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High-lying doubly excited 'I" states of H
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~e report a calculation for 'P' resonance parameters in electron-hydrogen scattering converging on
the N=3 to 9 hydrogen thresholds. Resonance energy positions and widths are calculated by using a
method of complex-coordinate rotation, with quantum numbers E, T, N, and n given to each resonant
state. Results are compared with the recent experimental measurements and other theoretical values.

PACS number(s): 31.20.Di, 32.80.Dz, 31.50.+w

I. INTRODUCTION

In the present work we report results for the doubly ex-
cited 'P' resonant states in H below the N =9 hydrogen
threshold. The method of complex-coordinate rotation
[1] is used in the present investigation. For the intrashell
resonance (the two electrons occupy the same shell) and
other lower-lying resonances we use Hylleraas-type wave
functions to take into account the strong electronic-
correlation effects. The present work is an extension of
the earlier calculations [2—4]. We investigate the detail
convergence behavior such that precise resonance param-
eters can be established. Our results can be used as stan-
dard nonrelativistic values for the lower-lying 'P' reso-
nances. For the intershell resonances (the two electrons
occupy different shells) we report results for nlrnl''P',
with m ~ n. Products of Slater orbitals are used for wave
functions. The use of separable wave functions enables us
to have an adequate representation of two electrons
where they occupy different con6gurational spaces. Our
results are compared with other calculations and with ex-
perimental measurements.

where k+n +m &co, with co a positive integer. For 'P'
resonances we use wave functions with up to co=18,
which leads to M =1330 terms, where M denotes the to-
tal number of terms in the basis functions.

For states in which the two electrons occupy different
shells (intershell resonances) and other high-lying states,
we use products of Slater orbitals:

O'=A g gC, b rt, (r, )rib (r2)Y&, t(b1, 2)S( rt&, o )2, (2)
la, lb i,j

where

ri, (r)=r 'exp( g, r)—.

In Eq. (2), A is the antisymmetrizing operator, S is a
two-particle spin eigenfunction, and the g are individual
Slater orbitals. Y is an eigenfunction of the total angular
momentum L,

Yt tb(1, 2)= g g C(1a, lb, L;mt„rrt,b, M)

II. WAVE FUNCTIONS AND CALCULATIONS
X Yt, ~ (1 }Ytg ~ (2 } (3)

The wave functions used in this work are of the Hyl-
leraas type for the doubly excited intrashell resonances
and lower-lying states,

C„„exp[a(r, +r2—)]r",2
k, m, n

X [ r ~r ~
+

Yp p(1) Y& p(2)

with C the Clebsch-Gordan coefficients. For the intershell
states, quite extensive basis sets are used for the wave
functions. We use a total of 16 s-type, 15 p-type, 14 d-, 13
f-, 10 g-, 9 h , 8 i , 5 k-, 3--I-, 2 m-, and 1 n-type orbitals.
These orbitals would couple to a total of 987 terms for
the 'P' states.

The Hamiltonians for the H system is given by

+r2rP+'Yp p(2)Y~ p(1)] 20= —V —V—2 2
1 2

1

+ =T+V,
f2 r12

(4)

Z, (Ry) —,
'r (Ry)

TABLE I. Convergence behaviors for the 3s3p 'P'(1) state in
H . In the notation of (KTNn ), this state is (1133)
(a=0.3, 8=0.35). The 'P'(1) state represents the first (lowest)
'P' resonance below N =3 threshold.

E„(Ry) —' I (Ry)

TABLE II. Convergence behaviors for the N =3 'P'(2) state
in H ~ The quantum numbers for this state are (2034)
(a=0.25, 0=0.30).

14
15
16
17

680
816
969

1140

—0. 125 433 719
—0. 125 433 511
—0. 125 433 503
—0. 125 433 510

0.001 19142
0.001 19142
0.001 19147
0.001 19149

16
17
18

969
1140
1330

—0. 117 143 662
—0.117 143 640
—0.117 143 616

8.918X 10-'
8.993 X 10
8.991X 10
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TABLE III. Doubly excited 'P' states below the N=3 hydrogen threshold. The numbers in brackets in the width column

represent the power of 10 by which the preceding number is multiplied.

Complex rotation'
18-state algebraic
close coupling R matrix (15 state)' Adiabatic Experiment'

State E T N n —E„(Ry) I (Ry) —E, (Ry) I" (Ry) —E„(Ry) I (Ry) —E„(Ry)" —E, (Ry)' —E„(Ry) I (Ry)

'P'(1) 1 1 3 3 0.1254335 2.383[—3]
(2) 2 0 3 4 0.1171436 1.798[—5]
(3) 2 0 3 5 0.1122334 4.2[—6]
(4) 1 1 3 4 0.111814 1.4[—4]

0.12543 2.38[—3] 0. 125425
0. 11714 1.79[—5] 0. 117143
0. 11223 4.36[—6] 0. 112290
0. 11180 1.37[—4] 0. 111806

2.51[—3]
1.8[—5]

1.33 [—4]

0.1253
0.1168
0.1121

0. 12442 0. 12520 2.02[—3]

0. 11162 0. 11146 1.18[—4]

'Present calculation.
bCallaway (Ref. [7]).
'Pathak, Kingston, and Berrington (Ref. [8]).
Koyama et al. (Ref. [9)).

'Sadeghpour and Greene (Ref. [10]).
'Cohen et al. (Ref. [11]).

and the Hamiltonian can be written as

H= T exp( 2i8)+—Vexp( i8) . — (6)

Complex eigenvalues are obtained by diagonalizing the
transformed Hamiltonian. The resonance parameters are
determined by finding stabilized roots with respect to the
variation of the nonlinear parameters a, and of the angle
8, with 8) arg (E„„)/2.The complex resonance energy
is given by

E„„=E„iI/2 —. (7)

The theoretical aspects of the complex-rotation
method have been discussed in previous publications [1]
and will not be repeated here. Instead we only briefly de-
scribe the computational procedures. First, we use the
stabilization method to obtain optimized wave functions
with which complex-coordinate calculations will then be
carried out. The use of the stabilization method as a first
step for the method of complex-coordinate rotation has
been demonstrated in a review [1]. Once the stabilized
wave functions for a particular resonance are obtained, a

where r, and r2 are the coordinates of electrons with
respect to the nucleus and r,z=~r, —r2~. Atomic units
are used in this work with energy units in Rydbergs.

In the complex-rotation method, the radial coordinates
e~thral~h. an angle

r~r exp(i8)

straightforward complex-rotation method is applied, and
the so called "rotational paths" are examined. The final
resonance parameters, both resonance position and
width, are then deduced from the conditions that a
rhscJ~le ~ampler ~sge4tvaltte waa stahthm4. with. r~ape
to the nonlinear parameters in the wave functions [Eq.
(1)] and with respect to 8. The optimized 8 is determined
by examining the resonance complex eigenvalue when it
exhibits the most stabilized characters. This is usually
done by employing smaller basis expansion sets. For ex-
ample, for the 3s3p 'P'(1) resonance, it is found that
when M =286 terms (co=10), the resonance complex ei-
genvalue would exhibit the most stabilized character, i.e.,
BiE i/t)8 =minimum at a =0.3 and 8=0.35 approxi-
mately. Once the optimized value for 8 is obtained, we
can examine the convergence behaviors for the resonance
parameters for different expansion lengths.

For the high-lying 'P' states, we use separable Slater-
type orbital wave functions. The nonlinear parameters in
the wave functions are multiplied by a constant scaling
parameter a'. The resonance complex eigenvalues are de-
duced by the stabilization condition with respect to the
changes of a' and 9.

III. RESULTS AND DISCUSSIONS

In Table I we show the convergence behaviors for the
3s3p 'P'(1) state. In the notation of quantum numbers
(KTNn), this state is (1133). In this work we employ

TABLE IV. Convergence behaviors for the N=4 'P'(1)
state in H . The quantum numbers for this state are (2144)
(a=0.25, 0=0.30).

E„(Ry) —' I (Ry)

TABLE V. Convergence behaviors for the N =4 'P'(2) state
in H . The quantum numbers for this state are (3045)
(a=0.20, 8=0.25).

16
17
18

969
1140
1330

E„(Ry)
—0.074 355 892 97
—0.074 358 836 5
—0.074 358 904 6

—' I (Ry)

0.001 033 43
0.001 033 43
0.001 033 57

15
16
17
18

816
969

1140
1330

—0.068 587 727 6
—0.068 588 038 6
—0.068 588 133 7
—0.068 588 052 1

0.000018 209 1

0.000018 182 8

0.000 018 271 4
0.000018 331 8
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TABLE VI. Convergence behaviors for the N=4 'P'(8)
state in H . The quantum numbers for this state are (0144)
(a=0. 17, 8=0.20).

0-
xlO '

17
18
19

1140
1330
1540

E, (Ry)

—0.062 618 1314
—0.062 625 005 1
—0.062 624 224 0

—„'I (Ry)

0.000 102 568
0.000 101 679
0.000 107 591

C
-12—

quantum numbers (ETNn) to denote each resonance.
The quantum numbers K and T were proposed by Her-
rick and Sinanoglu [5] and by Lin [6]. Readers are re-
ferred to the earlier references for their physical mean-
ings, [2—4]. For the 'P'(1) resonance [the (1133) state],
we fix the nonlinear parameters a=0.30 and the opti-
mized 8 is found at 0.35 rad approximately. We calculate
the complex eigenvalue as a function of co (and of M).
Up to a total of co=17 (M=1140) terms are used
for this state. We determine the resonance para-
meters as E,= —0. 125 433 5+1 X 10 Ry and
I /2=0. 001 19149+1X10 Ry. Table II shows the
convergence behaviors for the N=3 'P'(2) state [the
(2034) state]. The optimized nonlinear parameters are
found at a=0.25 and 8=0.30 rad. We estimate this
state to have parameters of E„=—0. 117 143 6+1 X 10
Ry and I /2=8. 99X10 +1X10 Ry. The %=3 re-
sults are summarized in Table III, in which comparisons
are made with other calculations and with experimental
measurements. It is seen that the present calculations are
in excellent agreement with those of the 18-state algebra-
ic close-coupling calculation [7]. The 15-state R-matrix
calculation [8] also agrees reasonably well with our re-
sults. Table III also shows some adiabatic calculations
[9,10]. However, no widths were given in these calcula-
tions. Table III also shows a comparison with experi-

-24- - 0.07'4
I

—0.070 -0.066 -0.062

FIG. 1. Resonance complex eigenvalues below the N =4 hy-
drogen threshold: ~, (214n) series (n &4); 6, (014n) series
(n ~ 4); +, (304n) series (n & 5); o, (104n) series (n & 5).

mental observations for the (1133)and (1134) states [11].
Adequate agreement is found.

Tables IV —VI show the convergence behaviors for the
(2144), (3045), and (0144) states, respectively. We esti-
mate the resonance parameters for the (2144) state as
E„=—0.0743589+5X10 Ry, and I /2=0. 0010336
+5X10 Ry. Similarly the resonance parameters for
the (3045) state are determined to be E„=—0.068 588 1

+1X10 Ry and I /2=0. 000018 3+1X10 Ry. The
(0144) state would have resonance parameters of E„

TABLE VII. Doubly excited 'P' states below the N =4 hydrogen threshold. The numbers is brackets in the width column
represent the power of 10 by which the preceding number is multiplied.

Complex rotation'

I (Ry)State E T N n —E„(Ry)

18-state algebraic
close-coupling 15 state R matrix'

—E, (Ry) I (Ry) —E„(Ry) I (Ry)

Adiabatic

—E (Ry) —E (Ry)'

'P'(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

12144
304 5

2145
3046
104 5

3047
2 146
0 144

0.074 358 9
0.068 588 1

0.064 705
0.064 397
0.063 226
0.063 124
0.062 995
0.062 63

2.0672[—3]
3.66[—5]
4.88[—4]
1.54[—5]
1.19[—5]
6.3 [—6]
1.294[—4]
2.4[—4]

0.074 33 2.02[—3] 0.074 261
0.068 578
0.064 648
0.064 383
0.063 205

2.49[—3]
3.60[—5]
4.50[—4]
1.60[—5]

0.063 107 9.3[—5]
0.062 703

0.073 47
0.068 31
0.064 22
0.06442

0.073 56

0.064 16

0.062 88

'Present calculation.
Callaway (Ref. [7]).

'Pathak, Kingston, and Berrington {Ref. [8]).
Koyama et al. (Ref. [9]).

'Sadeghpour and Greene {Ref. [10]).
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TABLE VIII. Convergence behaviors for the N=5 'P'(1)
state in H . The quantum numbers for this state are (3155)
(a =0.20, 6=0.25). x]O ' 0 b

15
16
17
18

816
969

1140
1330

E, (Ry)

—0.049 027 087 2
—0.049 037 843 6
—0.049 032 216 6
—0.049032 735 3

—,'r (Ry)

0.000 766 233
0.000 767 283
0.000 772 720
0.000 766 916

TABLE IX. Convergence behaviors for the N=5 'P'(2)
state in H . The quantum numbers for this state are (4056)
(a =0.17, I9 =0.20).

—'I (Ry)

-75—

-10.0—

16
17
18

969
1140
1330

—0.045 261 852 5
—0.045 261 555 5
—0.045 261 1560

2.4002 X 10
2.372 9 X 10-'
2.3914X10-'

-0.055
I I

-0.030

TABLE X. Convergence behaviors for the N =5 'P'(3) state
in H . The quantum numbers for this state are (1155)
(a =0.2, 0=0.25).

FIG. 3. Resonance complex eigenvalues below the N =6 hy-
drogen threshold: 0, (416n) series (n &6); 6, (216n) series
(n &6); C3, (016n} series (n &6); +, (506n} series (n &7); o,
(306n) series (n & 7).

16
17
18

969
1140
1330

E„(Ry)
—0.043 629 1460
—0.043 628 7749
—0.043 629 1387

(Ry)

0.000 506 459
0.000 506 939
0.000 506 329

= —0.06262421 X 10 Ry and I /2=0. 00011+1
X10 Ry. We summarize our N =4 results in Table
VII and in Fig. 1. Also in this table we compare our re-
sults with other calculations. It is seen that good agree-
ment is found with the 18-state algebraic close coupling
[7] for the (2144) state. As for the 15-state R-matrix cal-

N=7

x10 ' x]Q

CL

r

-15—

—0.052
)

—0.048 -0.044
E (Ry}

-0.040
-0.026 -0.024

E(Ry)

I

-0.022 -0.020

FIG. 2. Resonance complex eigenvalues below the N =5 hy-
drogen threshold: 0, (315n) series (n &5); 4, (115n) series
(n & 5); +, (405n) series {n & 6); Q, {205n) series (n & 6).

FIG. 4. Resonance complex eigenvalues below the N =7 hy-

drogen threshold: 4, (517n) series (n &7); 6, (317n) series
(n & 7); H, (117n) series (n & 7); +, (607n) series (n & 8); o,
(407n) series (n ~ 8); 0, (207n) series (n ~ 8).
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TABLE XI. Doubly excited 'P' states below the N=5 hydrogen threshold. The numbers in brackets in the width column
represent the power of 10 by which the preceding number is multiplied.

Complex rotation' Experiment Adiabatic

State

'P'(1)
(2)
(3)
(4)
(S)
(6)
(7)
(8)
(9)

(10)

K TNn

3155
4056
1155
3156
4057
2056
3157
405 8
2057
1156

—E„(Ry)
0.049 033
0.045 261
0.043 629
0.042 656
0.042 140
0.042 063
0.040 939
0.040 894
0.040486
0.040 383

I (Ry)

1.536[—3]
4.86[-5]
1.012[—3]
6.0[—4]
3.00[—5]
3.76[—5]
2.4[—4]
1.4[—5]
1.6[—5]
1.5[—4]

—E„(Ry)
0.049 036

0.042 786

0.041 234

I (Ry)

1.58[—3]

1.036[—3]

1.05[—3]

—E, (Ry)'

0.049 37
0.04S 16
0.043 00
0.042 69
0.04200
0.041 86

—E, (Ry)

0.049 04

0.042 60

0.04090

'Present calculation.
bHarris et al. (Ref. [12]).
'Koyama et al. (Ref. [9]).
dSadeghpour and Greene (Ref. [10]).

TABLE XII. Doubly excited 'P' states below the N =6, 7, 8, and 9 hydrogen thresholds. The numbers in brackets in the width
column represent the power of 10 by which the preceding number is multiplied.

Complex rotation Experiment' Adiabatic

State

1Po(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

'P'(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

1Po(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

1Po(1)

(2)

K TNn

4166
5067
2166
41 67
3067
5068
2167
1067
3068
4168
0166
5177
6078
5178
4078
6079
1177
5179
3178
4079
60710
207 8

6188
4188
7089
5089
6189
70810
2188
4189
3089
7 199
5 199

—E„(Ry)
0.034 727 6
0.032 1767
0.031 746
0.03041
0.030 220
0.029 865
0.028 977
0.028 808
0.028 650
0.028 631
0.027 995
0.025 838
0.024042
0.022 831
0.022 806
0.022 344
0.021 911
0.021 722
0.021 640
0.021 481
0.021 463
0.021 376
0.019966
0.018 837
0.018 704
0.017 836
0.017 778
0.017 387
0.017 515
0.016936
0.016876
0.015 80
0.01509

I (Ry)

1.1154[—3]
5.16[—5]
9.84[—4]
5.8[—4]
5.68[—5]
3.4[—5]
3.4[—4]
1.5[—5]
2.72[ —5]
2.6[—4]
2.6[—4]
8.18[—4]
8.36[—4]
5.34[—4]
6.24[—5]
4.66[—5]
4.58[—4]
3.56[—4]
4.14[—4]
3.5[—5]
2.9[—5]
4.1[—5]
6.8[—4]
6.9[—4]
5.2[—5]
7.0[—5]
4.76[—4]
4.80[—5]
5.18[—4]
4.15[—4]
7.2[—5]
5.4[—4]
5.1[—4]

—E, (Ry)

0.034 666

0.030498

0.029 188

0.025 754

0.022 578

0.021 828

0.020034

I (Ry)

8.53[—4]

6.03[—4]

4.04[—4]

9.11[—4]

3.6[—4]

1.05[—4]

2.28[—4]

—E„(Ry)b

0.034 78
0.032 18
0.031 28
0.030 51
0.03009

0.025 98

0.023 02

—E„(Ry)'
0.035 04

0.030 74

0.029 06

0.025 96

0.023 12

0.021 76

0.020 18

0.01604

'Harris et al. (Ref. [12]).
Koyama et al. (Ref. [9]).

'Sadeghpour and Greene (Ref. [10]).
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culation [8], satisfactory agreement also exists, although
their width for the (2144) state does differ somewhat with
our result.

Tables VIII —X show the convergence behaviors
for the (3155), (4056), and (1155) states, respectively.
We estimate the (3155) state would have resonance
parameters of E„=—0.049 033+1X 10 Ry and
I /2=0. 000768+1X10 Ry. The (4056) state would lie
at E,= —0.045261+1X10 Ry, with a half-width of
I /2=2. 39X10 +1X10 Ry. The (1155) state is
determined to be E„=—0.043 629+1 X 10 Ry and
I /2=0. 000506+1X10 Ry. We compare our results
with the recent experimental observations [12]. It is seen
that the agreement for the (3155) state is very good.
Their widths for the (3156) and (3157) states differ from
our calculations. It is also noted that their widths for the
higher-lying states differ from what might have been ex-
pected from a dipole series [13]. We summarize our re-
sults for the N =5 resonances in Table XI and in Fig. 2.
In Table XI, we also show results for some adiabatic cal-

culations using hyperspherical coordinates [9,10]. Our
accurate results would provide assessment of merits for
these calculations.

In Table XII, we summarize our 'P' doubly excited
states below the X =6, 7, 8, and 9 hydrogen thresholds.
Our N =6 and 7 results are also shown in Figs. 3 and 4,
respectively. As compared with the recent experimental
observations, it is seen that the resonance positions gen-
erally have good agreement. However, differences in
widths do exist for some of the high-lying states such as
the (4168), (5179), and (6188) states.

In summary, we have carried out an elaborate calcula-
tion for doubly excited 'P' resonance states of H below
the N =3, 4, 5, 6, 7, 8, and 9 hydrogen thresholds. The
present accurate results are useful references for other
theoretical and experimental works.
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