, it has
been shown [7] that the system (for the vanishing magnet-
ic quantum-number case) is integrable for the three
choices P= —,', 1, and 2 in the Hamiltonian (1). For these
three cases existence of dynamical symmetries has been
pointed out [1] earlier by Alhassid, Hinds, and Meschede.
However, the problem is yet to be investigated semiclassi-
cally for the entire P parameter range. In this paper we
are interested in the semiclassical behavior of the system.

Using the Kustaanheimo-Stiefel transformation and
Birkhoff-Gustavson normal-form procedure employed by
Kuwata, Harada, and Hasegawa [8] recently for the di-
amagnetic Kepler problem, we derive here the general-
ized approximate Solov'ev constant of motion for the sys-
tem (1). By introducing appropriate action-angle vari-
ables into the normal Hamiltonian, we obtain four canon-
ically equivalent action integrals which take an especially
simple form for the three classically integrable cases and
thereby obtain the exact quantum numbers for the three
integrable cases mentioned above. For the near-
integrable regions any one of the four action integrals
may be evaluated numerically to obtain the semiclassical
spectrum.

II. CONNECTION BETWEEN THE PERTURBED
HYDROGEN ATOM AND THE FOUR-COUPLED

ANHARMONIC OSCILLATORS

Using the well-known Kustaanheimo-Stiefel (KS)
transformation [9], the hydrogen atom in a generalized
van der Waals potential can be transformed into that of a
system of four-coupled sextic oscillators as in the case of
the diamagnetic Kepler problem [8] studied by Kuwata,
Harada, and Hasegawa. Considering the column ma-
trices

xi

X=
x3
0

Px=

px,

px,

px,
0

pu I

(2)

Q2 PU=
Q3

pu,

pu,

pu4

where x, ,xz, x3 and p,p,p are, respectively, the

The plan of the paper is as follows. In Sec. II we

briefly discuss the connection existing between the per-
turbed hydrogen-atom problem and the four-coupled
anharrnonic oscillators by extending the method of
Kuwata, Harada, and Hasegawa [8] to system (1). In Sec.
III we write the Hamiltonian in its normal form using the
Birkhoff-Gustavson procedure and also derive the gen-
eralized Solov'ev constant of motion for system (1). After
introducing appropriate action-angle variables for the
vanishing magnetic quantum-number case in Sec. IV, we
derive exact quantum numbers for the three classically
integrable cases by evaluating the action integrals explic-
itly. For the near-integrable cases appropriate action in-
tegrals are evaluated numerically to generate the quan-
tized values of the Solov'ev constant of motion and the
method of obtaining the semiclassical spectrum is briefly
discussed in Sec. V.
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coordinates and momenta on IR and u1, u2, u 3, u4 and

p„,pu, p„,p„are, respectively, the local coordinates

and conjugate momenta on IR, the KS transformation is
given by the matrix equation [9]

we can effect the Levi-Civita regularization [10] and re-
move the singularity at U =0 and obtain a modified
Hamiltonian

H=( —,'}(PU+co U )+8y(2 —P )U [(u f+u4)(u2+u3)]
X=TU,

where

(3) +4yP U [(u&+u4) +(u2+u3) ]=4,
where

(12)

Q1 Q2 Q3 Q4

Q2 Q1

Q3 Q4

Q4

Q1

Q3

Q2
(4)

Q4 Q3 Q2 Q1

x2=2(u, u2 —u3u4),

x3 =2(u, u3+ u
Qu 4)

along with the constraint

(6)

(7)

so that in component form we have the transformations

X1 —Q1 Q2 Q3+Q42 2 2 2

co = —8E E=—2 1

271
(13)

where E is the energy of the unperturbed hydrogen atom.
Hamiltonian (12) represents a system of four-coupled sex-
tic oscillators. For the @=0 case, it reduces to the case of
the diamagnetic Kepler problem studied by Kuwata,
Harada, and Hasegawa [8].

Having transformed the Hamiltonian (1) into the oscil-
lator system Hamiltonian (12), we may carryout a semi-

classical, EBK type of torus quantization of the form [11]

u 1Pu Q4Pu +Q3Pu Q2Pu
Ik =f pk dqk =2M nk+, k=1,2, 3,4

k

(14)

Then

1Px=( '}U TPU—= TPU,
2r

U2 =Q
2 +u 2 +u 2 + u 2

(9)

where C k is the topologically independent contour on an
invariant torus, nk and ak are the corresponding quan-
turn numbers and the Maslov indices, respectively. If an
explicit transformation to action-angle variables is possi-
ble, then the energy levels can be determined by the con-
dition

where r =x +y +z .
Denoting x, =z, x2 =x, and x3 =y in the Hamiltonian

(1), the above KS transformation gives rise to the new
Hamiltonian

1
PU +4y(u f+u4)(uz+u3)

U2

+yP (u, +u~+u3+u~ —2u fu~ —2u f u3+2 ufu4

+2uzu3 2u2u4 2u3u4)2 2 2 2 2 2 (10}

where PU =pu +pu +pu +p„. Redefining the time

variable t in terms of s as
'2

dt =4r =4U
ds

E=H(I), Iq, I3,I4) .

Such a torus quantization can be more effectively per-
formed if the oscillator Hamiltonian (12) is reexpressed
into its normal form, wherein the Hamiltonian is a func-
tion of the harmonic-oscillator terms only.

A simple way to achieve the normal Hamiltonian is to
use the Birkhoff-Gustavson normal-form procedure
[12,13]. For this purpose one can introduce the complex
variables

1 1Z = (cou +ip„) and ZJ" = (couj —ip„),2' 2'
j= 1,2, 3,4 (16)

so that the Hamiltonian (12) can be rewritten as

4
H=4=ci) g IZ I

+ [[2(2—p )[IZ, I +IZ4I +Re(Zf+Z4)][IZ2I +IZ3I +Re(Z2 +Z3 )]]
j=1 CO

+(13 [(IZ, I
+ IZ4I ) + [Re(Z, +Z4)] +2(IZ, I

+ IZ4I )Re(Z, +Z~ )

+(IZ I +IZ I ) +[Re(Z* +Z* )]

+2(IZ21 + IZ31 )Re(Z2 +Z3 )] )] g IZJ I +Re(Z,. )

(17}

where H' '=cog, IZ I
is the unperturbed part and the perturbed part H' ' is the remainder of the terms in the Ham-



1550 K. GANESAN AND M. LAKSHMANAN 45

iltonian (17) proportional to y. We will normalize this Harniltonian (17) using the Birkhoff-Gustavson procedure in the
next section.

III. THE NORMAL FORM

The Birkhoff-Gustavson algorithm [12,13] for writing the Hamiltonian in its normal form makes use of successive
canonical transformations. Following the standard procedure [13], the sixth-order (sextant) normal form of the per-
turbed Hamiltonian HNF' is given by

H,"„'= y [(Iz, I'+ Iz, I')[(2—p')Iz,'+z', I'+p'Iz f+z', I']+(Iz, I'+ Iz, I')[(2—p')Iz f+z', I'+p'Iz,'+z', I']]

4
+

3 g IZJI I4(2 —p )[(IZ, I +IZ4I )(IZ~I +IZ3I )+Re(Z, +Z4)(Z2 +Z3 )]
CO j=)

+2P [(IZ I +IZ I ) +(IZ I
+ IZ I ) +Re(Z +Z )(Z' +Z' )]

+P (Iz +z
I

+Iz2+z~I2)], (18)

where the constraint (8) has been utilized as and when
necessary. It is straightforward to check the normal-
form condition DFLNF =0, where(6)

D= /co g Z& ZJ
a

j=] j 'BZj

This expression (18) may be considerably simplified [8]
when reexpressed in terms of the orbital angular-
momentum vector L=r Xp and the Runge-Lenz vector
A=[(pXL) —r/IrI] of the unperturbed hydrogen atom
satisfying the condition

I

Here

A=(4 —P )A +5(P —1)A, (21)

HNF HNF +HNF(2) (6)

is the generalized Runge-Lenz hyperboloid or generalized
Solov'ev constant [1] which generalizes the result
A=43 —5A, found by Solov'ev [14] for the diamagnet-
ic Kepler problem, namely the P=O case. In terms of the
real variables, u;,p„, i =1,2, 3,4, the full normal-form

Hamiltonian becomes

2A = 1 — L
4

Equation (18) simplifies to

4 1+6+32y
I I

1+A+p
CO j=~ CO

(20)
I

'(PU+a) U —)2

2

X 1+ 1+P +A+ (1 P)L, —
CD 4

(22)

The original Hamiltonian (1) is related to the oscillator
normal Hamiltonian HNF through the relation [13]

HNF= ——'(&N„) = ,'(H „) 1+——6 I+p +A+ (1 p)L, —

4 2

+ 1+a +A+ (1 i3 )L, —
2n 2 4

(23)

Next we wish to introduce action-angle variables into
the normal Hamiltonian (23) and construct explicit action
integrals for quantization. As the Hamiltonian (23) is a
four-degrees-of-freedom system, one has to naturally in-
troduce four sets of action-angle variables which in gen-
eral is a dificult task to achieve. For simplicity we con-
sider the special case in which the z component of the an-
gular momentum L, =m =0 so that the Hamiltonian (23)
can be reduced to a two-degrees-of-freedom system.
Quantization for this special case will be discussed in Sec.
V.

IV. ACTION INTEGRALS FOR THE VANISHING
MAGNETIC QUANTUM-NUMBER CASE

Z. =+I e ', j=1,2, 3,4 (24)

where I 's can be identified a. s actions and p~'s as angle
1

variables. For the m =0 case, the constraint (8) implies

P, =$4 and $2 =$3. For this case, we have

As in the case of the diamagnetic Kepler problem [8],
we consider the polar form for Z. , namely
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—,'[(p„+p„)+e (u f+u~)]=co(iZ, i + iZ~i ) We introduce k, , i =1,2, 3,4 in the above-mentioned
four regions such that in region (i), we have

=co(I i +I~ ),
—,'[(p„+p„)+a) (u~+u 3)]=co(iZ~i + iZ3i )

(25)
0&k'=k'= 1 —4

2
&1 for —'&P&0 .

5(1—P )
2

=co(I~+I3 ). (26) Similarly for the regions (ii) and (iii), we have

Therefore the two two-dimensional oscillators consisting
of ( u „u4) and (u2, u 3 ) become effectively one dimension-
al. Hence for the L, =O case, one can introduce new
variables defined as g =u f+u~, ri =u2+u3,
p&=p„+p„, and pv=p„+p„. The Hamiltonian (12}

in terms of these new variables (for the L, =0 case) be-
comes

,'(p&+c—og }+,'(pv+c—o rP)+4yP (g +ri )

+4) (4—p')(g'q'+ g'q') =4 . (27)

This Hamiltonian is analogous to the two-coupled sextic
anharmonic oscillators discussed in Ref. [7]. Let (I&,P~)
and (I„,P„) be the action-angle variables associated with
the g and ri oscillators so that the normal Hamiltonian
(22) becomes

O~k 5(1—')
& 1 for 1 & P & —,',

(4—p )

0&k 3
5(1— ) &1 for 2&P&1,
(1—4P )

and in region (iv), we have
r

0&k2 k 2
1 forP 2.(4—R2)

5(1—P )

Now the four k;, i =1,2, 3,4 can be identified with the
modulus square of the standard elliptic integrals [15].
The variation of k;, i =1,2, 3,4 with respect to P, is

HN„=a)(I(+I„) 1+
6

(1+p2+A) (28)
8.15-

(q }

In terms of these action-angle variables, the generalized
Solov'ev constant (21) becomes

A= ,' I co I(I„[-5(1—p )
—(4—p )sin (pg

—(()„)]

+20P2] —(1+P ) . (29}

Using Eqs. (13), (25), and (26) we have

n= —=—'(I +I ).2 ]

N
(30)

-9.55-

0.00 4.00

By introducing the variables I and P, which are related to
the action-angle variables, as

I= ,'(I„Ig), P=—(Pg—P„), — (31)

the Solov'ev approximate constant (29) becomes

1 —4A= [(n —I )(1—k' sin P)]+4P —1, (32)
n k2

where

4 fP
k~2 ~ k2 1 kr2

5(1—P')
(33}

Here we have one pair of action-angle variables (I,P)
only while the other action "n" is cyclic.

Now we note that the quantity k in Eq. (33), unlike
the case of the diamagnetic Kepler problem [8] (P=O),
where it takes a fixed value k =

—,', can vary as shown in
Fig. 1(a}. There is a discontinuity at P= l. The variation
of k as a function of P is shown in Fig. 1(a). For the
sake of simplicity, the P parameter region can be divided
into four distinct regimes. They are (i) 0&P&0.5, (ii)
0.5&@&1,(iii) 1&@&2,and (iv) P&2.

I.O-

0.0-

(b}
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FIG. 1. (a) Variation of k for 0&P& 4. (b) Variation of k;,
i =1,2, 3,4 for the 0&P&2.5 range.
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shown in Fig. 1(b). Thus to cover the whole P-parameter
range it is convenient to define appropriate action in-
tegrals in each of the regions that are functions of k;,
i =1,2, 3,4 separately. These turn out to be the canoni-
cally equivalent action integrals obtained by Kuwata,
Harada, and Hasegawa [8],but each one convenient for a
particular range of the parameter P. These canonically
equivalent action-angle variables are as follows:

(i) (I,((),
(ii) (Pi,8) where Pi =(n I —)cos P

(34a)

and I =(n P, )c—os 8, (34b)

(iii) (P2, $) where P2=(n —I )sin P

and I = ( n —P z )cos P . (34c)

Correspondingly we have the following action integrals
for different P regions.

(i) Region I 0.5~. P~O. O. Using Eqs. (32) and (34b)
we get

S'"(A)= fP, (t'I)di'I2'

principal quantum number and can be quantized in the
usual sense. For an arbitrary value of the parameter P,
one has to choose the appropriate action integrals [Eqs.
(35)—(39)) given above and solve the corresponding ellip-
tic integral numerically [16] to find the associated second
quantum number for A. However, for the three special
values of P, namely P= —,', 1, and 2, which correspond to
the classically integrable cases, the action integrals as-
sume simple form and hence can be evaluated trivially,
and thereby the associated quantum numbers can be ob-
tained explicitly. The three cases of special interest are as
follows.

Case (i) P.= —,'. Region I. Here ki =0. Therefore the
action integral (35) becomes

S"'(A)= f (A/ ")'—i d8
2~ 4

=(n, +—,') . (40)

Here the Maslov index is taken to be 2 since the associat-
ed classical trajectories are of boxlike [17] nature as in
Fig. 2(a). Equation (40) implies n A= ", (ni—+—,') . Using
this in Eq. (23), we get the expression for the energy-level
shift as

where

[(1—k i ) —(k i
A') ]

(1—k i sin 8)
(35) ngE = )' [sn2+ &s(n + i )2]nn& 2 4 4 1 (41)

A'=A/(1 —4P ) . (36) «.35370-

(ii) Region II. 1~P) —,'. Using Eqs. (32) and (34c) we

get

S' '(A)= fP (8)dg
2m

A'(1 —k2 )

2' (1—k2cos g)
(37)

(iii) Region III. 2)P l. Using Eqs. (32) and (34c) we
get

S' '(A)= fP (g)dg2'

—f, , 3529'?-
v

-f.36046 "..36093

n A'

(1—k3sin g)
dg. (38) I:36-

.c'

(iv) Region IV. P~2. From Eq. (32) weget

(1—k4)(1+A')
1 — dP . (39)

(1—k4sin P)

V. SEMICLASSICAL QUANTIZATION
FOR THE CLASSICALLY INTEGRABLE CASES

AND NEAR-INTEGRABLE REGIONS

—I:36-
—

I 36 l..36

A. Integrable cases

The quantity n introduced in the preceding section cor-
responds to the total energy and it can be identified as the

FIG. 2. (a) Trajectory plot for the Hamiltonian (27) along
with the energy surface for the P=0.5 case. (b) Same as in (a)
but for the P=2 case.
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TABLE I. Results of Hamiltonian (27) for various integrable parametric values.

P k' k2 k~ k~ Action
integral

S'(A)

Quantum
operator [1]

(A2+ A '

Quantum
number

q(q+ 1)

Classical constant
of motion [7]

ptp„+Syp g'7)'

2

2E(—ri+ i g'+ g')gq

Energy shift

27" [5n'+ —"(n, +-')']

2 1

0 0 S '(A)

1 0 S (A)

L 1(1+1) (kp, —wg)'

System decouples into

two Sextic oscillators

71
[Sn —3(n + —')']

7l
[Sn +15(n3+ —') ]

Case (ii) P=. l. (Region II or region III). Here kz =0
and k3 =0. For this choice both the action integrals (37)
and (38) degenerate into the same expression. Corre-
spondingly we get

' 1/2

d(I),

which can be quantized using the EBK quantization rule
as

s"'(A) =s"'(A) = n A

2' 3

1/2

dg=(nz+ —,') .
' 1/2

dP=(ns+ —,
' ), (44)

(42)

Again the Maslov index is chosen as 2 because for the
p=1 case, our oscillator Hamiltonian (27) decouples.
Equation (42) implies n A=3n —3(nz+ —,') . Using this

expression in Eq. (23), we obtain the energy-level shift as
n A=i 5(n& +—,')

Using this in Eq. (23), the shift in energy becomes as

(45)

where n3 is an integer. For this choice also the Maslov
index is 2 because of the existence of box-type trajectory
[17] [Fig. 2(b)]. From Eq. (44), we have

fnbE„„= [5n —3(n2+ —,') ] . (43) ynbE„„= [Sn +15(ns+ —,') ] . (46)

Case (iii) p=2. . (Region IV). Here k4 =0. Hence the
action integral (39) becomes

[0-

If we designate the quantum numbers (n
&
+—,

'
) as

q(ri+I), (nz+ —,') as 1(1+1), and (ns+ —,') as m' then

our expressions for the energy-level shift for p= —,', 1, and

2 cases are analogous to those obtained by Alhassid,
Hinds, and Meschede [1] (of course for the m =0 case),

I.36-

S„(A)

0.0- —I.56--

—0.1579 3.(89
—I.56 I.36

FIG. 3. Normalized action integral plotted against A for
P=0.4588 case.

FIG. 4. Sample trajectory plot for the Hamiltonian (27) along
with the energy surface for the P=0.4588 case.
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I.B7 x I0I-

C9
lK
LLI

LLI

-4—5.77 x l0
I

1.0 x IO
-8

50.0 x IO

FIG. 5. Semiclassical spectrum generated using Eq (23) fo. r the P=O 4588 case .(n =20).

using dynamical symmetry-group analysis. Additional
constant factors in their expression are due to the form of
the Casimir invariant chosen. We have used
n A =n —L rather than L +A =n —1. We have
summarized our results in Table I.

B. Near-integrable regions

where

sin '&(1+A') for —( —,', ) & A (0
for 0&A&( —").

2 19

In order to understand the nonintegrable but near-
integrable regions of P, one has to choose the appropriate
action integral among (35)—(39), depending upon the P
value, and integrate it numerica11y. For example, we
choose P =

—,', which corresponds to P=0.4588 that lies
near the integrable choice P=0.5. The corresponding
classical dynamics is discussed in Ref. [7]. For this
choice of P, we choose the action integral in the form
(35). For the hydrogen atom in a generalized van der
Waals potential problem, the generalized Solov'ev con-
stant A on a unit sphere can vary between 4P —1 and
(4—P ). (We recall that for the diamagnetic Kepler
problem A varies from —1 to 4.) For P=0.4588, A can
vary from —( —,', ) to ( —",, ). Here k, =0.04. We have the
normalized action integral (35}quantized as

We integrated the integral in Eq. (47) using the Gauss-
ian quadrature integration method [18] for different A
values ranging from —

—,', to —'„' and obtained the quan-
tized values of A. Figure 3 is a plot of the normalized
action-integral value against the A value for the n =20
manifold. For the p value chosen, the classical trajectory
touches the energy surface at four caustic points as indi-
cated in Fig. 4, which implies a value of +=2. For a
given n manifold, n

&
can vary from 0, 1, . . . , (n —1). Us-

ing these in Eq. (23) we can generate the semiclassical
spectrum for di8'erent y values. One such spectrum gen-
erated for P=0.4588 case is shown in Fig. 5.
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