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The recent discovery by Richter and Wintgen [J. Phys. B 23, L197 {1990)]that the classical helium

atom is not globally ergodic has stimulated renewed interest in its semiclassical quantization. The
Einstein-Brillouin-Keller quantization of Kolmogorov-Arnold-Moser tori around stable periodic orbits
becomes locally possible in a selected region of phase space. Using a hyperspherical representation we

have found a dynamically confining potential allowing for a stable motion near the Wannier ridge. The
resulting semiclassical eigenenergies provide a test for full quantum calculations in the limit of very high
quantum numbers. The relations to frequently used group-theoretical classifications for doubly excited
states and to the periodic-orbit quantization of the chaotic portion of the phase space are discussed. The
extrapolation of the semiclassical quantization to low-lying states give remarkably accurate estimates for
the energies of all symmetric L =0 states of helium.

PACS number(s): 03.65.Sq, 31.50.+w, 31.20.Tz

I. INTRODUCTION

The apparent failure of the "old quantum theory" in
the early 1920s to describe three-body Coulomb systems
such as helium and K2+ has decisively stimulated the de-
velopment of the modern quantum theory embodied in
the Schrodinger equation. As first recognized by Leopold
and Percival only about 10 years ago [1] the failure of the
old quantum theory was not due to the semiclassical ap-
proximation underlying Bohr-Sommerfeld-type quantiza-
tion itself but due to its incomplete implementation.
Specifically essential ingredients of modern semiclassical
theory, such as the Maslov indices for conjugate points of
classical trajectories, were missing [2]. Clearly, the role
of the latter could be appreciated only after semiclassical
mechanics was understood as the short-wavelength limit
of wave mechanics. Using perturbation theory and varia-
tional optimization, Leopold and Percival could give a
reasonable estimate for the binding energy of the ground
state of He. A complete semiclassical theory of helium is,
however, still missing.

The renewed interest in semiclassical methods is stimu-
lated by recent observations of highly doubly excited
states [3—6] with principal quantum numbers of the two
electrons (within an independent particle model) of up to
80. A full quantum description appears to be still out of
reach for the most sophisticated calculations presently
available [7—10]. In this regime, the semiclassical ap-
proximation is expected to be valid and, possibly, easier
to apply.

One major obstacle in implementing semiclassical
methods is the complete breakdown of the independent

particle approximation. Since the experimental
identification of low-lying doubly excited states [11], it
was recognized [12] that their existence hinges on a high-
ly correlated motion of the two electrons maintaining a
delicate balance of repulsive and attractive fields. The
strength of electron-electron correlation prevents a
description in terms of a perturbation theory for weakly
perturbed Kepler orbits [13]. Furthermore, the classical
phase space for the three-body Coulomb problem is large-
ly chaotic. The Einstein-Brillouin-Keller (EBK) quanti-
zation of invariant Kolmogorov-Arnold-Moser (KAM)
tori is therefore globally not applicable. In fact, it was
widely believed that classical Helium would be unstable
apart from the set of initial conditions of measure zero,
and would spontaneously autoionize [14].

Recently, however, Richter and Wintgen [15)
discovered that the phase space near the so-called Lang-
muir orbit [16] is stable. The Langmuir orbit is one of
the periodic orbits suggested in the early 1920s as possi-
ble candidates for the Bohr-Sommerfeld quantization (for
historic details see Refs. [1] and [2]). The importance of
this discovery lies in the fact that for a stable island
around a periodic orbit, rigorous torus quantization be-
comes locally possible provided the size of the island is of
the order of fi (m is the number of degrees of freedom)
such as to support at least one quantum state [17]. The
Langmuir orbit is isolated, i.e., no periodic-orbit-
preserving continuous transformation on a given energy
shell exists. In view of the Gutzwiller trace formula for
periodic-orbit quantization [2], the Langmuir orbit will
also contribute to the spectral fluctuation of the quantum
system, when the surrounding phase space is insufficient
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The confining potential constitutes the analog of the
centrifugal potential for the two-body problem. In con-
trast to the centrifugal potential, the corresponding
correction term in (3) does not only contain constants of
motion and depends therefore on the trajectory, i.e., pz
and R are functions of 8. For the LO itself they are in-
dependent of a since a=@/4 is constant. Elongations
around the LO (5 =a rr/4) wil—l introduce an a depen-
dence of p& and R. However, these modifications can be
neglected for orbits suSciently close to the LO since they
affect the coefficient of the lowest-order correction ( ~ 5 )
in a Taylor expansion of I"(a, 8=m. ) around a =tr/4 only
by a few percent.

The Hamiltonian can now be written in the form

sically regular motion the corresponding quantum spec-
trum possesses a discrete scaling invariance [22,23], very
much like the discrete translation symmetry on a lattice.

The Langmuir orbit resides on the Wannier ridge
(a=sr/4 or r, =rz). The equilibrium position of the
bending oscillation (8=m ) is located at the hyperradius
R (E=—1)=1.989883, . . . , a.u. Figure 2(a) displays
the by now well-known hyperspherical representation of
the potential I (a, 8)/R. Because of the presence of the
saddle it was widely believed that the motion, would be
unstable [14]. The linear stability [15] of the LO indi-
cates however the dynamical stabilization of the orbit. In
Fig. 2(b) we present the hyperspherical representation of
the dynamically confining potential in the vicinity of the
Langmuir orbit

2 2
&a &z I"(a,8)
2R' 2 R(8) (4)

360:

The effective potential I"(a,8)/R(8) [Fig. 2(b)] allows
for bounded motion in the a direction. The 8 depen-
dence of I"or H,z can be viewed as a time-dependent po-
tential with 8(t) given by the periodic orbit. During one
period the electrons will feel a restoring force towards
a =m /4 when 8 is larger than a critical angle 8,„., (in the
case of helium approximately 70'), whereas the system
will be driven away from a=a/4 .when 8 ranged from
8«,, to 8;„(approximately 24' for He). The restoring
force is due to the momentum in the 8 direction p& which
is small for small angles 8. As shown in Fig. 3(a) we find
bounded motion for small elongation in the a direction.
However, when the elongation is too large, the trajectory
stays only for a finite time close to the LO and the system
will eventually autoionize [Fig. 3(b)].

These results remain qualitatively unchanged for realis-
tic values for the finite mass of the nucleus. Only when
the electron mass becomes close to the nuclear mass (e.g. ,
muonic helium), the stable region disappears. It is in-
structive to relate the Langmuir orbit to other frequently
employed periodic orbits representing collective motion
of the two-electron system. The so-called "Wannier or-
bit" [24] ("symmetric stretch") for the electrons moving
in-phase radially (inward) outward on opposite sides of
the nucleus (r& = —rz) corresponds to a fixed point in the
a-8 plane [Fig. 4(a)] and to a line along the diagonal in
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FIG. 3. Trajectories of classical helium in hyperspherical
coordinates. Initial conditions: E= —1 a.u. , L =0, 0=m.,
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FIG. 4. Three fundamental periodic orbits for the two-
electron problem (E=—1 a.u.): symmetric stretch (Wannier
orbit), asymmetric stretch (hyperspherical orbit), and Langmuir
orbit in (a) the 8-a plane [contour lines of I (a, 8) are overlayed]
and (b) the r&-r2 plane. (The Wannier orbit corresponds to a
fixed point in the 0-a plane. )
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the r& r2 -plane including the origin [Fig. 4(b)] and is
therefore strongly unstable [15]. The projection of the
"asymmetric stretch" or hyperspherical (out of phase)
mode [25] is near-circular in an r

~ r2 p-lane while it corre-
sponds to a horizontal line in the (8,a) plane. As pointed
out by Watanabe [2S] and by Ezra and co-workers [18,19]
the low-lying symmetrically (N=n) excited states with
the state label (K =K,„=N 1,—A =+ ) trace the weak-

ly unstable hyperspherical rather than the Wannier orbit.
The probability distribution for those states [19,26] clear-
ly shows that the motion is transverse to rather than
along the Wannier ridge. The density enhancement near
the ridge (a=a/4) can be easily understood semiclassi-
cally noting that

100) with the smallest values of )p~ j (or ~p () are chosen
to construct "fuzzy" Poincare maps (Fig. 5). There are
no sharp lines, in contrast to Poinicare maps for two-
dimensional systems. The finite width of the lines is due
to the fact that the momenta pz or p at the intersections
are not equal to zero. The width is proportional to the
average deviation of these momenta from zero. The hy-
perspherical coordinates are then transformed to action-
angle variables. The action integrals are evaluated ac-
cording the methods described in Ref. [27].

We use a grid of 500 points in the 5+-5 plane.
Whereas the actions Sz and S show, to a good degree of
approximation, a quadratic dependence on 5~ and 5, the
action along the orbit contains significant anharmonic
corrections. We find

where U(a) is the local speed along the periodic orbit. At
the saddle, where the potential reaches its maximum
along the asymmetric stretch orbit, the motion slows
down, leading to a density enhancement.

The Langmuir orbit, on the other hand, corresponds to
the motion along the ridge. The excursion in the a direc-
tion, 5 =a —~/4, and along the hyperradius,
5g =R R 0 is small while the amplitude of the bending
motion along 8 is, in general, large. Based on this obser-
vation we conjecture that quantum states, localized near
the Langmuir orbit, will correspond, for highly excited
He, to high-lying states within the intrashell manifold
with K=K;„= (N 1). — —

Ss(5„,5 )=So+a,5 +a~5 5~+a35

S (5 )=a45

S~(5~ )=a~5R

(7)

where SO=16.991418,. . . , a.u. is the action of the LO.
The best fit (minimal relative deviation) for the parame-
ters a; are a, = —0.382+0.001, a2 = 10.0+0.5,
Q 3

—0.0448+ 0.0003, a 4
=0.232+0.001, and a 5

=3.27
+0.01. The errors are obtained by varying the weights of
the individual deviations of ~Ss(5 (j),5z (j))
—Ss'(5 (j),5+(j))~ where j refers to one of the 500

III. QUANTIZATION OF THE LANGMUIR ORBIT

The immediate vicinity of the Langmuir orbit forms a
stable resonant island in phase space. Locally, tori exist
for /5„1=JR —Ro[ &0.05 and /5 /=la n/4I &—5.
=0.13. Isolated resonant islands can then be quantized
in close analogy to integrable systems where m constants
of motion exist in involution.

Our method of torus quantization utilizes integration
along invariant curves on the Poincare surface of section
[17]. The quantization of each torus requires the actions
along three topologically distinct paths:

S,=It), p dq,

S.= It), p.da,

S~ —fp p~dR .

(6)

P, is given by the trajectory itself. For periodic trajec-
tories P, is closed, however, in the case of quasiperiodic
trajectories the endpoints have to be connected on the
torus. P2 is defined as the intersection of the torus with
the hypersurface 0=m. and pz =0 and, accordingly, P3 is
the intersection with 0=m. and p =0.

The action S& along the trajectory (P& ) is computed
while solving Hamilton's equations of motion. In order
to obtain the actions S and Sz along P2 and P3 we
record a large number of intersections (typically 1000 to
3000) of the trajectory with the hyperplane 8=m. Out of
these intersections, a relatively small number (typically
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points in the 5 -5n plane.
The EBK quantization conditions for the actions are

now

S8=2m [n&+ I+yz(n~+ —,')+y~(n~+ —,')],

XR VR +XR5 +7R5R

Oo 8808 + 3o 955a+ Oo 185R

a ~a+ Va5a+ ~a5R

Oo 1960 3 e 975a+47e 745R o

(9)

S~ =2~(n~+ —,
' ),

Sn =2m(na+ —,
' },

In order to satisfy the quantization conditions (8), the
classical actions (7) which are calculated for E= —1 a.u.
have to be rescaled involving the similarity transforma-
tion

where n 6), n, and nR are the semiclassical quantum num-
bers. y =at /cps and y„=con /glott are the winding num-
bers which are the ratios of the frequencies of the oscilla-
tions in the 8, R, and a directions. They are calculated
during the evaluation of the actions S and SR since they
describe the change of the action variable of the a or R
motion during one cycle of the 8 motion. The winding
numbers are given up to second order in 5 and 5„by

S' =PS

which, in turn, determines the energy
r '2

(10)

gt — p 2— S
S'

Combining Eqs. (7)—(11) we find the semiclassical energy
eigenvalues pertaining to the Langmuir orbit

2
S0

2n[ns+. 1+A(n„nz )]
1 1 A(n, nz )—+
2 4 [ns+ I+X(n, nz )]

' 1/2 —2

(12)

with
~ ~

A(n, ng )=y n +— +rg ng +— (13)

zero-point oscillation transverse to the orbit with action
m /2 "fits" into the island only for large scaling constants

'2
A(n, nz)=P n + —,

' +v z n +—,
' nz+ —,

' P~2. 15
a, max

(16)

2
+VR nR+— (14)

and with constants

S0
M~=

2 (at a4r~),
a4

S
(a2 a4r asrR )

0

a4a5

S0
I a =

2 (a3 asrP .
a5

(15)

n s is the quantum number of the (high) excitation of the
bending oscillation and thus counts the nodes along the
LO. Since the number of nodes is identical for both elec-
trons, nz has to be even. n is the quantum number of
the asymmetric stretch oscillation and nR the quantum
number of the oscillation of the hyperradius (Wannier
mode).

The first term of Eq. (12) corresponds to the harmonic
oscillations. Only the action S0 as well as the winding
numbers y and yR enter here. The second term con-
taining the square root describes the anharmonicity and
couplings between the different vibrational modes (it con-
verges to 1 in the limit n& ))n, nz ).

Since the size of the stable region is very small, the

N= —,'(n +no+2),
K= ,'(n ng)—. — (17)

The singlet states ('S) are characterized by an antinode at
a=m/4 (i.e., rt =r2), whereas the triplet wave functions
show a node at o, =m/4. This implies that n is even for
('S) and odd for ( S) states [A =(—1) ]. Correspond-
ingly, we find for ( S), i.e., A =—

Therefore, the action along the orbit, and hence n &, must
be very large, n&) 10, i.e., N) 5X10. States with such
large quantum numbers have not yet been experimentally
reached. The largest principal quantum numbers
currently accessible for symmetrically excited states [28]
are of the order of N =1X10 . States described by Eqs.
(12)—(15) would correspond to extremely long-lived states
that are stable against classical autoinonization and
whose only decay mode would be either radiative or tun-
neling through the barrier set up by the dynamically
confining potential [Fig. 2(b)]. The extrapolation to
lower-lying states will be discussed in Sec. IV.

Using the close correspondence between the quantum
numbers for collective modes of a triatomic molecule and
the frequently used group-theoretical quantum numbers
[20,29] assigned to doubly excited states (NKTn)", we
are led to the following identification for the L =0 singlet
states ('S},i.e., A = +:
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N= ,'—(n +ns+ I),

K =
—,'(n —ns —1)

and for both cases n is given by

n=N+n~ .

(18)

(19)

with

(20)

Equation (20) is valid in the limit N~oo, K/N~ —1,
and n/N~l.

The quantum number nz can become zero only for sing-
let states, since intrashell states (N=n) always have
A =+. Furthermore T=O since J =0.

Thus we can rewrite Eq. (12) using the group-
theoretical quantum numbers N, n, and K. In the limit of
large N

2
SD

4m
E(NnK)= — ' '

1 —
—,'(y —1) 1+—

(N —p)' N

2

—y~ +O(N )

strongly influenced by the properties of these two "limit-
ing" orbits. (b) Each classical periodic orbit is, to leading
order [see Eq. (12}],described by its action and the wind-
ing numbers for the vibrations in the corresponding
transverse hyperplane of stable motion. These parame-
ters are expected to determine the position of resonances.
The Lyapunov exponent of unstable orbits will primarily
influence their width. (c) Based on the classical scaling
invariance [Eq. (11)],the position of intrashell resonances
(n =N) can be written as [30] (the "grandparent model" )

K
Zeff N

E(N, N, K)=—
N2

(21)

neglecting the quantum defect JLt [31]. Thus in the semi-
classical limit Z, ff does not depend on K and N separate-
ly, but only on their ratio. Similar dependence on scaled
quantum numbers has also been found in other systems
[23].

The function Z, ff can now be determined if we impose
the requirements that in the limit of large N and
K=K;„,Z, ff reproduces the classical action and wind-

ing numbers of the Langmuir orbit and for K=-K,„
those of the asymmetric stretch. The effective charge Zeff
must therefore satisfy

SQ y —1
lim lim Z ff

—= 1 — 1+—
N~ oo K/N —+ —1 N 4'' 2 N

IV. EXTRAPOLATION TO LOW-LYING STATES

The rigorous torus quantization presented above has
the obvious drawback that it provides only a subset of
eigenergies in the asymptotic limit of high quantum num-

bers very close to the double-ionization threshold associ-
ated with classically stable orbits. It is therefore tempt-
ing to extrapolate Eq. (20) to lower N where the size of
the regular island in phase space will be less than fi and
thus too small to support a quantum-mechanical state.

The only known semiclassical quantization method for
largely chaotic systems is the Gutzwiller trace formula

[2] or variants thereof. Rather than individual eigenener-
gies, periodic-orbit quantization describes resonances,
i.e., fluctuations in the spectral densities due to the
influence of unstable periodic orbits. However, the appli-
cation of the trace formula to mixed systems with regular
and chaotic regions in phase space proves much more
difficult. Ezra et al. [19] have recently succeeded in the
coding of all unstable periodic orbits which are relatives
of the asymmetric stretch orbit up to symbolic length 6.

We discuss in the following a much simpler but less
rigorous approach which appears to be remarkably suc-
cessful in describing approximate positions of all intra-
shell resonances of He with total angular momentum
L =0.

Our extrapolation is based on three key observations.
(a) The top and the bottom end of the intrashell mani-
folds for symmetric double excitation are associated with
stable periodic Langmuir and weakly unstable periodic
asymmetric-stretch orbits, respectively. Resonances be-
longing to an intrashell manifold should therefore be

K S.. Xe
—1

lim lim ZeffN~ o0 K/N~ 1 N 4' 2
K

1 ——
N

(22)

(23)

Z —= 1.708+0.204 ——0. 118K K K
N N N

3

+0.035
K
N

(24)

By construction, Eq. (24) converges to the limiting cases
Eqs. (22) and (23). It also converges to the result for the
torus quantization [Eq. (20)] in the intrashell case N =n.

The choice of the interpolation formula [Eq. (24)] is
somewhat arbitrary. Any strictly monotonic and smooth
function with four free parameters [determined by Eqs.
(22) and (23)] is admissible. However, we find that
changes of the interpolation formula affect the results (see
Table I}only at the level of 1%.

Table I compares the predicted position of the reso-

where S„=22.986 and y&=1.0785 are the action and the
winding number of the asymmetric stretch at E= —1 a.u.

The simplest smooth-function interpolation between
Eqs. (22) and (23) which depends only on the classical or-
bital parameters and contains no free parameters is given

by a third-order polynomial in K/N. Its four coefficients
are completely determined by the two actions and two
winding numbers of the limiting orbits
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TABLE I. Eigenenergies of intrashell 'S resonances of helium (in a.u.). The results of the extrapola-
tion formula [Eqs. (21) and (24)] are compared to accurate quantum calculations.

K/N

0.000
0.500

—0.500
0.667
0.000

—0.667
0.750
0.250

—0.250
—0.750

0.800
0.400
0.000

—0.400
0.833
0.500
0.167

—0.167
0.857
0.875
0.889
0.900
0.909
0.917
0.923
0.928
0.933

1

2
2
3

3
3
4
4
4
4
5

5

5
5
6
6
6
6
7
8
9

10
11
12
13
14
15

0
1

—1

2
0

—2
3
1

—1
—3

4
2
0

—2
5
3
1

—1

6
7
8

9
10
11
12
13
14

Present
work

2.9173
0.7964
0.6179
0.3608
0.3241
0.2531
0.2046
0.1919
0.1700
0.1358
0.1316
0.1257
0.1167
0.1031
0.0916
0.0885
0.0840
0.0775
0.0675
0.0517
0.0409
0.0332
0.0274
0.0231
0.0197
0.0170
0.0148

Ref. [7]

0.7787
0.6053
0.3535
0.3175
0.2551
0.2010
0.1878
0.1683
0.1411
0.1294
0.1233
0.1152
0.1024
0.0902
0.0869
0.0826
0.0772

Ref. [9]

2.8954
0.7721
0.6219
0.3529
0.3072
0.2574
0.2012
0.1833
0.1633

0.1303
0.1210
0.1118

0.0908
0.0857

Ref. [19]

2.904
0.778

0.354

0.201

0.129

0.0901

0.0663
0.0514

Ref. [26]

2.8911
0.7731

0.3529

0.2013

0.1300

0.0908

0.0670
0.0514
0.0407
0.0331
0.0274
0.0230
0.0196
0.0169
0.0148

nances [using Eqs. (21) and (24)] for all low-lying intra-
shell resonances with the best available quantum calcula-
tion employing a high-dimensional Hylleraas or hyper-
spherical basis and complex rotation techniques. We find
for all levels, including the ground state, remarkable
agreement at the level of lgo or better. The predictions
of our simple model are also in agreement with recent re-
sults for the cycle expansion for states near the asyrn-
metric stretch [19]. Note, however, that Eqs. (24) and
(21) describe the whole intrashell manifold.

The reason for the accuracy of this extrapolation is not
yet fully understood. We note, however, a structural
similarity to the dimensional scaling method proposed by
Herschbach and co-workers [32]. Dimensional scaling
provides quite accurate estimates for energy eigenvalues
of He for D =3 by extrapolation for D = (x), where the
two-electron atom assumes a stationary classical
configuration. Corrections in 1/D describe oscillations
around the equilibrium. The parameters entering the
dimensional-scaling method are the value of the potential
and its curvature at the equilibrium, which are related to
the actions and the winding numbers. The connection
between Eqs. (21) and (24) and dimensional scaling
remains to be explained in more detail.

A further test case will be H for which both the
asymmetric stretch and the Langmuir orbit are unstable.
First results indicate that a similar extrapolation formula

[Eqs (24) and (21)] is also applicable for this case [33]. In
order to describe experimental spectra the semiclassical
determination of lifetimes or autoionization width [34]
will be necessary.

V. CONCLUSIONS

The stable island around the Langmuir orbit of sym-
rnetric doubly excited states can be semiclassically quan-
tized employing quantization of tori winding around the
periodic orbit. The quantization predicts energy levels of
long-lived classically bound states (decaying only via tun-
neling or photon emission) residing on the Wannier ridge.
This states have very large quantum numbers N ~ 5 X 10
or (ns + 103), i.e., a large number of nodes along the
bending mode. The extrapolation of this formula to low-
lying states, with the additional constraint imposed that
in the limit of the zero-point fluctuation for the bending
mode the classical action and winding number of the
asymmetric stretch is reproduced, leads to a simple for-
mula for the position of all intrashell (N=n) resonances
of helium in the L =0 sector. The agreement with so-
phisticated large-scale quantum calculations is remark-
ably good. Clearly, this simple model does not yet pro-
vide us with predictions for the resonance width. A more
detailed test requires accurate quantum calculations for
N =n ~ 10. Progress in this direction [35] is highly desir-
able.
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