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The shifted large-N technique (SLNT) has been applied to study the relativistic motion of a particle in

the presence of vector and scalar interactions with special emphasis on the construction of both large-
and small-component Dirac radial wave functions. Numerical results for the binding energy for a parti-
cle in the presence of the Coulomb plus linear confining potential compare very well with those obtained

by the elaborate analytic approximation. method using the Pade-approximation technique. We illustrate
that one recovers not only the exact analytic results for binding energies for vector and scalar Coulomb

potentials, but also exact wave functions from the leading-order SLNT calculation. This motivates fu-

ture applications of the same method to more realistic atomic systems governed by screened Coulomb

potentials where the knowledge of the large and small components of the 'radial wave function is essen-

tial.

PACS number(s): 31.20.Gm, 11.10.gr, 31.30.Jv, 03.65.Ge

I. INTRODUCTION

The shifted large-N expansion technique [1—4] has
been widely applied to the calculation of nonrelativistic
bound-state energies and wave functions for a variety of
potential problems. In a recent review article, Chatterjee
[5] has elucidated in great detail the perspective of this
method which has already received interest in view of its
analytic simplicity and numerical accuracy. However, it
seems that the scope of its applicability to relativistic
problems, in particular, to atomic and molecular physics,
has not been adequately explored. Perhaps this is due to
the fact that the coupled nature of the radial Dirac equa-
tion causes difficulties in applying the large-dimension ex-
pansion to it as compared to the nonrelativistic
Schrodinger equation.

In spite of this intrinsic difficulty in handling the Dirac
equation, attempts have been made to develop 1/N ex-
pansions for the eigenenergy and eigenfunctions for a rel-
ativistic particle. Some time ago, Nieto [6] developed a
1/N formalism to the relativistic potential only in the
context of the Klein-Gordon (KG) equation. Subsequent-
ly, Miramontes and Pajares [7] and Chatterjee [8] studied
the large-N limit of the Dirac equation using the unshift-
ed 1/N method. Obviously, these attempts were plagued
with a slow convergence problem in comparison to the
shifted large-N technique (SLNT) developed by Sukhatme
and co-workers [1,2]. In this modified approach a new

degree of freedom, the so-called shift parameter a, was in-
troduced with a view to improving the convergence lead-

ing to higher accuracy of the numerical results. The first
successful application of the SLNT to the Dirac equation
with a linear scalar potential was made by Roychoudhury
and Varshni [9]. Mathematically the scalar Dirac poten-
tial is comparatively easier to deal with. Application of
the same to vector and/or scalar Dirac potentials was

carried out by several workers [10—16]. It was demon-

strated that the SLNT is capable of predicting accurate
eigenvalues in a simpler way in contrast to analytic per-
turbation and other approximation methods [17—20]
which involve lengthy analytic expressions and more
computational time.

In the context of screened atomic problems, Panja,
Dutt, and Varshni [13] have shown that results for both
binding energies and eigenfunctions can be obtained with
reasonable accuracy by making an optimum choice for
the shift parameter. However, it was mentioned clearly
that the SLNT wave function is equivalent to the large-
component Dirac radial wave function only. It is then
quite logical to examine whether the small-component ra-
dial wave function can be constructed within this frame-
work at all. Encouraged by our earlier work, we feel
tempted to extend the SLNT to the combination of both
vector and scalar potentials [16,21 —28] which have been
used recently in the study of quark-antiquark bound-state
problems. The purpose of this paper is to illustrate how
SLNT formulas can be worked out (up to the first few
leading orders) for a relativistic Dirac particle moving in
the presence of vector and scalar potentials. For numeri-
cal illustration of the accuracy of our analytic formulas,
we discuss the results for the vector Coulomb plus scalar
and/or vector linear potential. Such combinations have
been studied in the context of quarkonium physics.
These models have been investigated recently by Vrscay
and Hamidian [29] using relativistic hypervirial and
Hellmann-Feynman theorems for constructing the
Rayleigh-Schrodinger (RS) expansion for eigenvalues of
the perturbed radial Dirac equation to arbitrary order.
However, this work involves large-order Pade approxi-
mants and the solution of multiple recursive formulas
consuming large computational time. Furthermore, no
information regarding the wave function can be obtained
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due to the use of the Hellmann-Feynman and virial
theorems. From this point of view, our SLNT calcula-
tion seems to be much more straightforward and algebra-
ically tractable even with a simple computational device.
The present scheme also works well for screened poten-
tials with large screening parameters.

The plan of this paper is as follows. In Sec. II, we de-
velop the formalism of the SLNT for obtaining the bind-
ing energy of a spin- —, particle moving in the presence of
vector and scalar potentials. This part of calculation
proceeds in a similar manner as discussed in our earlier
paper [13],with the exception that the additional contri-
butions due to the scalar potential to the appropriate ex-
pression are explicitly evaluated. It is interesting to note
that one obtains exact analytic expressions for the relativ-
istic binding energy and wave function for a spin- —, parti-
cle in the presence of vector and scalar Coulomb poten-
tials. This part of the calculation is presented in Sec. III.
In this section, we have explained how the small-
component Dirac radial wave function can be obtained
from the large component, which in our case is the
leading-order SLNT wave function. Results and discus-

sion for a few interesting combinations of vector and sca-
lar potentials are presented in Sec. IV. Our numerical re-
sults are found to be quite accurate and comparable to
other analytic results obtained through many elaborate
and time-consuming analytic procedures. Possible exten-
sions of the present approach to the computation of
bound-bound and bound-free atomic transitions for neu-
tral atoms are discussed.

II. SHIFTED 1/N FORMULAS FOR VECTOR
AND SCALAR POTENTIALS

We present here the relevant formulas obtained in the
SLNT framework for relativistic motion of a spin- —, parti-
cle bound in radially symmetric vector and scalar poten-
tials V(r) and S(r), respectively. In Ref. [13],we already
mentioned that the shifted 1/N expansion can be applied
to the Dirac equation by considering the KG equation,
including the spin-dependent term, in a manner similar to
the way Pauli considered the spin in the Schrodinger
equation. Following our earlier work, we begin with the
N-dimensional radial KG equation (in atomic units
A'=m =e =1)

1 d + (K —1)(K—3) +V( }+S( }+EV(r) [V(r)] + [S(r)]
~( ) E+ E

2 dr 8r c 2c 2c 2c

where E =N+2l.
To get the correct threshold behavior of the wave func-

tion, one is required to extract the 1/r piece (if it exists
at all) from [ V(r) ] and [S(r)] . We thus define

I

potentials

V, (r)=—A)
S,(r)=-

r ' (2b)

2

u (r) = [ V(r)]- Ai
2

(2a)

These constants are taken to be zero for non-Coulombic
potentials. Collecting terms containing 1/r and replac-
ing E by K' related through the relation

AU(r}=[S(r)]'—
r 2

where A„A2 are the coupling constants for the Coulomb

K'=2+[(K —2) —4A /c ]'

with A =(Ai —Az), one obtains

(3)

d + (K' l)(K' —3) +
—

+ EV(r) + P(r)= E+ P(r) .
2c 2c 2c

(4)

It is important to mention that the effect of spin was in-

corporated [15] in the KG-like equation, such as Eq. (4},
by rede6ning the quantum numbers in a suitable fashion.
Although the exact Coulomb eigenvalues were restored,
the method fails to generate spin-orbit splitting of energy
levels for potentials other than the Coulomb potential as
is evident from Eq. (29) of Ref. [15]. Hence a spin-
dependent term has to be included in such a manner that
one should not get a term of the form 1/r for the
Coulomb problem. This is dictated by the exact calcula-
tion of Su [30], in which the radial equation for the
Dirac-Coulomb problem has been converted to a KG-like
equation [Eq. (2.13) of Ref. [30]] without the appearance
of such a singular term. We thus include at this stage a

spin-dependent term [13]

V, ;„(r)= (~/4c )H(r)— (5)

with

1 dH(r)=-
r dr

A(
V(r)+

A2S(r)+
r

~= —2(j —l)(j+ —,') .

K is the conventional eigenvalue of the operator (cr L+ I )

and is given by
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The terms in the square brackets of Eq. (6) imply a van-
ishing spin-orbit interaction term for equally mixed four-
vector and scalar interactions [31]. Furthermore, for har-
monic potentials, Eq. (6) produces a constant energy shift

I

which is consistent with the result obtained from Pauli's
spin-orbit interaction term [32]. Introducing the shift pa-
rameter through the relation k =K' —a, Eq. (4) thus be-
comes

1 d (K+a —1)(K+a —3) EV(r)
2 dr sr c2

u(r) + v(r)
c 2c

K E2
zH(r) P(r)= E+

z P(r) .
4c2 2c2

(8)

Ai
K Ep= —c +V(rp)+c 1+ + +

4c2r2 c4 2
0 0

2S(rp) v(rp)+
c2 c4

In order to obtain the leading-order as well as higher-order corrections to the energy and the SLNT parameters such as
rp, K, w, etc. , we now proceed along in the manner described in Ref. [13]. The leading-order binding energy is given by

zH(rp)
' 1/2

(9)
2c4

where r0 satis6es the equation

rpV'(rp) Q Af1+ + +
4c rp rpc

2S(rp) v (rp) KH(rp) 1 A,
' 1/2

+ ——+
c c 2c 4 cQ

rP'(rp) rpV'(rp) arpH'(rp)
+ . (10)

2c2Q 4c Q

Expanding all the quantities in powers of I/K as de-
scribed in Eqs. (10) and (11) of Ref. [13],one finally gets
the second- and third-order corrections E2 and E3 of the
energy E as

[(1—a )(3—a )]/8+2'„"

rp{[K Ep+c —V(rp)]lc ]

shall illustrate that starting from this wave function, one
may obtain an exact analytic expression for the large-
component radial wave function for both vector and sca-
lar Coulomb potentials. In addition to that, one may
proceed to obtain the corresponding small-component
wave functions.

y(2)
n„

rpI [K Ep+c V(rp)]/c ]— (12)

III. EXACT RESULTS FOR VECTOR
AND SCALAR COULOMB POTENTIALS

in which

K =2+ I [N+2(1 +s/2) —2] —4A /c2] '~2 —a,
a =2—[I+2(n„—s/2)]2w,

r pV"(rp) K Ep+c r pS"(rp }
w= + +

4 Q c'

(13)

(14)

P' '(r}=—s&'r' '+' exp
2w rp

1/2
r p ar pH "(rp)

[u "(rp) —v "(rp)]— . (15)
2c Q 4ciQ

The expressions for X'„" and X'„' and other parameters

are given in the Appendix.
The leading-order SLNT wave function is given by [13]

K=2(p+r),
—1w ——

2

with
' 1/2

r= (j+—,
')'—

c2

(17)

Before making numerical applications of our SLNT
formulas given in Sec. II, we demonstrate the elegance of
this expansion scheme by recovering exact analytic re-
sults both for binding energies and wave functions for
vector and scalar Coulomb potentials in (2b). The expres-
sions (10), (13}—(15}give

E 4A
' 1/2

P 2 2 2 1 —
24(A2 —Af) K

x,r, —n„
E' —2 E r

W W
(16)

Using (17) in (9) and (16) we get the total energy
8'=E+mc,

where s =+1 denotes the sign of sc. It is crucial to note
that one of the limitations of the SLNT approach is that
one gets only one component radial wave function in-
stead of two (large and small) for a true Dirac particle.
However, it has been shown in Ref. [13] that the SLNT
wave function in (16) is equivalent to the large com-
ponent for almost the entire range of r. In Sec. III we

8'=c

and the wave function

1/2
A)A2 A+(p+r) (p+r}'+

c c

A)
V +r)'+

(18}
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y(0)(r) sN~r y+()+s)I2 (+~2"0)" ing the recurrence relation [33]

X &F]
—n„2y + 1 +s; —r

E
rp

(19) b )F)(a,b;z)= a )F)(a + l, b+1;z)

The correction terms in Eqs. (11) and (12) vanish identi-
cally. Expression (18) is the exact energy expression [Eq.
(A. l) of Ref. [29]]. Our wave function (19) for the point
Coulomb potential has the following shortcomings.
First, it contains only one confluent hypergeometric func-
tion (CHF) instead of two CHF's (see Ref. [32]) in the ex-
act expression for the Coulomb problem. Second, it fails
to give the correct threshold behavior for s =+1 cases.
To recast (19) in the standard form and for restoring the
correct threshold behavior, one proceeds as follows. Us-

I

—(a —b))F)(a, b +1;z) for s = —1

(20a)

and

z )F, (a, b +1;z)=b [,F,(a, b;z)

—,F, (a —l, b;z)] for s =1 .

(20b)

Equation (19) may be written as

((r) =N' rre '
[ n„)F—, ( n„+—1,2y+1, (K/ro)r )+(n„+2y))F) ( —n„,2y+ 1,(K lro)r )],

P( '+)(r)=N'+r e '
[ (n„—+1))F)(—n„,2y+1, (KIro)r)+(n„+1))F)( n„—1—,2y+1, (K/ro)r)] .

(21a)

(21b)

Expressions (21a) and (21b) can be expressed in a single compact form if one replaces the nonrelativistic quantum num-
ber n„by the relativistic Dirac quantum number p given by

n„ for s = —1

n„+1 for s =+1 .

We thus write (21a) and (21b) as (with c = 1 units)

1+E,
y(0)( r) —N

2
rre '

[ —p )F)(—p+1,2y+1;(Klro)r)+[p+y(1 —s)])F((—p, 2y+1;(K/ro)r}],
(22)

in which the factor [(1+E,)/2]'~ has been extracted out from the normalization factor for convenience. It is easy to
check that our expression is identical to that of the large component except for the coefficients of the CHF's. The
reason is quite obvious. What we have obtained is basically the Schrodinger-like wave function and in order to recast it
in the form of the relativistic wave function one essentially must follow the procedure given by Fliigge [34] in a back-
ward manner. We thus replace the coefficient [p +y(1 —s) ] of the second CHF by (I —~) in which

E
(r() —b, )

2rpr= (23}
[1 (K /4r—)]'

with

[1+[()r —y )/K ]]' — ()r —y )[1 (K /4r())]'—
[1 (K /4r())]'~ + [1—+[(a y)/K ]]'—

Using the expressions for ro, K as given by (17}in (23), one obtains from (22)

1+E
rre [p )F)( —p+1,2y+1;(Klro)r) —(I )r))F)( —p, 2y+1—;(K/ro)r}] . (24)

This is the exact large component of the reduced radial wave function.
For the construction of the small-component reduced radial wave function from the knowledge of the large corn-

ponent, we follow the artifice mentioned in Ref. [32]. The large- and small-component wave functions are connected

through the differential operator given by

f (r)= +—g(r) .
[E+c + V(r)] dr r

Using (24) and the recurrence relations [33]

(25)
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z,F', (a, b;z)=(z —b —a),F, (a, b;z) —(a —b),F, (a —l, b;z) for a = —p+I,
z,F', (a, b z)=a [,F,(a+1,b;z) —,F&(a,b;z)] for a = —p

—(K /2ro)r K
r e p~F~ p+1 2&+1;fsL'NT(r) = N—

rp

in (25), one obtains after some algebraic rearrangements

1 —E,
r +(I"—a. ),F, —p, 2y+1; E

(26)

I

suggested by Darewych, Green, and Sellin [35]. In Table
III we cite the electronic energies for a wide range of neu-
tral atoms corresponding to small as well as large screen-
ing parameters. The agreement of our results with the
numerical values of Ref. [35] are in general excellent.

As far as the achievement for the computation of the
relativistic wave function is concerned, we would like to
make the following comments. Although it was shown

[13] that the SLNT wave function resembles the large
component of the reduced radial Dirac wave function
over a wide range of radial variables, knowledge of the
small component was obscure in this framework. We
have shown here that the SLNT is at least an exact for-
malism for the relativistic point Coulomb problem of
both vector and scalar nature. Furthermore, the small
component of the Coulomb wave function can be sys-
tematically obtained starting from the SLNT leading-
order wave function. This certainly highlights the possi-
bility of constructing both large- and small-component
Dirac radial wave functions for a potential which is not
exactly solvable but may be solved approximately by the
present method.

As a concluding remark, we would like to mention that
the spirit of our work is quite similar to that of Su [30]
who used a similarity transformation on the Dirac equa-
tion and obtained KG-like equations for two functions.
Su suggested that these equations can be approximately
solved by using the WKB method for non-exactly-

IV. RESULTS AND DISCUSSION

For numerical application of our method, we consider
the addition of vector or scalar linear potentials to the
vector Coulomb potential. Such combinations are known
to support bound states and have been considered as a
model for quark con6nement. In Tables I and II we
present the binding energies obtained from our SLNT
formula (9), (11), and (12). For the sake of comparison,
we also cite the average values of the Pade-approximant
results obtained by Vrscay and Hamidian who used
[24,24] and [24,25] Pade approximants to the RS pertur-
bation series. Excellent agreement is observed in general
for various values of the coupling of Coulomb and linear
terms. Departure is only appreciable when the strength
of the linear potential is as large as that of the Coulomb
term. It is remarkable that our algebraic expression is
capable of giving results within the same order of accura-
cy consuming about one-tenth of the computation time
needed by the authors of Ref. [29]. For interested
readers, we would like to mention that our method works
quite well for the screened Coulomb potential without ex-
tracting the Coulomb term explicitly. For illustration,
we work with the potential

1 — (1—I /[ I +H (e"~ 1)])—
7" Z

(27)

Expression (26) is the exact small-component reduced radial Dirac wave function for the point Coulomb potential.

TABLE I. Estimates of ground-state energies for the com-
bination of vector Coulomb potential V(r) = —A, /r plus scalar
linear potential S{r)=i,,r in units of fi=c =m =1. The first

row of entries corresponds to our SLNT results and the second
in italics corresponds to the average of the upper and lower
bounds of the Pade-approximant results of Ref. [28].

TABLE II. Estimates of first excited-state energies for the
combination of vector Coulomb plus vector linear potential
V(r)= —A&/r+k„r in units of fi=c =m =1. The first row of
entries corresponds to our SLNT results and the second in ital-
ics corresponds to the average of the upper and lower bounds of
the Pade-approximant results of Ref. [28].

0.7 0.5 0.9 0.7 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.436
0.436
0.489
0.475
0.536
0.506
0.579
0.534
0.621
0.558
0.660
0.580

0.714
0.714
0.804
0.810
0.877
0.882
0.943
0.942
1.004
0.995
1.061
1.043

0.866
0.866
1.000
1.024
1.101
1.131
1.189
1.219
1.269
1.296
1.343
1.366
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0.4

0.5

0.847
0.847
1.091
1.095
1.257
1.260
1.391
1.395
1.506
1.512
1.609
1.617

0.925
0.925
1.268
1.272
1.485
1.485
1.659
1.656
1.809
1.805
1.943
1.935

0.965
0.965
1.378
1.394
1.639
1.640
1.843
1.85
2.017
2.05
2.172
2.2
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TABLE III. Electronic energies for several neutral atoms in Rydberg units (%=2m, =e'/2=1) for
the potential (27) with the parameters taken from Table II of Ref. [35]. The first row of entries corre-
sponds to our SLNT results and the second in italics corresponds to the numerical values of Darewych
et al.

z
30

50

60

70

80

90

1s]/2

7.119(+2)
7.129
1.322(+ 3)
1.324
2.170(+3)
2.172
3.227(+ 3)
3.231
4.557(+ 3)
4.563
6.188(+3)
6.196
8.159(+3)
8.170

2$1 /2

8.608(+ 1)
8.622
1.864(+2)
1.843
3.334(+2)
3.318
5.271( +2)
5.250
7.768( +2)
7. 754
1.101(+3)
1.101
1.513(+3)
1.512

2pln

7.596(+ 1)
7.713
1.712(+2)
1.701
3.172(+2)
3.142
5.055(+2)
5.011
7.532( +2)
7.467
1.075(+3)
1.066
1.480(+ 3)
1.468

2p3/2

7.725(+ 1)
7.524
1.664(+2)
1.635
2.973(+2)
2.961
4.624( +2)
4.610
6.654(+ 2)
6.657
9.140(+2)
9.157
1.202(+ 3)
1.204

solvable potentials and one may retrieve the Dirac radial
wave function in the Sommerfeld form by invoking back
the similarity transformation. It is well known that the
higher-order WKB calculation is quite complicated and
in that respect our algebraic procedure based on the
SLNT will have an advantage over it.

An N-dimensional generalization of the work of Su [30]
has been done recently by Wong [36] for only the
Coulomb problem. A further extension of this work
based on the similarity transformation for an arbitrary
radially symmetric potential may be a good starting point
for carrying out relativistic 1/N calculations. This aspect
is currently under investigation.

The present work hints at the possibility of applying
the SLNT to more complicated relativistic problems. In
particular, computations of hyperfine splitting, bound-

bound transition rates, etc. in atomic systems governed
by screened Coulomb potentials require both large- and
small-component radial wave functions. Computation of
the continuum-state wave function from the knowledge
of the bound-state wave function through the analytic
continuation procedure is also worthwhile.
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APPENDIX

We cite here the explicit expressions for X'„"and X'„' and the parameters t. ,
'. ,5's in order to calculate the second- and

I'

third-order corrections E2 and E3 to the energy:

X'„"=(I+2n„')12+3(1+2n„'+2n„'i)Z4 —[If+6(1+2n„')Z,'F&+(11+30n„'+30n„' )'F3],

X'„'= (1+2n„')52+3(1+2n„'+2n„' )54+5(3+8n„'+6n„' +4n„' )5&

——[ (I+2n,')X&+12(l+2n,'+2n„' )Z&Z +42(21+59n„'+51n„' +34n„' )F4
W

+2Z, ,5+6(1 +2n„')Z, 5 3+3 (01 +2n,
'

+2n„' )Z, 55+6(1+2n„')F35,

+2(11+30n„'+30n„' )Z&53+10(13+30n„'+42n„' +28n„' )8'35&]

+ [ 4Zi82+ 36(1+2n„')Z'gzZ 38+(11+30n„'+ 30n„' )Z2F3
W

+8(31+78n„'+78n„' )Z, F384+ 12(57+ 189n„'+225n„' + 150n„' )Z~F&+24(1+2n„')Z, F4]

[8FiF3+108(1+2n„')EiZ3+48(11+30n„'+30n„' )Z&Z&+30(31+109n„'+141n„' +94n„' )8 ]
W
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with

n„'=n„—s/2, Z;=, , 5 = . , i =1,2, . . . , 4; j=1, . . . , 6,
(2w)'i (2w)ji

where

e, = —,'(2 —a),
ez= —

—,'(2 —a ),
rov""(ro) K E +c r p"'(ro)

6Q

r'
[u"'(ro ) —v"'(ro )+tcH'"(ro)],

12gc

roV(ro) o+" rp""(ro)
~4 s +

24 24Q

E,r,'V'(r, )
5,= ——'(1 —a )(3—a )+4 C2

Ezrov"(ro)
5 =—'(1—a)(3—a)+2 8 2 2

53=(2—a ),
54= ——', (2—a ),

6I"0
[u ""(ro ) —v'"'(ro ) +—,

' aH""(ro )],
24 c

r V""'(r ) g E0 0 0

120Q 2

s Viitiii( ) g 2E + 2

6 8 720Q 2

rp""'(ro)
120Q

ps

+ 0

720Q

7
fp [u'""(ro)—v"'"(ro)+ —,'yH"'"(ro) ],

240 c
8

rp
[u ttlllt( r ) v

IIII ~l(r )+ ) ~Httlllt( r ) ]
1440gc
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