
PHYSICAL REVIEW A VOLUME 45, NUMBER 1 1 JANUARY 1992

Coulomb-Born calculation of the triple-differential cross section
for inner-shell electron-impact ionization of carbon
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A Coulomb-Born approximation is used to compute the triple-differential cross section for electron-
impact inner-shell (1s) ionization of carbon. We employ a perturbation series that allows the use of
Coulomb waves with arbitrary Z,if for the incoming, scattered, and ejected electrons. Most of the
features of the triple-differential cross section observed experimentally are reproduced, even though
these wave functions are distorted by an effective Coulomb potential and therefore do not satisfy the
plane-wave boundary conditions at infinity. In order to explain some features that appear in the cross
section, and in order to probe the validity of a dipole approximation, we make a multipole expansion of
the transition matrix and show that the amplitudes of the multipole components are similar to those ob-
tained in the Born approximation, while the relative phases of the multipoles differ greatly.

PACS number(s): 34.80.Dp

I. INTRODUCTION

The study of (e, 2e) reactions, e.g., single-step electron-
impact ionization of atoms, has gained much attention,
both experimentally and theoretically, during the past
two decades, especially after the experimental work of
Ehrhardt et al. [1]. The triple-differential cross section
(TDCS) of these reactions [even though it is actually a
fivefold-differential cross section, we will call it triple-
differential cross section in order to agree with the
current (e, 2e) literature] is an explicit function of all the
collision parameters: the energy of the incoming elec-
tron, the energy and direction of the scattered electron,
and the energy and direction of the ejected electron.
Therefore, the information gained in its study is extreme-
ly useful to the understanding of fundamental collision
dynamics [2]. Several theoretical studies have been de-
voted to (e, 2e) reactions in hydrogen and helium [2—8],
while very few have studied (e,2e} reactions from inner
shells of heavier atoms [9].

Recent measurements of the TDCS of electron-impact
ionization of inner shells of carbon [9], neon [10],and ar-
gon [10—12] have shown that the plane-wave Born ap-
proximation (PBA} fails to reproduce most of the
structural parameters of the TDCS [1], such as the ratio
of the binary and recoil peaks and their angular position.
This is not surprising, since it is well known that the PBA
is only appropriate for inner shells when the parameter
tt = 2n Zdt/v, where Z,tt is the effective charge of the tar-
get and U is the velocity of the projectile, is much less
than unity. For the ionization of inner shells of carbon,
this would require an initial energy of the order of 20
keV, while experiments are done at energies of the order
of 1 keV. Accordingly, a distorted-wave approximation
must be used.

It is generally considered that, using standard pertur-
bation expansions, the decrease of the Coulomb field with
distance must be taken into account [13—15] in the un-

perturbed wave functions; otherwise, a divergent phase is
involved in the calculation of the scattering amplitude
[15,16]. Here we show that, by using a perturbation
series introduced earlier [8], one may simultaneously em-

ploy well-defined expressions for transition amplitudes
yet obtain first-order expressions where the wave func-
tions are not constrained by the slow decrease of the po-
tential at large distances. This expansion allows the use
of Coulomb waves with arbitrary Z,z for the incoming
and scattered electrons, even though they do not satisfy
correct asymptotic conditions, and therefore it extends
the use of the Coulomb-Born approximation (CBA) to the
scattering of charged particles from neutral atoms.

We compute the TDCS for electron-impact ionization
of inner shells (ls) of Carbon using this perturbation
theory and find that many features of the TDCS, such as
the ratio between the binary and recoil peaks and their
angular position, are reproduced by the theory. We ana-
lyze our results by a multipole expansion of the transition
matrix and compare individual multipoles with results
from PBA and find that, at the energies where the experi-
ments were done [9], the contribution from the quadru-
pole term is still appreciable and therefore a dipole ap-
proximation is not valid. We also find that the amplitude
of the different multipoles are very similar in CBA and
PBA, while their relative phases are different.

This paper is organized as follows: in Sec. II we review

briefly the standard perturbation expansion for Coulomb
functions and the difficulties it presents, and review two
"nontraditional" solutions presented earlier [8,16] to
overcome these difficulties; in Sec. III we apply the per-
turbation expansion to the transition matrix; in Sec. IV
we derive the expressions used to compute the TDCS; in
Sec. V we present the results for carbon and analyze them
based on a multipole expansion of the transition matrix
both in CBA and PBA; and Sec. VI consists of a sum-
mary and conclusions. Details of the evaluation of in-
tegrals and derivatives, as well as an analytical proof of
the orthogonality of the dipole components and the
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derivation of the multipole expansion in PBA, are given
in Appendixes A —C. Atomic units are used throughout.

II. PERTURBATION EXPANSION
FOR COULOMB FUNCTIONS

Consider the Hamiltonian for an electron in a
Coulomb field

zH=K +0
T

H(A, )=ICO+A, U, (2)

where we are treating U = Z/r as—a perturbation and A,

has been introduced to order the perturbation series. The
eigenfunctions of H(A, ) are Coulomb functions g„+(r,A, ),
which are now functions of the perturbation parameter A, :

1i/&+(r g) (2~)
—3/2e —win/21 (1 g)

(((/„+(r) = g A,"P(")+(r),

and compute the coefficients of A.
" directly from the per-

turbation equations

(I(, E—)y(„0)' =O,

(g E)y(1)+— Uy(0)+

E )y( n ) + — U y( n —1 ) +

(6)

(7)

(8)

To this end, Eq. (7} is integrated using the standard
Green-function approach:

y„")+=(E+iq H, )
—'Uy„-, (9)

where P&(r) =P((,
'+ is a plane wave.

The right-hand side is evaluated by writing the Green
function in the momentum representation, so that the
above equation becomes

Xe'"',F, {a,l;i(kr —k r)}

=Nk+)e'"')F((a, 1;i (kr —k.r)),

(3)

(4)

.].(1)+——8mZ exp(ip r) 1

(2n. )'/' k'+2 ii r—p' Ip
—kI'

(1O)

where a =iv=iAZ/k.
Standard perturbation theories expand the eigenfunc-

tions of H, g)+, (r), in powers of A, :

This expression is a special case of the two-denominator
integral which can be evaluated using Feynman integra-
tion to obtain [13]

(, )+ ) exp[[ ik rx—+i . (kx+iglk) +(ri/k) ]r]
0 i+(k—x+irilk) +(rilk) ]

This integral diverges in the limit g~0. For nonzero,
but sufficiently small, g we may write

off-shell scattering state, and a (z,E„)is given by [16]

a (z, Ek ) '= [(Ek z)/4Ek ]'"e'—~"1"(1+iv), (15)
)MZ ) exp[i(kr —k r)x —1]

), r dx
ik — o X

+
o '(/x +2igx/k

(12}

where (p(iv) is a phase factor, which in Ref. 16 was set
equal to miv/2, and where we have set Ek )E, e.g.,
g —+0+.

The expansion of P)+, in powers of /(, now may be writ-
ten as

The integral in the first term in large parentheses on
the right-hand side of Eq. (12} is readily evaluated in
terms of the exponential integral Ei[i(kr —k r)]. The
second integral is elementary and we have, in the limit of
small g,

p&"+ =jv(t)&(r) [Ei[i(kr —k r)]

tt/)+, (r)= lim
z Ek

= lim
z~EI, n=0

so that the coefficients of k" are

a (s)(z, E )ks y pm'™~(r )
s=0 m=0

g (s)(z E )q( ns)+(r)
s=0

(16)

—in[i(kr —k r}]—1n(iq/2k ) j . (13)

lim a(z, E)1(i„+, ,
z E„

(14)

where z =E +i ri, Ei, is the eigenvalue of Eo, 1is), , is the

This expression diverges logarithmically as g~0 and
therefore it cannot represent a solution of Eq. (7).

Here we review briefly two different approaches that
have been presented to overcome this difficulty. One is
based on the definition of the on-shell scattering states of
Roberts [17],

(n)+(r) ]im y g (s)(z Ek )g(n
—s)+(r }

z~Eg s =O

and the first-order term is then

(17}

Since a' '= 1 and a"' contains a logarithmic divergence
[16] of the form (iv in') which cancels the divergence in
the second term, this expression for g(k"+ is well defined

1'&"+(r)= lim [a'"gk,'++a' '(z, Ek)(z Ek } 'f'k,'+] . —
I&

(18)
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and gives convergent functions which behave asymptoti-
cally as

r& is the coordinate of electron N and r, ="I/~r, .r—~. In
the limit rN ~~, we have

Pz"+~[—ivln(kr —k r)+(constant terms)]/I, ', (19) V,„,~( —Z +N —1)/re = —Q/re, (24)

in agreement with the expansion of the asymptotic form
of Coulomb wave functions.

An alternative way [8] of obtaining the coefficients of
A,

" is by recognizing the expansion of g)+, [Eq. (5)] as a
Taylor series expansion around the point A, =O, and
evaluate QI,

" + (r ) directly from the known Coulomb func-
tions, now functions of A. through the parameter
a =i A,Z/K, , that is,

gn
P„'" +(r)=, 1(„+(r,A, )n! (20)

which gives perfectly well-defined functions. They are
easily seen to satisfy Eqs. (6)—(8), but are not given by the
usual representation of Eq. (9). Rather they are given by
Eq. (17) or, equivalently, by Eq. (20). We prefer Eq. (20)
for practical calculations.

III. PERTURBATION THEORY
WITH ARBITRARY BOUNDARY CONDITIONS

FOR ELECTRON SCATTERING

In this section we apply the perturbation series intro-
duced in Ref. [8] and presented in the last part of the pre-
vious section to electron scattering from atoms. Standard
perturbation theories may be used in two different cases.
First, when the Hamiltonian of a system is such that a
part of it is small compared to the rest, we introduce a
strength parameter A, to multiply the small part of the
Hamiltonian and then expand the wave function in
powers of this parameter. Second, when eigenfunctions
of an approximate Hamiltonian H,pp, possibly valid at
those regions of space where the interactions occur, are
known, we add and subtract this approximate Hamiltoni-
an to the exact one H, and introduce the strength pararn-
eter A, to multiply the difference H —H

pp 0, and then ex-
pand the wave function in powers of this parameter. In
both cases we get the exact Hamiltonian H when A, =1
and the approximate Hamiltonian H, „„when A. =O.
The objective is therefore to interpolate wave functions
and T matrices between these points.

The Hamiltonian for a system of an (N —1)-electron
atom plus an incoming (or outgoing) electron may be
written as

where Q =Z —N + 1 is the net charge of the ion in the
initial state.

We define an effective potential for the electron N as
V ff Z ff /7 N with Z, ff arbitrary, and a short-range in-
teraction potential V„,= V;„,+Q/r)v, such that V„,~O
as rN~ ~. We then write the Hamiltonian as

H =H() + V() + V,(r+ ( V;„,—V,(r ),
and treat ( V;„,—V,(r) as a perturbation:

H(A. ) =Hp+ V()+ V,(r+)(.( V;„,—V,(r)

HQ + VQ + Veff +A UQ +1V'

(25)

(26)

H(A, ) =AT+A'(i(. )+/(, V „(,
where

&T=H() —K() + Vp

(27)

(28)

is the Hamiltonian for the (N —1) target electrons, and

&(A, )=Kp+ V,(l+A, Ug (29)

is the Hamiltonian for electron N with kinetic energy Ko.
The initial and final states are products of the target
eigenstates 4, and 4f and the Coulomb wave functions

(rz, A. ), which are now functions of the perturbationilf
parameter A, . Our perturbation series is obtained by ex-
panding the T matrix in powers of k. This means that
the wave functions g~ (rb(, k) must also be expanded inilf
powers of A, , but, since V,ff

—
A, U& is a Coulomb potential,

the usual Green-function representation of this expansion
is not valid. The expansion, however, is readily carried
out directly. The desired functions are

g(+)(r g) (2~)
—3/2e —~ia/2f (1 a)

l

Xe ' )F((a, l;i(K, r —K, r))

where U& =(Z,~
—Q )/r)v. Clearly, when A, = 1 we recov-

er the exact Hamiltonian, and when A, =O we obtain the
"initial" Hamiltonian of the (N —1) electron target ion
plus electron N in the field of a nucleus of charge Z,ff.
The Hamiltonian H(X) may be written as

H =Ho+ Vo+ V (21) =Nx+'e ',F, (a, 1;i (K, r —K, .r))
l

(30)

where Ho is the kinetic-energy operator for N electrons,
Vp is the potential of the (N —1) target electrons in the
field of the nucleus of charge Z,

N 1 zVo= X „+X„
i =1 l i' lj

(22)

V;„, is the interaction potential of electron N with the tar-
get ion

and

( —)(r g) (2~)
—3/2e —nib/2I (1+b)

l

Xe / )F, ( b, 1; —i(Kfr —Kf—r))
=N&+'e )F)( —b, 1; i (Kfr+K—f.r)),f

(31)
N —1

v,„,= — + y (23)
where

a =i [Z,(l
—i(,(Z,(r

—Q) ]/K; (32)
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and

b =i [Z,ft.
—k(Z, s.—Q)]/Kf . (33)

in choosing Z,ff and thereby extends the Coulomb-Born
approximation to scattering from neutral systems, such
as atomic carbon.

Note that, when A, =O, the functions tP» (rN, A, ) areilf
Coulomb functions with an effective charge Z,ff.

The transition matrix element is then

(34)

where G+(A)=[E+ig H(—A)] '
.is the Green function

of the Hamiltonian H(A, ). Note that this expression is
well defined for all 2, in contrast to expressions [18] that
use V„,~V;„,—V,z and Coulomb functions f» (r)ilf
which are independent of A. .

We now expand the T matrix in power series of A, :

Tf;(A, ) = g A,"Tf,"', (35)

and evaluate the coefficients Tf,". ' by

8"Tf;(A. )
Tfl ax"

(36)

The lowest-order term is, as usual, Tf =0, and the first-
order term is given by

Tf'=(P„(r, )04 (fr'}l V„, lg„+(r,o)4, (r') &

=(gz (r, o)+f(r')l V;„,l1(z (r, o)@;(r')&, (37)

where the orthogonality of initial and final target eigen-
states has been used to eliminate Q/r~. This is just the
desired expression since the distorted waves are Coulomb
waves in an attractive potential with the arbitrary
strength parameter Z,ff.

The second-order term is not the conventional result of
distorted-wave theory, rather, we have

Tf',"= (1(„-(x)nfl v,„,ly„+(x)a, &l, ,
BA,

+(1(„.(0)nfl v„, G+(0)v,'„, lf„+(0)4, & . (38)

Since the derivatives of the Coulomb functions are well
defined, as noted above, and since V „,~0 as rz ~ ~ fas-
ter than 1/r~, it is easily seen that Tf'; ' is finite and well
defined. Alternatively, if the standard Green's-function
solution of the perturbation equation, namely,

P'"' —=(E+i —K —V ) 'U 1('" (39)

is used to compute the derivative of the Coulomb func-
tions with respect to the parameter A, , one obtains the
usual expression

Tf'p= & q& (0)+f1(v,„,—v„)G (o)( v,„,—v,&)lq&+(o)e, &,

Tf;(A, )

=(Q» (A, }4fli,v„,+A, V,'„,G+(A, ) V„,lf» (A, )4; &,

IV. TRIPLE-DIFFERENTIAL CROSS SECTION

In the present work we apply the perturbation expan-
sion presented above to calculate the TDCS for electron-
impact ionization of inner shells of carbon. To this end
we approximate the interaction potential by a two-
particle potential, namely, V;„,= 1/lr —r'l, where r and r'
are the coordinates of the incoming (or scattered) elec-
tron and the atomic (or ejected) electron, respectively.
The transition matrix element is therefore given to first
order in A, by

Tf,"(K,, Kf, k)= Tf;(K;,k, Kf ), (42)

valid for the exact T matrix, to compute the exchange
amplitude.

The TDCS corresponding to ejection of an atomic 1s
electron with momentum k (see Fig. 1) into the solid an-

gle d QA. , and to scattering of the incident electron in the

Z

K.
1

where the initial target eigenstate is approximated by a
hydrogenic function for the active 1s electron

3/2 —1/2 T"
qr, (r')=Zz~ vr

'~ e, with Zr equal to the screened
charge of the target chosen such that it gives the binding
energy of the 1s electron, and the final target wave func-
tion is approximated by a Coulomb wave with the same
effective charge. The initial and final eigenstates of the
projectile are, as noted in previous sections, Coulomb
waves with an effective charge Z,ff. Note that this ap-
proximation for (e, 2e} reactions amounts to treating
electron-electron collisions in the presence of an external
field, the external field being a Coulomb field of strength
Z,ff. Because of the passive atomic 1s electron, Zz and

Z,ff, in general, differ, but we take them to be equal. We
compute the direct T-matrix element Tf;(K;,Kf, k) from
Eq. (41) and use the exact relation

(40)

which diverges unless Z,&=Q=O for neutral atoms. In
contrast, our perturbation series allows complete freedom FIG. 1. Geometry of coplanar (e, 2e) reactions.
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direction (Hf, )I)f ) into the solid angle deaf is then given

by

2'
=(2m. ) ( —' iT +T',"i~f' f'

1/2
ZT~( —)e

k

r(1 —c)r(c)

Xf d c —
1(1 )

—c

+
4 I Tfj Tf (43)

i (t —1)k.r' —(ZT —ikt)r'

x fd'r '
(47)

The matrix element Tf, can be written as

Tf f'drOKf (r)U) k(r)4K,

with

U) k(r} fdr 0 r —r'

(44)

(45)

This integral is evaluated by Fourier transforming
(1/ir —r'i) and using Feynman integration to evaluate
the integral over the momentum variables. We obtain

1/2x)-" z'
k T

r(1 —c)r(.)

Using the integral representation of the conAuent hy-
pergeometric function [19]

,F) ( —c, 1; i (k—r'+k r') }

i (kr'+k r')tt c —.
1( I t) cdt—

I (1—c)I (c) o

where c =iZ&lk +e, e being an infinitesimal which will

be set equal to zero after evaluating the integral, we may
write the matrix element U1, k as

x f dt t' '(1 t)—
0 BP

f 1 1 ip r(1 —x)—yr
X dx —e

0 y

where p, =ZT i kt an—d p, =k( t —1), and

y =[(1—x)(p, +xp) )]'~

The matrix element Tk „is then given by

(4&)

(49)

pf(+)+( —) g( —)

Kf k ZT
r(1 —c)r(c)

X f dt t' '(1 t) ' f—dx fd r)F—)[a, 1;i(K;r —K; r)])F, [b, 1;i(Kfr+Kf r)]Xe

(+ )~(—)y~( —)y 3 1/2

I 1 —cl c no .
B)M o yBy

where p =(1—x}(1 t) and I,b is defin—ed by [20]

t'(K,.—Kf —pk) r eI., = fd r, F, [a, l;i(K, r K; r)])F,(b—, 1;i(Kfr+Kf r))e

(50}

(51)

and given in Ref. [20] as a hypergeometric function

4 ( a+b —1

I,b
=

b 2F)(a, b, 1;z),
A B'

where

A =(y ik) +(pk —K—;)

(52)

pf(+ )Q( )4Q( )Q 3
' 1/2

K, Kf k ZT
Tk, 1s r(1 —c)r(c)

X f dt t' '(1 t)—
0

)M(1 ) BIb I BIbfX dx +—
0 yi By y ByBp

(54}
B =(y iKf ) +—(pk+Kf )

C=y +(pk —K;+Kf )

D =[y i(K;+Kf—)] +p k

CDz=1—
AB

+b
I,b =4m

b 2F, (a, b, 1;z)
A "B'

A a —1Bb —1=4m.
, [(1—z}'+ '

zF) (a, b; 1;z)] (55}

In order to evaluate the derivatives of I,b, we write I,b as

The matrix element Tk 1, is then given by
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BI,b
Bp

=P~I,b+ V~I, , b+

where

(56)

P= (a —1) +(b —1) —(a+b —1)
A' 8' D'

A 8 D

b —(1—a)z z'

1 —z z
(57)

bD z'
y= 8(1—z) z

(58)

and where the subscript indicates derivatives with respect
to y. The derivatives with respect to p are now easily
evaluated as

0.005
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O
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0 ~ 001

0.003
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I

I I

- (a)
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l!

ii
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/
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I \

I
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r.
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I
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and

B I.b
GOIob+GtI, b+&+G2Io b+2

Bp Bg

y

BY

XyG~=~. P»~+ '+&.P'"
G y ~ y

b + 1

(59)

(60)

0.0025

0.002

g) 0.0015
O
Cl

O. OO1

0 ~ 0005

I jjj- I I ~ e

II tj'$1'-"'
- I
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I
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I
I
I

—I

270
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I
\
1
\l-
L
1-

I

360

By (1—x)p,
Qy

=
Bp

(61)

V. RESULTS AND DISCUSSION

A. Triple-difFerential cross section

Five different cases were studied and the results are
shown in Figs. 2 and 3. The data shown in Fig. 2(a} cor-
respond to an incident energy E; =1801.2 eV, an energy
of the ejected electron Ek =9.6 eV and a scattering angle

Of 4, with a momentum transfer ~qI
=

I &;—KJ
1.255 a.u. The data shown in Fig. 2(b) correspond to
E; =1832.04 eV, Ek=41 eV, 0&=5', and q=1.457 a.u.
Solid lines correspond to the CBA, with Z,&=ZT, and
the dashed lines to the PBA case in which the TDCS is
given in closed form [21]. The experimental results in
Fig. 2 are from Ref. [9]; they are normalized to the
present calculation. Notice that the main feature of the
TDCS pointed out in Ref. [9], e.g., the presence of an in-
tense recoil peak, which at Ek =9.6 eV is even larger than
the binary one, is clearly reproduced in the CBA, while it
is not reproduced in the PBA. We discuss this further in
the next section based upon the occurrence of the

and where the superscript (b+1) indicates that y and p
are the coefficients of I, b+ &

and I, b+2 in the expression
for the derivative of I, b+, [Eq. (56}].

The integral over x was evaluated numerically using a
Gauss quadrature. The method of evaluation of the in-
tegral over t is presented in Appendix A.

FIG. 2. Angular distribution of the TDCS for electron-
impact ionization of carbon. Kinematical conditions: (a)
E; = 1801.2 eV, Ek =9.6 eV, 8& =4; (b) E; = 1832.4 eV,
El, =41.0 eV, HI=5'. The solid line is the present calculation,
the dashed line is a plane-wave Born calculation, and the solid
dots are the experimental results from Ref. [9].

different multipole components. The exact position of
the peaks is not very well reproduced, but it should be
pointed out that the experiment reported in Ref. [9] is on
the ls ionization of carbon in C2Hz, while this theory
uses a very simple model for both the 1s bound-state and
final-state wave functions; specifically, the Coulomb
phase shift of the wave function of the ejected electron
might be different from the exact one, as well as the nor-
malization. This was, in fact, noted in the second Born
calculation of the TDCS for electron-impact ionization of
helium of Mota Furtado and O'Mahony [5], where the
wave function of the ejected electron was obtained from
an 8-matrix calculation, and the phase shifts for the I 3
partial waves were found to be difFerent from the
Coulomb phases with Z,&=ZT.

8. Multipole expansion of T~;

In order to probe the validity of the Coulomb-Born di-
pole approximation, or the dipole approximation used in
Ref. [9] to interpret the experimental results, and in order
to analyze the results obtained in the CBA, we make a
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FIG. 3. Angular distribution of the TDCS for electron-impact ionization of carbon. Kinematical conditions: (a) E; =1801.2 eV,
Ek =9.6 eV, 8f =4', (b) as (a) but 8f =9', (c) as (a) but 8f =20', and (d) as (a) but 8f =40'. The solid line is the present calculation, the
dashed line is a plane-wave Born calculation, and the solid dots are the experimental results from Ref. [9].

rnultipole expansion of the T matrix relative to an axis
parallel to the rnomenturn transfer:

and compare with the PBA, in which case TI is given in
closed form in Appendix C:

where

l, m

TI m
— Tfi ~Im k~ k dQk

(62)

(63)

pgg &2)r(2l + 1 )1V Z
rr (Z —ik) q

X (b —1)fi(b —2)— ft(b —1)
b+1

Z —
1

(64)

TABLE I. Multiple components of the T matrix in CBA and PBA relative to an axis parallel to the
momentum transfer. Kinematical conditions: E; = 1801.2 eV, Ek =9.6 eV, 8f =4'.

I
TcBAI 2

CBA

Phase
I

TPBAI:

PBA

Phase

0
1

0
2
1

0
3
2
1

0

0.35196x10-'
0.275 33x10-'
0.11880x 10-'
0.273 70 X 10
0.13602x10-'
0.949 77 x 10-'
0.31971 x 10-'
0.61309 X 10
0.11626x10-'
0.19522x10-'

135.0
—89.5

0
—163.3

68.0
—91.8
—33.1
136.5
42.0

—166.6

0.335 6 x 10-'

0.13972 x 10-'

0.978 17x 10-'

0.195 59x 10

79.7

—131.2
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TABLE II. Multiple components of the T matrix in CBA and PBA relative to an axis parallel to the
momentum transfer. Kinematical conditions: E; = 1832.4 eV, Ek =41.0 eV, 8 =5'.

CBA

0.233 31X10-'
0.168 11X 10-'
0.64063 X 10-'
0.297 56 X 10
0.66148 X 10-'
0.73508 X 10-'
0.677 54 X 10-'
0.10671X 10
0.135 65 X10-'
0.27426 X 10-'

Phase

122.6
—89.3

0
—149.5

79.4
—74.3

0
169.2

—10.6
—127.3

PBA

i7

0.213 81X10-'

0.730 35 X 10-'

0.76156X10-'

0.289 32 X 10

Phase

69.3

—53.0

—94.5

where

I!2'+' f'(1+y)
i(y)= (21+1)!I'(1+y —I)

X( —2kq}'[Z +(q —k} ]'+r

X 2F| —I, I —y;21+2;
—4kq

Z +(q —k)
(65)

Table I gives the multipole components corresponding
to E; =18001.2 eV and Table II those corresponding to
E;=1832.4 eV. We see that, as expected, the m=0 di-

pole term is the dominant one both in CBA and PBA,
and that for every 1, the m=0 component is dominant.
We also see three striking features: Srst, the absolute
square of Ti is very similar in CBA and PBA, which
means that generalized oscillator strengths in CBA are
very much like those in PBA; second, that the phases rel-
ative to the I= 1, m =0 component (given in the third and
sixth columns} of the multipoles are very different in
CBA and PBA, which means that the difference in the
anisotropy of the ejected electrons in CBA and PBA is
dictated mainly by the phases of the multipole com-
ponents; and third, that there is a difference of nearly n/2
between the phases of the m=1 and the m=0 dipole
components. This explains why the angular pattern of

the TDCS is nearly aligned along the momentum-transfer
axis, since, in a case in which all T«, =0, e.g. , a purely
dipole case, the angular distribution is along the
momentum-transfer axis if the m=O and 1 components
have a relative phase of m/2. This n/2 phase difference is
noted in Tables I and II. We show in Appendix C that
this is an exact result in the CBA for peripheral col-
lisions.

Another interesting feature of the angular distribution
of the ejected electrons in CBA is the broadening of the
waist compared to the PBA. This is also related to the
relative phases of the multipole components, since it is
clear that at an angle of 8k =m/2 from the momentum-
transfer vector there is a constructive interference be-
tween the (l, l} and the (2,0) components, which are al-
most in phase. The Y» and Y20 have the same sign at
that angle, while at an angle of ek = n/2 the int—erfer-
ence is destructive because now there is a factor of ( —1}

I—imP&
in Y» coming from e, since Pk =n in order to get
values of 8&0 in the collision plane. This feature is also
predicted analytically for peripheral collisions in Appen-
dix C, and was obtained in a distorted-wave calculation
of electron-impact ionization of He at low energies [3].
This effect is enhanced at larger momentum transfers, as
in Fig. 3, where we show polar plots of the TDCS for

TABLE III. Multiple components of the T matrix in CBA and PBA relative to an axis parallel to the
momentum transfer. Kinematical conditions: E; = 1801.2 eV, Ek =9.6 eV, 8f =9'.

i
2.csAiz

CBA

0.309 62 X 10-'
0.201 83 X 10-'
0.499 74 X 10
0.734 81 X 10
0.445 52 X 10-'
0.676 55 X 10
0.165 26 X 10-'
0.11030X 10-'
0.295 53 X 10-'
0.25925 X 10

Phase

118.5
—SS

0
—170.8

170.7
—88.8
—43.2

122.7
—73.2

—157.6

PBA

[T

0.312 18X 10-'

0.516 52 X 10-'

0.703 96 X 10-'

0.285 69 X 10

Phase

79.7

—69.9

—131.2
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TABLE IV. Multiple components of the T matrix in CBA and PBA relative to an axis parallel to the
momentum transfer. Kinematical conditions: E; = 1801.2 eV, EI, =9.6 eV, 0I =20 .

CBA

~

TcsA~Z

0.15009X 10
0.371 36 X 10
0.683 41x 10-'
0.303 98x 10-'
0.74119x 10-'
0.13401x 10
0.736 54x 10-'
0.30049x10-'
0.876 32 x 10
0.922 19x10-'

Phase

99.1
—88.1

0
—175.8
—152.3
—87.1

—48.9
113.7
134.0

—159.2

PBA

i
TPBA)~

0.167 12 x 10-'

0.703 85 x 10-'

0.145 92 x 10-'

0.102 18x 10-'

79.7

—69.9

—131.2

E; =1801.2 eV, and Ek =9.6 eV, 8I =4' in (a), 8I=9' in

(b), 8&=20' in (c) and 8&=40' in (d). Multipole com-
ponents for the last three cases are given in Tables III-V
respectively. Notice that the similarity of the amplitudes
of these components between the CBA and PBA is still
present at 9' and 20', while at 40' the difference between
them has increased, especially because in CBA the mono-
pole component is greater than the dipole. This also hap-
pens in the PBA [22] but at a larger momentum transfer.
The relative phase of the dipole components at 40' is no
longer n/2, and the angular distribution is not symmetric
around the momentum-transfer axis.

VI. SUMMARY AND CONCLUSIONS

We have presented the results of a calculation of the
TDCS for electron-impact ionization of inner shells of
carbon using a perturbation theory that allows the use of
Coulomb waves with arbitrary effective charge for the in-
coming and scattered electrons, thus extending the use of
the CBA to scattering from neutral atoms, and have
showed that the CBA reproduces most of the structural
parameters of the TDCS, especially the ratio between the
binary and recoil peaks. The position of the peaks is not
very well reproduced, possibly due to the simplicity of

the final-state wave function of the ejected electron. A
more elaborate wave function, or an R-matrix treatment
of this electron's wave function is needed to investigate
this point.

A multipole expansion of the T matrix shows that, in
the range of energies where the experiments were done,
the contribution to the TDCS of the quadrupole term is
appreciable and must be taken into account. This means
that a dipole approximation is not valid in this energy
range. We also see that the absolute square of the mul-
tipole amplitudes in CBA and PBA differ very little. This
means that, even though the angular distribution of the
ejected electrons is quite different in PBA and CBA, the
generalized oscillator strengths are similar. This is an
important feature of the generalized oscillator strengths,
which should be investigated further. The phase [relative
to the (1,0) component] of the multipole components are
quite different in CBA and PBA. The main difference be-
tween the angular distribution of the TDCS in CBA and
PBA is therefore due to the differing interference between
the multipole components. We note that there is a
difference of nearly m/2 in the phases of the two dipole
terms, which give by far the dominant contribution. This
means that the angular pattern of the TDCS should be
nearly aligned along the momentum-transfer axis. This

TABLE V. Multiple components of the T matrix in CBA and PBA relative to an axis parallel to the
momentum transfer. Kinematical conditions: E;= 1801.2 eV, Ek =9.6 eV, 8&=40.

[

Tc~+/2

CBA

0.18007x 10-'
0.357 36x 10-'
0.164 37 x 10-'
0.34617x 10-'
0.143 72 X 10
0.192 54 x 10-'
0.96807x 10-'
0.164 20 x 10-'
0.695 52 x 10-'
0.681 30x 10-'

Phase

85.8
—123.5

0
—121.0
—149.1
—81.5
—91.9
101.5
108.0

—152.4

PBA

/

TPB"/'

0.126 85 x 10-'

0.14449 x 10

0.118956 x 10-'

0.964 55 x 10-'

Phase

79.7

—69.9

—131.2
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approximate symmetry of the TDCS along the momen-
tum transfer is not present at larger momentum transfers,
where the monopole contribution increases, and the in-
terference pattern between the different multipole com-
ponents becomes more complicated.

oscillations at the end points. In order to overcome this
difficulty we expand F(t) in a basis of Legendre polyno-
mials and integrate the fast oscillatory part of the in-
tegrand analytically:

max
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APPENDIX A:
EVALUATION OF AN INTEGRAL

It is well known that the numerical evaluation of in-
tegrals of the form of

1I = d((' '+'(1 —() 'F(()
0

is very difficult when c is large and complex, due to fast

where aI is given by
1a(=(21+1)f F(t)P((1 2t)d—t . (A3)

We use a power-series expansion for PI and substitute
Eq. (A3} into Eq. (Al) to obtain

max I (
—i) ((t + 1)I= ga( g

1=0 n =0 n tn!

X d( ('+" '+"(1 ()—1

0
(A4)

The integral over t can now be evaluated exactly to ob-
tain (taking the limit e—+0)

i) (i+1) r(c+n)r(1 —c)I= g n!n! r(n +1)

APPENDIX B:MULTIPOLE COMPONENTS OF THE T MATRIX IN PBA

The transition matrix element in the PBA is given by

Tf; = 4K r
1 r, ; r 4K

1

~ (y( —
)i iq r~y (r) ) (Bl)

(2m) q

where q=K; —Kf is the momentum transfer of the electron. We may then write Tf; using the function I,b of Eqs.
(51)—(53):

3/2
Tpap, 1 4m% *(2 )3(z2Z 8 I ( )

(2(r)' q' &4n»
where now A and C in I,b are given by

C=x +(q —k)

A =(x ik) +q—

X —Z
(B2)

(B3)

The l component of the T matrix is therefore given. by
1/2

Ti = 2n.f Tf, P((cos8)d (cosa)2l +l

where

&2m-(21+1)N *Z'"
m. (Z ik) q—(b —1)f((b —2)— . f((b —1)

b+1
Z —ik

(B4)

f,(y)= f (Z +q +k —2kq cosO)rP((cos8)d(cos0)—1

I!2(+' r(1+y) —4kq
( 2kq)'[Z +(q——k) ]'+r F, —1,1 y;2I+2;—

(21+1)!r(1+y —I) Z +(q —k}
(B5)
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and where we have used Rodriquez's formula and in-
tegrated by parts I times in order to do the integral over
the Legendre polynomials. r'

l3 [H, V'] .

where we have used the commutator relation

(C4)

APPENDIX C: RELATIVE PHASE
OF THE DIPOLE TERMS

IN PERIPHERAL COLLISIONS

Peripheral collisions occur when the incident electron
penetrates only the outer layer of the electron charge
cloud. Since monopole transitions require that the in-
cident electron penetrate deeply into the electron cloud, a
dipole approximation is appropriate in these cases. The
transition matrix is then

I q=4mi
2

—(a +b)
q (K +K )'+b'
qll

i f

The magnetic substates are now given as the components
of the vector I. Using the results from Ref. [20] we ob-
tain.

(Cl) X e + —bi/21 (1+a)I (1+b)—

where U„z~( r ) is given by

U„,,(r) =Ã dr t '+'(1 —r)' '1+e 1
—e

0 X

JV is a normalization constant and I is given by

a I
Bx

(C2)

X 2F) a, b +1;1;—

+2F& Q +1 6'1'

2

2
qz

(C5)

I= K r
3 ~ I

r

, &q„'(r)l[a, v]lq„- (r)), (C3)

where q= K, —Kf is the momentum transfer and q~ and

qll are its components perpendicular and parallel to E;,
respectively. We now compute the complex conjugate of
Eq. (C5) as

2 a+b
I*q= 4~i q (K +K )

—(a+b)eisa —b)/2I (1
2

2

X 2Fi a 6+1'1'
2 +2F] 0+1 6'1'—

2

=e'~I q, (C6)

where we have used Eq. (15.3.3) of Ref. [19],and where e' is given by
—2(a+b) a+b

q I (1+a)1'(1+b) 2i, +bie'
I (1—a)I (1 b) ' —

q~~

(C7)

We now define a vector q~ =(K;+Kf )/(K, +Kf ) and form a vector perpendicular to q as q2=(q X q, ) X q. We then
have

I.q2/q =I q, —I q
q

where

2 a+b
I.q&=4mi (K +K )

'+ 'e' ' "' I (1—a)I (1 b)—
(CS)

X 22F) a b1;—
q

2
q~

q2 2(k+k') 2F& a 6+1 1'
2

qy
2F] a +1 6'1;—

2

(C9)

Using Eq. (15.2.14) of Ref. [19]we can write Eq. (C8) as
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2
a+b

}
—(a+b) im(a —b)/2f (1 a)1 ( 1 h)

L

q)) a+b 1

q2 a —b 2(K;+Kf }

2

q),

2

q))

—F —a+1 —b 1—
2 1 7X 2F, —a, —b+1 1;—

We now compute the complex conjugate of Eq. (C8}and use Eq. (15.3.3}of Ref. [19] to obtain

I* q2/q = —e' I.q2/q

(C10)

(Cl 1)

This shows that the component of I along q is 90' out of phase relative to the component along a vector perpendicular
to q and in the scattering plane. Since the components of I give the magnetic substates of Tf;, this shows that the di-

pole pattern remains aligned along q just as in the normal Born approximation but is broadened at the waist, and this
broadening represents an orientation of the final state.

*On leave from Escuela Colombiana de Ingenieria, Bogota,
Colombia.
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