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Correlated wave functions and hyperfine splittings of the 2s state of muonic ' He atoms
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The correlated wave functions of the 2s state, (1s),{2s)„ofmuonic He and 'He atoms are calculated
by the variational approach, employing an improved set of the Hylleraas-type basis functions to study
the 2s state of muonic He atoms. The energy and radial expectation values are calculated. Our proposed
wave functions for the muonic He and 'He atoms are good enough to describe the electron and muon at
small, intermediate, and large values of radial coordinates. The hyperfine splittings of the (1s),(2s)„
muonic He and 'He atoms are also presented. Including relativistic, QED, and other corrections up to
O(a ), we arrive at the values hv=(4287. 01+0.10 and 4052.64+0. 10 MHz for the total hyperfine split-
tings of the 2s state of muonic He and He atoms, respectively.

PACS number(s): 31.10.+z, 31.30.Gs, 31.30.Jv, 36.10.Dr

I. INTRODUCTION recoil, and nuclear finite-size corrections up to O(a ) in
Sec. IV. Last, we summarize the results in Sec. V.

The muonic helium atom was produced in a Larmor-
precession experiment at the Space Radiation Effects
Laboratory [1,2]. This simple system can provide a sensi-
tive test for the three-body Schrodinger wave function,
the electromagnetic interaction of the electron and muon,
and also the precise direct determination of the magnetic
moment mass of the p as a test CPT invariance. The
precise measurement of the ground-state hyperfine struc-
ture of the muonic He has been made [3,4], and that of
muonic He atoms has also been made [5). Various
theoretical studies of these topics have been made, and
they are consistent with the experimental results. How-
ever, there are few works [6—8] corresponding to the
excited-state wave functions and hyperfine structure of
these systems. Huang [6] has only calculated the wave
functions for the excited states of the muonic He atom,
(ls), (2p)„, (ls), (3d)„, (ls), (4f)„, and (ls), (5g)„, which
are automatical orthogonal to the ground state. Amusia,
Kuchiev, and Yakhontov [7] and Drachman [8] have cal-
culated the hyperfine splitting of the (ls), (2s)„state of
muonic He atoms through a first-order perturbation.
They used only simple hydrogenic wave functions to de-
scribe the excited-state muonic He atoms. However,
even in the ground state of muonic He atoms, the
hyperfine splitting is very sensitive to the e-p correla-
tion because of the singular character of the operators
5(r,„) and 5(r, ). Therefore, it is necessary to calculate
the correlated wave functions for the 2s state of muonic
He atoms.

In the present work, we will calculate the (ls), (2s)„
correlated wave functions of muonic He atoms in Sec. II,
in order to examine whether the wave functions, which
are similar to what we proposed [9,10] for the ground
state of muonic He atoms, are also good for studying the
2s state of muonic He atoms. In Sec. III we calculate the
lowest-order hyperfine splittings of the 2s state of muonic
He atoms using the correlated wave functions obtained in
Sec. II. We then consider the relativistic, radiative,

II. WAVE FUNCTION

The nonrelativistic Hamiltonian of muonic He atoms is
given in the atomic units by
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where the summations are taken over non-negative in-
tegers of l„m, , n, and lz, mz, n2 with given selected
bounds of co, and co2. The basis functions

where m„m„, and mz are the masses of the electron,
muon, and nucleus, respectively. r, (or r„) is the distance
between the electron (or muon) and nucleus.

It is well known that the muon is tightly bound to the
He ( He) nucleus with mean radius about 400 times

smaller than that of the electron cloud for the 1s state of
muonic He ( He) atoms, because of the large ratio of the
muon and electron masses, m„/m„which is about 200.
The muon is also tightly bound to the He ( He) nucleus,
but with a mean radius about 200 times smaller than that
of the electron cloud for the 2s state of muonic ( He
( He) atoms. Therefore, the wave functions for the 2s
state of muonic He atoms can also be separated into two
parts as for the ground state of muonic He atoms [9—11].
The wave functions
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are Hylleraas-type basis functions. The constants A and
B are given by

+here 10,mo, no are non-negative integers with a selected
bound coo. The constants ao and bo are given by

and
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The basis functions 41 „(r„r„)essentially account
1 1 1

for the hydrogenlike electron cloud around the pseudonu-
cleus (p-He)+. We except that only a few terms of the
basis functions in Eq. (2.3) are needed to give the main
contribution to the energy. The two groups of the basis
functions used in constructing the wave functions in Eq.
(2.2) are similar to that successfully employed by Kono
and Hattori [12] and Drake [13]for the Rydberg states of
helium.

The constants a, p, CI „,and C& „are deter-
1' 1' 1 2 2n2

mined by the variational method. 41 n will modify
2 2n2

the lowest-order hyperfine splitting (hv)~, which is cal-
culated from the basis functions 4I „, because1' 1' 1

describes most of the electron-muon correla-2' 27 2

tion. Therefore, the proposal of the wave functions in
Eq. (2.2) is reasonably expected to be good, not only for
calculating hvF, but also for studying the 2s state of
muonic He atoms.

We add a few terms to %'(r„r„),which are given as fol-
lows:

The coeScients CI „are determined by the variational
0 0 0

method. These terms in Eq. (2.7) will help to get the con-
verged hyperfine splittings quickly. Because the ground
state of muonic He atoms can be mostly described by a
few terms of 41 „,we thus have better ground-state

0 0 0

wave functions if we include 41 „ in the trial functions
0 0 0

in Eq. (2.2). We therefore expect the excited, wave func-
tions, which are orthogonal to the improved ground-state
wave functions, are better than those which are calculat-
ed only from Eq. (2.2). It is obvious that we need more
terms to construct good wave functions purely using the
trial functions in Eq. (2.2).

We show the energy of the 2s state of muonic He and
He atoms, which converged to within an accuracy of
=10 a.u. , in Table I and II, respectively. It is found
that P/8, which is defined in Eqs. (2.3) and (2.4), is ap-
proximately equal to 1, the same as that found for the
ground state of muonic He atoms [9,10]. In other words,
the muon can be essentially described in terms of 2s-state
hydrogenic wave functions. The terms 4& „were add-

0 0 0

TABLE I. Energy of the 2s state of muonic He for the correlated wave functions with

!0+ma+no coo, l, +m, +n, co„ 12+m2+nz co&, and mo, no, m„n„m2, nz 3. The format %[M]
means co=N; number of terms equals M.

C00

1[4]
1

1

1

1

1

1

3
3

3
3
3

3[20]
3
3
3
3
3
3
3
3

3
3
3

3[20]
4[33]
5[44]
6[64]
7[80]
8[96]
9[112]
3
5
6
7
8
9

Energy (a.u. )

—101.035 490 242
—101.035 490 339
—101.035 490 356
—101.035 490 362
—101.035 490 367
—101.035 490 368
—101.035 490 370
—101.035 490 262
—101.035 490 358
—101.035 490 364
—101.035 490 368
—101.035 490 370
—101.035 490 371

a/A

6.340
5.658
4.777
4.130
3.627
3.242
2.937
6.395
4.762
4.111
3.625
3.233
2.925

p/B

1.092
1.063
1.142
1.135
1.137
1.113
1.132
1.099
1.157
1.157
1.157
1.154
1.143
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TABLE II. Energy of the 2s state of muonic 'He for the correlated wave functions with

lp+mp+np ct)p li +m
&

+n& co&, l2+m2+n2 co&, and mp np mi m2 n2 —3.

COp Energy (a.u.)

—100.137298 734
—100.137298 835
—100.137298 852
—100.137298 858
—100.137298 863
—100.137298 864
—100.137289 866
—100.137298 755
—100.137298 854
—100.137298 860
—100.137298 864
—100.137298 866
—100.137298 868

6.318
5.637
4.760
4.116
3.615
3.231
2.927
6.372
4.746
4.097
3.613
3.223
2.915

P/B

1.092
1.063
1.142
1.135
1.137
1.113
1.132

1.099
1.157
1.157
1.157
1.154
1.143

TABLE III. Average value of 1/r„1/r„, and 1/r, „ofthe 2s state of muonic He atoms in atomic
units with the bound lp+ mp+ np cop, I]+m &+n

&

& co&, l2+ m 2+ n2 co2, and

ma, no, m „n„m2,n2 (3. The format R [n] means R X 10".

COp

1.000 61821
1.000 618 51
1.000 618 53
1.000 618 54
1.000 618 55
1.000 618 56
1.000 618 26
1.000 618 52
1.000 618 54
1.000 618 55
1.000 618 57
1.000 618 56

1/r„

1.005 349 750 3[2]
1.005 349 747 9[2]
1.005 349 747 7[2]
1.005 349 747 7[2]
1.005 349 747 6[2]
1.005 349 747 5[2]
1.005 349 7494[2]
1.005 349 747 9[2]
1.005 349 747 7[2]
1.005 349 747 7[2]
1.005 349 747 6[2]
1.005 349 747 5[2]

1.000 205 792
1.000 205 868
1.000 205 875
1.000 205 878
1.000 205 880
1.000 205 882
1.000 205 799
1.000 205 870
1.000 205 876
1.000 205 879
1.000 205 882
1.000 205 883

TABLE IV. Average value or r„r„,and r,„ofthe 2s state of muonic He atoms in atomic units with
the bound lp+mp+np ~cop, l&+m&+n& u&, l2+m2+n2 ~co2, and mp, np, m&, n&, m2, n2 ~3. The for-
mat R [n] means R X 10".

COp re

1.499 387 786
1.499 387 234
1.499 387 186
1.499 387 182
1.499 387 175
1.499 387 165
1.499 387 632
1.499 387 222
1.499 387 185
1.499 387 180
1.499 387 169
1.499 387 164

1.492 003 504 4[ —2 ]
1.492 003 512 2[ —2]
1.492 003 5130[—2]
1.492 003 5130[—2]
1.492 003 5132[ —2]
1.492 003 5136[—2]
1.492 003 505 6[—2]
1.492003 511 9[—2]
1.492 003 512 8[ —2]
1.492 003 512 9[—2]
1.492 003 5132[ —2]
1.492 003 5134[ —2]

rep

1.499 585 33
1.499 584 78
1.499 584 73
1.499 584 73
1.499 584 72
1.499 584 71
1.499 584 18
1.499 584 77
1.499 584 73
1.499 584 73
1.499 584 71
1.499 584 71
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TABLE V. Average value of r,', r„, and r,„ofthe 2s state of muonic He atoms in atomic units with
the bound lp+mp+np cop, I&+m&+n& ~co&, l&+m&+n& coz, and mp, np, m&, n&, mz, nz ~3. The for-
mat R [n] means R X 10".

COp
2
e

2.997 777
2.997 778
2.997 784
2.997 784
2.997 781
2.997 784
2.997 777
2.997 776
2.997 786
2.997 781
2.997 782
2.997 783

2
rp

2.597 094 87[ —4]
2.597 094 90[—4]
2.597 094 92[ —4]
2.597 094 90[—4]
2.597 094 96[—4]
2.597 094 91[ —4]
2.597 094 88[ —4]
2.597 094 91[ —4]
2.59709491[—4]
2.597 094 92[—4]
2.597 094 92[ —4]
2.597 094 92[—4]

2
rep

2.998 367
2.998 368
2.998 374
2.998 374
2.998 371
2.998 374
2.998 367
2.998 366
2.998 376
2.998 371
2.998 372
2.998 373

TABLE VI. Average value of 1/r„1/r„, and 1/r, „ofthe 2s state of muonic 'He atoms in atomic
units with the bound lp+mp+np cop, l&+m &+n& ~ co&, I&+m&+m&+n& ~ co&, and
rno, no, m „n„mz, n, & 3. The format R [n] means R X 10".

COp

1.000 587 25
1.000 587 56
1.000 587 58
1.000 587 59
1.000 587 60
1.000 587 61
1.000 587 30
1.000 587 57
1.000 587 59
1.000 587 60
1.000 587 61
1.000 587 61

1/r„

9.963 679 570[1]
9.963 679 546[1]
9.963 679 544[1]
9.963 679 542[1]
9.963 679 543 [1]
9.963 679 542[1]
9.963 679 561[1]
9.963 679 545[ 1]
9.963 679 543[1]
9.963 679 543[1]
9.963 679 542[1]
9.963 679 542[1]

1.000 168 23
1.000 168 31
1.000 168 31
1.000 168 32
1.000 168 32
1.000 168 32
1.000 168 23
1.000 168 31
1.000 168 32
1.000 168 32
1.000 168 32
1.000 168 32

TABLE VII. Average value of r„r„and r,„ofthe 2s state of muonic He atoms in atomic units with

the bound lp+mp+np cop, l&+m, +n& ~m„ l&+mz+nz ~co&, and mp, npm&, n&, mz, nz ~3. The for-
mat R [n] means R X 10".

COp

1.499 438 8

1.499 438 2
1.499 438 1

1.499 438 1

1.499 438 1

1.499 438 1

1.499 438 6
1.499 438 2
1.499 438 1

1.499 438 1

1.499 438 1

1.499 438 1

1.505 452 705 5[ —2]
1.505 452 713 7[—2]
1.505 452 714 5[ —2]
1.505 452 7144[—2]
1.505 452 714 7[—2]
1.505 452 7150[ —2]
1.505 452 706 7[—2]
1.505 452 713 3[—2]
1.505 452 714 3[—2]
1.505 452 714 3[—2]
1.505 4527147[ —2]
1.505 452 7149[—2]

1.499 639 42
1.499 638 79
1.499 638 74
1.499 638 73
1.499 638 73
1.499 638 71
1.499 639 24
1.499 638 77
1.499 638 73
1.499 638 72
1.499 638 71
1.499 638 71
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ed with two selected bounds of coo, 1 or 3. The wave
functions with coo=3 give a lower expectation value of
energy than the wave functions with coo= 1.

The radial expectation values of (1/r, ), ( I/r„),
(1/r, „),(r, ), (r„),(r,„) and (r, ), (r„),(r,„) are
given in Tables III, IV, and V and Tables VI, VII, and
VIII, respectively, for the muonic He and rnuonic He
atoms. As shown in Tables V and VIII, the wave func-
tions with coo =3 make the series ( r, ) and ( r„) converge
more quickly that the wave functions with coo=1.

These radial expectation values give some indication of
the accuracy of the wave functions at small, intermediate,
and large values of radial coordinates. Comparing with
our previous results [9,10] of the is state of muonic He
atoms, the present series ( r, ), ( r„),( r,„) converge at
the same rate as the previous ones. We also find the con-
vergences of the series 1/r„, r„, and r„are almost indis-

tinguishable. However, the convergences of the series
1/r„r„and 1/r, are different; the series 1/r, converges
the most quickly, but the series r, converges the most
slowly. In other words, the wave functions in Eqs. (2.2)
and (2.7) describe the muon well at small, intermediate,
and large values of the radial coordinates. However, it
becomes worse for our proposed wave functions to de-
scribe the electron as the electron becomes farther away
from the nucleus. This is due to the fact that the muon is
almost confined to a small region closer to the nucleus,
but the electron is spread over a relatively large region.

We also find in Tables I and II that a/A approaches
almost 3. a represents the size of the electron correlated
wave functions which describe the penetration of the
electron into the pseudonucleus (p-He)+ and the exten-
sion of the electron. It is also found in Tables IV and VII
that the expectation values ( r, ) of the 2s state of muonic
He atoms are smaller than those of the ground state of
muonic He atoms [9,10]. It represents that the electron
penetrates into the 2s p cloud more than the 1s p
cloud, and the e -p correlation, which is described by

in Eq. (2.2), extends to a region farther from nu-
2 2"2

cleus than those of the ground state of He atoms [9,10],
because the present a/A is smaller than the previous

ones. However, we will show in Sec. III that the main
contributions of the hyperfine splittings come from the
region, which is half an order larger than the p cloud,
but 40 times smaller than the e cloud. Therefore, our
proposed wave functions can still give a good converged
value of the hyperfine splitting.

III. LOWEST-ORDER HYPERFINE SPLII I'ING

By limiting m„n„m2, n2(3 and ~, =3, we have cal-
culated hvF for muonic He and He atoms, which are
presented in Table IX. We expected that the series Lvz
for the 2s state of muonic He atoms converges less quick-
ly than those for the 1s state of muonic He atoms, be-
cause the muon and electron are more closely correlated
in the 2s state of muonic He atoms. However, it is
surprising that the present series converges as quickly as
the previous series [9,10] for the ls state of muonic He
atoms, if the number of terms 41 „ is left out of ac-

0 0 0

count.
The present converged values (all in MHz) are

and

( b,v)F =4276. 69+0. 10 (3.1)

(hv)FI" =3205.63+0.08,

(b,v)F =838.89+0.02,

(bv)F =4044.02+0. 10,

(3.2)

(3.3)

(3.4)

for the 2s state of muonic He and He atoms, respective-
ly. We find in Table IX that the wave functions with
coo=3 and 4 help the series converge more quickly than
those with coo=1.

We also give the probability of finding the electron and
muon at the same position in Tables X and XI. The ma-
jor contributions to (b,v)F, (b,v)P come from the region
of the muon cloud, which extends to almost half an order
of magnitude larger than the muon cloud. The size of the
region, which gives major contributions for the 2s state of
muonic He atoms, is twice as large as that of the 1s state

TABLE VIII. Average value of r„r„,and r,„ofthe 2s state of muonic He atoms in atomic units

with the bound lp+mp+np ~0, l, +m&+n& &co&, l2+m2+n2 ~2, and mp, np, m&, n&, m2, n2 3.
The format R [n] means R X 10".

C00
2

re

2.997 985
2.997 985
2.997 991
2.997991
2.997 988
2.997 991
2.997 984
2.997 983
2.997 992
2.997 988
2.997 989
2.997 990

2
rp

2.644 127 57[—4]
2.644 127 61[—4]
2.644 127 63 [

—4]
2.644 127 60[—4]
2.644 127 67[—4]
2.644 127 61[—4]
2.644 127 58[—4]
2.644 127 62[ —4]
2.644 127 63[ —4]
2.644 127 62[ —4]
2.644 127 62[—4]
2.644 127 62[ —4]

2
re@

2.998 584
2.998 584
2.998 590
2.998 590
2.998 587
2.998 590
2.998 583
2.998 582
2.998 592
2.998 587
2.998 588
2.998 589
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TABLE IX. Lowest-order hyperfine splittings of the 2s state of muonic He and He atoms for the
correlated wave functions with 1p+ Pl p+ np ~ cop, I l +m

&
+n l

~ cg&, lz+ mz+ nz ~ coz, and
EPl p ~ Pl p ~ Pl 1 ~ n l ~ Pl z ~ n z —3( 0

COp

3

7
8
9
3
5

6
7
8

9
8

9
10
11

Hep e
hvF

(MHz)

4280.271
4277.515
4277.018
4276.944
4276.834
4279.931
4277.509
4277. 187
4277.077
4276.875
4276.791
4276.773
4276.723
4276.701
4276.684

AvF"
{MHz)

3208.340
3206.214
3205.867
3205.812
3205.728
3208.084
3206.241
3205.995
3205.913
3205.758
3205.695
3205.682
3205.642
3205.627

Hey e

AvF
(MHz)

837.581
838.156
838.294
838.329
838.342
837.657
838.218
838.297
838.324
838.362
838.369
838.390
838.388
838.387

AvF
(MHz)

4045.921
4044.384
4044. 161
4044. 141
4044.070
4045.741
4044.459
4044.292
4044.237
4044. 120
4044.064
4044.072
4044.030
4044.014

of muonic He atoms [9,10]. However, from Tables X and
XI, it is shown that the present series converges almost as
quickly as those for the 1s-state ease in the region, which
give the major contributions. Therefore, it is not ac-
cidental for the hyperfine splittings of the 2s state of
muonic He atoms to converge similarly as those of the 1s
state of muonie He atoms.

Amusia, Kuchiev, and Yakhontov [7] have calculated
the hyperfine splitting for the 2s state of He atoms in-
cluding the second-order perturbed terms to arrive at the
value EV=4260. 4 MHz (bv~=4250 MHz). Drachman
[8] employed the global-operator technique to show that
the hyperfine splittings in the muonic 2s states are found
to be 4257.2 MHz for He and 4027.6 MHz for He
(b,vF =4247 MHz for He and 4018 MHz for He). We

also calculated AvF by the global-operator method in-
cluding only 4& „and 4I „,which are shown in

p p p 1 1 1

Eqs. (2.7) and (2.3), respectively. In Table XII we find
that the lowest-order hyperfine splittings come closer to
the converged values in Eqs. (3.1)—(3.4) as the number of
terms increases, although the trial functions we employed
in the global approach are poor for calculating the expec-
tation values of the local operators, ( 5(r,„)) and
(5(r, ) ). In Table XII we also find that our results devi-
ated from the results of Drachman [8]. It is worth men-
tioning that we give the results in the first column of
Table XII by using trial functions approximately equal to
what Drachman [8] used. The deviations may come from
the mass-polarization operator, which we employed both

TABLE X. Probability density of simultaneous finding the electron and muon of the 2s state of
muonic He atoms at the same position as a function of distance (in atomic units) from the nucleus.
The format R [n] means R X 10".

Q)p

10

2[ —3]
1[—3]

8.362 13[1]
2.294 27[2]
8.359 36[1]
2.294 30[2]
8.358 70[1]
2.294 28[2]
8.358 48[1]
2.294 32[2]
8.356 76[1]
2.294 33[2]
8.359 S3[1]
2.294 26[2]
8.36070[1]
2.294 17[2]

4[ —3]
2[ —2]

1.613 99[1]
1.416 16[2]
1.612 62[1]
1.41607[2]
1.612 30[1 ]
1.416 03[2]
1.61197[1]
1.41603[2]
1.611 35[1]
1.41602[2]
1.612 61[1]
1.415 97[2]
1.612 96[1]
1.415 99[2]

6[ —3]
4[ —2]

1.721 02[1]
9.165 31[—1]
1.722 11[1]
9.165 98[—1]
1.722 34[1]
9.166 63[—1]
1.722 73[1]
9.164 93[—1]
1.723 09[1]
9.16642[—1]
1.722 23[1]
9.16926[ —1]
1.72203[1]
9.171 59[—1]

8[ —3]
6[ —2]

1.196 16[2]
1.512 14[—3]
1.19631[2]
1.514 74[ —3]
1.196 33[2]
1.509 61[—3]
1.19641 [2]
1.515 16[—3]
1.19644[2]
1.512 31[—3]
1.196 32[2]
1.515 32[—3]
1.196 28[2]
1.512 33[—3]
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TABLE XI. Probability density of simultaneous finding the electron and muon of the 2s state of
muonic He atoms at the same position as a function of distance (in atomic units) from the nucleus.
The format R [n] means R X 10".

COp

10

2[ —3]
1[—2]

8.297 46[1]
2.233 07[2]
8.294 76[ 1 ]
2.233 10[2]
8.293 96[1]
2.233 09[2]
8.293 79[1]
2.233 13[2]
8.292 13[1]
2.233 14[2]
8.295 04[1]
2.233 06[2]

4[ —3]
2[ —2]

1.712 18[ 1 ]
1.446 14[2]
1.71078[1]
1.446 05 [2]
1.710 39[1]
1.446 01[2]
1.71007[1]
1.446 00[2]
1.709 45[1]
1.445 99[2]
1.710 82[1]
1.445 95[2]

6[—3]
4[ —2]

1.535 43[1]
1.009 18
1.53647[1]
1.009 25
1.53673[1]
1.009 33
1.53709[1]
1.009 15
1.53743[1]
1.009 31
1.536 55[1]
1.009 63

8[ —3]
6[—2]

1.142 05[2]
1.791 20[ —3]
1.142 20[2]
1.79420[ —3]
1.142 23[2]
1.788 30[—3]
1.142 31[2]
1.794 58[ —3]
1.142 34[2]
1.791 41[—3]
1.142 21[2]
1.794 84[ —3]

in calculating the wave functions and replacing the local
operators with global operators.

We recommend the calculation of the 2s-state
hyperfine splittings through the global-operator approach
as we have done [11] for the ground state of muonic He
atoms. Comparison of the results of the two methods,
the local- and global-operator methods, will check the
convergence of the lowest-order hyperfine splittings. Of
course, experimental results will help to clarify this point.
We hope that our work will stimulate further experimen-
tal work.

IV. RELATIVISTIC
AND RADIATIVE CORRECTIONS

Amusia, Kuchiev, and Yakhontov [7] and Drachman

[8] have calculated lowest-order hyperfine splittings of
the 2s state of muonic He atoms, but they gave a rough
estimate of the relativistic and radiative corrections. We

will calculate these corrections up to a by the first-order

perturbation method. The unperturbed wave functions

can be approximated to be the product of 1s hydrogenic
wave functions with effective nucleus charge Z, =1 and

2s hydrogenic wave functions with Z„=2.

a (a& rep)5H= a, .a„+(a, r,„) (4.1)

Thus the relativistic hyperfine splitting of the 2s state of
muonic He atoms can be written as

J M J M J M J M
hv= 0 0 HO 0 1 1 H1 1

. 42

In the ( ls), (2s)„state of muonic He atoms, the total an-

gular momenta j, and j„ofthe electron and muon, re-
spectively, are coupled to singlet and triplet states of the
total angular momentum J.

The 1s hydrogenic wave function with Z, =1 for the
electron and the 2s hydrogenic wave function with Z„=2
for the muon can be written, respectively, as

(4.3)

and

A. Relativistic correction

We treat the Breit interactions as a small perturbation,
which is given by

x.
if„(r) (4.4)

TABLE XII. Lowest-order hyperfine splittings of the 2s state
of muonic He and 'He atoms by the global-operator method
for the correlated wave functions with lp +m p +n p 0,
l

&
+m

&
+n

&

~ co&, and m I, n
&

3.' y.
= g &iM ,'vjlm»iMy„- (4.5)

The angular functions y„ in Eqs. (4.3) and (4.4) are nor-
malized spherical spinors defined as

1a

1

2
3

Hep e
hvF

(MHz)

4264.31
4264.66
4269.72
4270. 10

"m, =0, 1,=0.

3196.33
3196.59
3200.32
3201.27

Hep e
Eve

(MHz)

835.55
837.03
838.09
838.25

hvF
(MHz)

4031.88
4033.62
4038.40
4039.51

M, p

where Y&M are spherical harmonics, l =0 and M =0 in
the present case, and y„are spin eigenfunctions with
s =

—,
' and sz =p. We will evaluate the expectation values

of 5H in Eq. (4.2) in terms of radial integrals [14—16] and
thus give Av as

(4.6)
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After calculating the above radial integrals and keep-
ing the terms up to 0 (a ), we have

and 4&, &,4„2, are the (1s),(2s)„-state uncorrelated wave
functions for muonic He atoms, which are given as

hv=6"'hvF+ AvF

=bv 1+—Za — Z a+0 a22 41 22
F 2 mp

(4.7)

' 1/2
a ( —o /2)r

e (4.10)

B. Vacuum polarization

As Boric [17] showed in the ground state of muonic
He atoms, the vacuum polarization correction for the 2s

state of muonic He atoms has two contributions.
The first correction is induced because the magnetic

potential is corrected [18—20]. Its contribution to the
hyperfine splitting is

1/2
b3

with

a =2m a

b =2m„a,

( —b/2)r
1 ——r e P2" (4.11)

(4. 12)

(4.13)

q

(2m )
(4.8)

f d3r, fd3r„l@„„12lc„,„l'
3 mern p

if the spin-wave functions are neglected.
In calculating 5I,&Ave, we integrated directly instead

of numerically [17]. Using the property of 5'(x) and
some simple integrations we can express Eq. (4.7) as

with

a q 1 2u (1—u /3)
11 q

2m, o 4+q /m, (1—v )
(4.9)

I

and

1 3Q
5vpkvF 2 akvFG 1+

8~ a+b (4.14)

u (1—u /3)
v 2)1/2 1+a(1—u )'

a + 22a (1—u )'/—Sa —27a
g +b [1+a(1 u2)1/2]2

1

2 1/2
8a+27a + — 2 1/2 2

6aB+9a +27aB
1+B(1—u )' g +b [1+8(1 u2)1/2]2 a+b

v2 3/2
2aB +9aB 5a 8 —+, aB + .

[1+8(1—u )'/ ] 12+b [1+B(1—u )'/ ]
(4.15)

where 8 =m„a lm„a is the fine-structure constant, and the ellipsis represents higher-order terms.
Keeping the terms up to a, Eq. (4.14) can be rewritten as

r

+48B dU
16 no .

1 u2 b—+s o 1 —u (b+s)

2v (1—v /3) me —3f 1 2v (1—u l3)
1 —v (b+s) o 1 —v

+64B dU
2

m4

(b+s)
(4.16)

with

( 1 2)1/2

and can be integrated to be

6vphvF =Oe055a hvF .

(4.17)

(4.18)

I

of Dalgarno and Lewis [21] (as used, for example, by
Drachman [22]), from the equations

T

V, ——+ a 5Q'4, =(E, —H, )@,2m r, m,

(4.19)

and

The other corrections of the vacuum polarization arise
from the magnetic correction to the electron and muon
wave functions. Treating the hyperfine interaction be-
tween the electron and muon as a small perturbation, the
magnetic corrections 5Q'@, and 5Q'4„ to the uncorrelat-
ed wave functions 4, and 4„can be found by the method where

1 V—
m P

a 1

r 2m
a2 5e+1I) —(EM HM )(y

(4.20)
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M 2
H, = ——m.o.

3 m

2E, =——mn
3 m

cr, cr„fd r„4„+5(r,„)4„, (4.21}

(4.22)
I

o, o„fd r, d r„C&,+4„+5(r,„)4,4„,

and H„and E„are defined similarly as in Eqs. (4.21)
and (4.22).

Requiring fd r,4,5Q'4, =0 and f d r„@„5Q'4&„=0,
the magnetic corrections 5Q'@, and 5$'4„are given, re-
spectively, by

59"@,=
1/2

M
—(a/2)r

m, E~ e
ma

r

a r

2
-+a ln

—br
ab 1 e

r, +y —Ei( br, ) ———+a+b ' r r
(a —b)(a +b) br, —

2 2 ree
4(a ab+—b )

4 2
—bre+ }" (3b2 —2ab+a2)(a+b)2 b~, 5— a~[4b3 —a3+ab(9a —16a)]

8(a —ab+b ) 4b(a ab+—b ) 2 4b(a+b)(a ab+b —)
(4.23)

1/2 —(b/2)r
m E e 1 ——r

P P 2"
b 2r

X. 7b

2(br„ l2 —1)
1 e

rp rp

ab
a+b"r +y —Ei( ar )—

(a+b) —«„b( a+5ab+7b ) —«„11 b 2b

2a(a2 ab+b—2) 2(br' l2
—1)(a2+ab+b2) 2 2a(a+b)2 a+b

9 b 3 b4(a2+ab +3b2)
(a+b} (a ab+b —

) 2 (a+b) (a ab+b )—
where y is the Euler s constant and Ei(x) is the exponential-integral function.

Thus the vacuum-polarization corrections to the hyperfine splitting can be written as

5;& b,vF=2 f d r, @,ypeA, "~&5@'@, —2 fd r,@,ypeA, "~&5Q'4,
, singlet triplet

and

5„'", bvF=2 f d'r„@„ypeA„"~p5Q4„—2 fd'r„@„ypeA„" p5Q'@„
singlet triplet

'

with

a & 2U(1 —v l3)

(4.24}

(4.25)

(4.26)

13b 6 —sr

2r (b s)—
+ e + e + e e + e13b 6 —br 6b 8 —sr 6b 8 —br b 3 —br

1 lb 5 —br

(b2 s2)3 (b2 2)4 (b2 2)4 2(b2 s2) 4(b2 s2)2

b4 sr b2 sf b 4e —br b 2e —br

X ——e "+ +
r(b s ) 2r(b s —

) r(b s —
) 2—r(b s )—

3b 7e —br b 4re —br 3b 6re
—br

+
(b —s) 2(b —s) 4(b —s)

b 5r 2e —br

8(b —s )
(4.27}

2
5M&, = —m,

a m.

and e A „'~p(r), which has been calculated by Huang and Hughes [23].
Here the lowest-order hyperfine splitting AvF should be replaced by AvF, which is induced by the hyperfine interac-

tion between the electron and muon. The magnetic correction 5M@, to the electron wave function (which arises from
the hyperfine interaction between the electron and 3He nucleus) can be calculated similarly as the magnetic corrections
in Eqs. (4.23) and (4.24) and the result is

1 /2

e AvF ——a lnr +a ——y —lna — r
—ar/2 e 1 5 a

F 2 2

The magnetic correction in Eq. (4.28) is the same as what Brodsky and Erickson gave [18]. Thus the induced
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vacuum-polarization correction to the hyperfine splitting can be written as
T

fie, ep~vF=Z f d " @ yoe~"Po,Ns+e .
—2 f d r, 4.yoe~.',Po~h@.

singlet triplet

After calculating Eqs. (4.25), (4.26), and (4.29) similarly as (4.15), we have

(4.29)

and

5„'", AVF=—

2u (1 u /3) b e I 2u (1 u /3) b me—12 dvf —18 du
1 —u (b+s) o 1 —u (b+s)

f+15 dv
2u (1—v /3) " me

1 —u (b+s)

2a e I 2u(l —u /3) 1 3me I 2v(1 —u /3) b
dv

0 1 —v s 4b 0 1 —v2 b —s

me I 2u (1 u /3) b 7me I 2u (1 u /3) b
2 2 2 24b 0 1 —v (b —s ) 2b o 2 2 231 —v (b —s)

b 1 I 2u(1 —u /3) b me

(b —s) 2 o2 4+ — dv
1 —u (b —s )s2 2

13 l 2v 1 U 3 b m,

1 —u (b —s)sdv

me I 2u (1—u /3)—6 dv
b 0 U2

b4m,

(b2 2)2
+ Id 2v (1—v /3)+ dU

2
1 —u

2v(1 —u /3) bm,f+6 dv 240 1 —v (b —s)s

2a I 2u (1 u /3) b e I 2u (1 u /3) b e
kvF —6 dv

2
+18 du

o 1 —u (b+s) o 1 —u' (b+s)'

(4.30)

(4.31)

b'm,

(b —s )s
) b m,

(b —s )b

2/3) b m

2 (b 2 s2)3b

+ Id 2u (1—u /3)+ dv
1 —u

13 f I 2u (1—u /3)
(b —s )s2 2 2 21 —v

141 f I 2v (1—u /3
(b —s )s 256 o2 2 4 dv

1 —v

bme 1 I 2u(1 —u+ dU
(b s) b 1—2» 1 —v

b'm,

(b2 2)4b

2v (1—u /3)+6 du
0 1 —

V

53 I 2u (1—v /3)
du

256 0 1 —v2

91 I 2v (1—v /3)
dv

64 0 1 —u2

b22a I Zv (1—u /3) 1 1 I 2u (1—u /3) b me
e, up VF VF V

1 —v s 2 o 1 —v (b —s )s2 2 2

Zu (1—u /3)+ dU
1 —v

b2
X 1—

2(b —s )

m, 3bm, b m, 3b m,
b +s 4(b +s) 2(b +s) 4(b +s)

b4 13b 6b+
(b —s) 2(b —s) (b —s)4

(4.32)

2v (1—u /3) b 5 b (2+b )(1 b)'—f in
0 .

—
U b —s 9 3 6

1 —(1 b)'i—
(1 b 2)1/2

The integrals in Eqs. (4.30)—(4.32) can be calculated analytically. We present some of them in the following:

(4.33)

and

f 2v(1 u/3) bme m 3 b

1 —u (b s)s 2 & —2

b 4

3
(4.34)
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2v (1—v /3) me
dv

0 1 —v2 b+s

b —+b —b —+b —+ b b +1 —22 2 3 2 ~ 2 2

3 3 2 2
b

(1 b—)
2 1/2

+ I b—++ I +b
—+ I b—++ I +b

(4.35)

5„'", hvF=0. 066a hvF,

5', „bvF=0.755Q hvF,

(4.36)

(4.37)

where b =2m, /b, and others can be calculated through
them.

Thus we have

—2uaRhvF ~ (4.44)

I

done by Zemach [30] and Grotch and Yennie [31], be-
cause the wave functions for (2s)„(is), muonic He are
approximately equal to the 1s-state hydrogenic wave
functions with Z, =1. The nuclear finite-size correction
to AvF is therefore given as

and

5,'~phvF=0. 886a hvF . (4.38)

where u is the reduced mass of the electron and He nu-

cleus and

C. Recoil and self-energy corrections
R =f rp~(u)pz(r u)d—u d r . (4.45)

Nonrelativistic recoil effects are included in (5(r,„))
and (5(r, ) ), since we used the correlated wave functions
and included an exact nonrelativistic reduced-mass
correction in calculating the lowest-order hyperfine split-
ting. Other corrections are produced by processes of
second-order perturbation in quantum electrodynamics,
in which the electron and muon (or the He nucleus) in-
teract twice either through the exchange of two trans-
verse photons or through the exchange of one transverse
photon and one instantaneous Coulomb interaction. We
used the estimation of the recoil effect [9,10,24—27].

and

m m
rec F

JM e

(4.39)

, 3a me
ln

m3HHe

m3H

me
(4.40)

The self-energy corrections are induced by the emission
and reabsorption of virtual photons by the electrons or
muons themselves. The anomalous magnetic moment of
the muon and electron are well known as [28]

and

2
=1+ +0.765 782 +O(a )

2 2~ 772

2
=1+ —0.3285 +O(a ) .

2 2~
'

~2

(4.41)

(4.42)

D. Nuclear Snite-size correction

%'e follow the calculations of the hyperfine shift in hy-
drogen due to the finite size of the proton, which were

The radiative correction at the electron vertex, which
is referred to as the "binding correction, " is given by
[18,19,29]

(4.43)

The electric and magnetic form factors pz and p~ are
normalized to unity. The experimental determination of
He form factors, obtained from the electron- He scatter-

ing, indicated that the Gaussian fit provided a good
description of both the electric and magnetic form fac-
tors. We therefore use

pz(r) =pc(r)+ bp(r), (4.46)

1 1 „&~4,~ b (6c r)—
8a a 4c

pdqo sin(qor)
hp= + cos(qor ) e

2m q0r 2q

and

1 1 „z~4~ b' (6c' —r )
Pm

8 3/2 t3 4 &7

(4.47)

(4.48)

(4.49)

5„b,vF ——91.98X 10 b,vF . (4.50)

The nuclear finite-size correction of bvF(b, v~") can be
estimated for singlet and triplet states, which depend on

(4,~5V~5Q'4, ) and (4„~5V~5Q'4„). Here we treat 5V
as a small perturbation, which is given as

ZQ ZQ 3 r
for r ~R,

R 2 (4.51)V=. r

0 for r&R .
L

Here we consider the He and He nuclei as a sphere of
radius R with the charge uniformly spreading over its
volume.

In calculating (4, ~5V~5Q'@, ) and (@„~5V~5Q'@z),
e-pN

we need only find 5Q'4, and 5M ", which are shown in

Eqs. (4.23) and (4.24), inside the nucleus. They are sim-

ply given as

The constants used in Eqs. (4.47)—(4.49) were determined

by McCarthy, Sick, and Whitney [32].
Integrating Eq. (4.45), we have R =2.456 fm. Thus we

obtain the correction of the hyperfine splitting as
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TABLE XIII. Contributions of the hyperfine splitting (HFS) of the 2s state of muonic He atoms. '

Lowest-order HFS: AvF
Relativistic correction
Radiative correction:
Anomalous magnetic moment [28]
Vacuum polarization:
e -induced muon magnetic polarization potential
(5,'phv~)
Magnetic correction to the wave function:
Electron
(5' "„pb vF )

Muon
(5„'"„hvF)

Binding [18,19,29]

AvF
(MHz)

4276.69+0. 1
—0.047

9.9497

0.0125

0.2018

0.0150

—0.5816

(ppm)

—11.09

2326.5

2.93

47.18

3.515

—136.0

Recoil correction:
Electron-muon (4.39) 0.7685 179.7

Total calculated HFS: hv=4287. 01+0.1

'The fundamental physical constants used here are the same as our previous work [9,10] except
m„= 105.659 48 MeV.

ma

1/2

E m 1 ——rm a
e e

a 5 a b r (a b)(a+—b)
r —b ——a+a 1n —br + r

2 2 a+b 4(a ab+b )—

(3b —2ab+a )(a+b) a [4b a+ah(9—a —16b)]
1 br +-

4b (a ab+b ) — 4b (a ah+ b —)(a +b)

TABLE XIV. Contributions of the hyperfine splitting of the 2s state of muonic He atoms.

(4.52)

hv' "
(MHz)

hv'
(MHz) (ppm)

Lowest-order HFS:
Relativistic correction (4.7):
Electron
Muon
Nuclear finite-size correction (4.50)
Radiative correction:
Anomalous magnetic moment [28]

0.2561
—0.2916

0.0670

—0.0771

7.4579
0.972

3205.63+0.08 838.39+0.02

79.9
—90.97
—91.98

2326.5
1159.6

Vacuum polarization:
e -induced 3He + magnetic polarization potential [18,19,20]
Magnetic correction to the wave function:
Electron (5' „~hv'F')
e -induced muon magnetic polarization potential

Magnetic correction to the wave function:
Electron
(5' " b,vF")
Muon

Binding [18,19,20]

0.0094

0.1512

0.0113

—0.4360

0.0166

0.0337

—0.144

19.8

40.204
2.93

47.18

3.515

—136.0

Recoil correction:
Electron-muon (4.39)
Electron-'He +(4.40)

0.5761
—0.0091

179.7
—10.9

Total calculated HFS: hv=4052. 64+0. 10
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and
' 1/2

2

mb

2

5, a' b (a +b}
X — b—r+ r +2b ln r+— (1 a—r}

4 2 a+b 2a(a ab—+b )

b(a +5ab+7b ) (1 bz )(1 ) 2b+2 b b

2(a ab—+b ) a+b 2a(a+b)

9b + 3b (a +ab+3b )

2(a+b} (a ah+—b } 2(a —ab+b }(a +b)
(4.53)

Therefore, the hyperfine splitting will be reduced by an
amount hvFO(aR)(bR)=10 bvF which can be neglect-
ed for the present.

V. SUMMARY

Including the recoil, self-energy, and nuclear finite-size
corrections, the details of each contribution being given
in Tables XIII and XIV, we obtained, for the total
hyperfine splitting,

Lowest-order hyperfine splittings have been calculated
in Sec. III by using correlated wave functions, which are
shown in Sec. II. The corrections to the lowest-order
hyperfine splittings are calculated in Sec. IV up to order
a . They are given as

5'"= —0.208a

5„' =0.055a

Av=4287. 01+0.10 MHz,

for the 2s state of muonic He atoms, and

hv=4052. 64+0. 10 MHz,

for the 2s state of muonic He atoms.

ACKNOWLEDGMENT

(5.2)

(5.3)

5't' =0.066a

5; „=0.755a

5'" =0.886ae, up

(5.1)

This work is supported by the National Science Coun-
cil of the Republic of China under Grant No. NSC 79-
0208-M005-19.

[1]P. A. Souder et al., Phys. Rev. Lett. 34, 1417 (1975).
[2] P. A. Souder et al., Phys. Rev. A 22, 33 (1980).
[3]H. Orth, K. P. Arnold, P. O. Egan, M. Gladish, W.

Jacobs, J. Vetter, N. Wahl, M. Wigans, V. W. Hughes, and
G. zu Putlitz, Phys. Rev. Lett. 45, 1483 (1980).

[4] C. J. Gardner, A. Badertscher, W. Beer, P. R. Bolton, P.
O. Egan, M. Gladish, M. Greene, V. W. Hughes, D. C.
Lu, F. G. Marian, P. A. Souder, H. Orth, J. Vetter, and G.
zu Putlitz, Phys. Rev. Lett. 48, 1168 (1982).

[5] M. Gladish, K. P. Arnold, A. Badertscher, W. Beer, P. R.
Bolton, P. O. Egan, M. Eckhause, C. J. Gardner, M.
Greene, V. W. Hughes, W. Jacobs, J. Kane, M. Krauth,
D. C. Lu, F. G. Mariam, U. Moser, H. J. Mundinger, H.
Orth, J. Rosenkranz, W. Schafer, P. A. Souder, J. Vetter,
W. Wahl, M. Wigand, and G. zu Pulitz, in Proceedings of
the Eighth International Conference on Atomic Physics,
edited by I. Lindgren, A. Rosen, and S. Svanberg (Plenum,
New York, 1983).

[6] K.-N. Huang, Phys. Rev. A 15, 1832 (1977).
[7] M. Amusia, M. Ju. Kuchiev, and V. L. Yakhontov, J.

Phys. 8 16, L71 (1983).
[8) R. J. Drachman, J.Phys. B 16, L749 (1983).
[9] M.-K. Chen and C.-S. Hsue, Phys. Rev. A 40, 5520 (1989);

42, 1830 (1990).
[10]M.-K. Chen and C.-S. Hsue, J.Phys. B 22, 3951 (1989).

[11]M.-K. Chen, J. Phys. B 23, 4041 (1990).
[12]A. Kono and S. Hattori, Phys. Rev. A 34, 1727 (1986).
[13]G. W. F. Drake, Phys. Rev. Lett. 59, 1549 (1987);65, 2769

{1990);Nucl. Instrum. Methods Phys. Res. 8 31, 7 (1988).
[14] I. P. Grant, Proc. R. Soc. London Ser. A 262, 555 (1961).
[15]Y.-K. Kim, Phys. Rev. 154, 17 (1967).
[16]K.-N. Huang, Rev. Mod. Phys. 51, 215 (1979).
[17]E. Boric, Z. Phys. A 291, 107 (1979}.
[18]S. J. Brodsky and G. W. Erickson, Phys. Rev. 148, 26

(1966).
[19]N. Kroll and F. Pollack, Phys. Rev. 84, 594 (1951);86, 876

(1952).
[20] M. Le Bellac, Nucl. Phys. 40, 645 (1963).
[21] A. Dalgarno and J. T. Lewis, Proc. R. Soc. London Ser. A

233, 70 (1955).
[22] R. J. Drachman, Phys. Rev. A 31, 1253 (1985).
[23] K.-N. Huang and V. W. Hughes, Phys. Rev. A 20, 706

(1979).
[24) K.-N. Huang and Ph.D. thesis, Yale University, 1974.
[25] T. Fulton and P. C. Martin, Phys. Rev. 93, 903 (1954); 95,

811 (1954).
[26] W. A. Newcomb and E. E. Salpeter, Phys. Rev. 97, 1146

(1955).
[27] R. Arnowitt, Phys. Rev. 92, 1002 (1953).
[28] B. E. Lautrup, A. Peterman, and E. de Rafael, Phys. Rep.



1492 MING-KEH CHEN 45

C 3, 193 (1972).
[29] R. Karplus, A. Klein, and J. Schwinger, Phys. Rev. 84,

597 (1951).
[30] A. C. Zemach, Phys. Rev. 104, 1771 11956).

[31]H. Grotch and D. R. Yennie, Rev. Mod. Phys. 41, 350
(1969).

[32] J. S. McCarthy, I. Sick, and R. R. Whitney, Phys. Rev. C
15, 1396 (1977).


