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Generation of a two-center overlap integral over Slater orbitals of higher principal quantum numbers
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The expressions for two-center overlap integrals between angular s, p, and d Slater orbitals of arbi-

trary, higher principal quantum number are explicitly listed. The expressions obtained are extremely

compact and independent of the coordinate system. It is further shown that the numerical values of the

integrals obtained in this way are free from any numerical instability.

PACS number(s): 31.15.+q

I. INTRODUCTION

It is well known that in any ab initio molecular-orbital
(MO) calculation, the major task involves the computa-
tion of molecular integrals, among which the computa-
tions of overlap integrals between two atomic orbitals
(AO's) is the most frequently encountered. Although
Gaussian-type functions (GTF's) are frequently used as
AO's in many MO calculations, Slater-type orbitals
(STO's) are preferred because they possess a better
description of electronic distribution. However, it is
more difficult to evaluate a STO molecular integral, espe-
cially in the multicentered case. Historically, the devel-
opment of molecular-integral programs has played a ma-

jor role in the development of theoretical chemistry and
molecular physics. Consequently, there has been a great
deal of discussion in the literature [l]; numerical tables
and computer programs are also readily available [2]. Pa-
rameters associated with STO's and generated by the
self-consistent-field (SCF) Hartree-Fock procedure are
available for many atoms and ions [3]. By close examina-
tion, however, we have found that the majority of past
work was patterned after the research pioneered by Mul-
liken et al. , whose approach formulated the calculation
in the spheroidal coordinates, thereby requiring the
quantization axis to be along the two nuclear centers.
For polyatomic calculations, using this approach is often
awkward. Nevertheless, to our knowledge, there are no
general formulas for higher, arbitrary principal-
quantum-number STO's. Another approach is to use the
Fourier-transform technique [4] or an equivalent tech-
nique on the so called B function [5];. The 8 function be-
longs to a special class of exponential-type functions
which is related to the reduced Bessel function. Recent-
ly, the B function received wide attention from its use as
a basis function in a molecular ab initio calculation be-
cause of the simplicity of its Fourier transform. Conse-
quently, a great deal of work has been done. A simple
transformation between STO's and the B function has
been obtained [5(b)]. In other words, a general STO can
be expressed as the finite sum of a linear combination of
the B functions or vice versa. By examining the transfor-
mation relation in Ref. [5(b)], we point out that a B func-
tion of a given principal quantum number and angular
momentum quantum number is the sum of all STO's of

the same angular momentum quantum number, but with
different principal quantum number, from n =1 to the
given principal quantum number. For example, a Ss B
function is a linear combination of all 1s,2s, . . . up to 5s
STO's. Therefore, a (5s ~5s ) B-function overlap would
consist of a sum of 25 terms of STO overlap integrals
with different coefficients. For inverse transformation,
i.e., the expression of a STO in terms of B functions, the
number of terms is considerably less, in general, from 2 to
4 terms; i.e., one has to compute from 4 to 16 B-function
integrals to obtain one STO integral. A general expres-
sion of overlap integrals between the B functions has been
worked out. Therefore, a general expression of overlap
integrals between STO's via the B function is obtainable;
however, a summation operation is still required, espe-
cially when high principal quantum numbers are in-

volved, which may increase its computing time by a big
factor. There are also general expressions for STO over-
lap integrals; for example, the expression by Silverstone
[6(a)] and others [6(b)] contains differentiation operations
which often cannot be used efficiently in numerical calcu-
lation. Bhattacharya and Dhabal [7] also gave general
expressions of overlap two-center molecular integrals be-
tween the STO's. Their expressions involve finite sums of
one-dimensional numerical integration of infinite domain
and, like many other procedures (including one of our
two procedures), exhibit unreliable characteristics for
some ranges of values of the orbital scaling parameters
(or orbital exponents). A brief discussion of numerical as-

pects was also given by Weniger and Steinborn [8]. The
present author recently gave explicit expressions for the
one-electron —two-center overlap integrals, essentially up
to 3d states [9(a)]. A closed, analytical expression can be
obtained in the final form. More recently, the author also
presented an article [9(b)] in which the expressions of
multicenter molecular integrals involving higher-
principal-quantum-number STO's are derived. The in-

tent of this paper is to apply the same technique to gen-
eralize the expressions for one-electron —two-center over-

lap integrals coupling all ns, np, and nd states, n being

any principal quantum number. Even though the present
expressions are not general in the sense of arbitrary angu-
lar quantum number, for different angular quantum num-

ber, a specific expression has to be worked out. On the
other hand, this approach offers a way to generate the
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value of the integrals in a very speedy and reliable fashion
that, in our opinion, exceeds the previously known
methods.

L = ( lsd i lsB }
=[C,(c)Cs(d)l2] f cd[sss(AR)R u(1 —u)/A, ]du .

0

(4)

II. PROCEDURES AND DERIVATIONS

The general, real, normalized STO is denoted as

(2g)(2n + s )/2/+(2n ))r n —s

Xe ~"Z' (r)
7

=Cn(g)r" 'e-~"Z,'~(r),

where the angular orbitals Zi' (r), commonly referred as
tesseral harmonics, are real and can be expressed as a
linear combination of spherical harmonics Y& such as

In the above equation, ~„ is the spherical modified
Bessel function [11], R=Rss —Rz is the intercenter ra-
dius vector, and A, is the positive root of
A, =uc +(1—u)d .

Likewise, the integral coupling 2s and 1s orbitals can
be written as

L, =(2s~ ~lsB &

= [C2 (c)Cs (d) /2]

X f d [R4u2(1 u)csx—, /A,
' R'u—(1—u)~s/A, ']du .

Zto = Yio
0

Zi' =(1/V'2)[Yi +( —1) Yi ], m &0

Z;~ =(i/v'2)[ Y, ~ —( —1) Yi~ ], m &0 .

(2)
If the integrand in Eq. (4) is denoted as

I=cd[&2(AR)R u(1 —u)/A, ],

(5)

(6a)

In particular, some of the low-lying angular momen-
tum states [10] and their commonly adopted notations (in
parentheses} are listed in the following:

then the integrand of Eq. (5), I2, can be obtained accord-
ing to Ref. [9(a)] by the following simple diff'erentiation
operation:

s =Pl /4n. = Yoo(r), I2=
—a I. (6b)

p„=psr=s/3/4m=&1. —/2[ Y, , (r) —Y»(r)],
r

p =pm'=&3/4' =vi/2—i [Y s (rs)+ Y»(r)],r

p, =ps»=&3/4m. —= Y,o(r),

1 3z —rd, =do =s/5/4m. — = Y (r)z 20r
2 2

d i ~=d5=&5/4' &3—
x —y 2 2

=&1/2[F2(r)+ Yz z(r)],

d„» = d'5=& 5/4vsr'3

=&I/2i[ —Yz2(r)+ Y2 z(r)],

(3)

We point out that the normalization constant C„(g) is
also a function of g, but was never involved in the para-
metric di8'erentiation process.

Now we will generalize the process in the following
way: A new variable x =RA, is introduced, and Eq. (6a)
can be written as

I=cd[ski(x)/x']R '+'u(1 —u)

=cdfi, l =2

where

fi=(vi/x')R '+'u(1 —u) .

Considering I as a function of c and d, its mth and nth
derivative with respect to c and d, respectively, can sim-

ply be expressed as

d», =d m' =&5/4sr~3
r

I2/i[ Yzs(r)+ Y2, (r)],
Imn a

Bc

m 'n

d = de.=s/5/4srv'3
r

gm
=cd

Bc

5n gm
i+nc

M s)c

gn
—1

5dn —s

=s/1/2[ —Y2, (r)+ Y2, (r)] .

In the following, part of the derivation is parallel to
Ref. [9(b)], which is repeated here for convenience. In
Ref. [9(a}]we have given the two-center overlap-integral
coupling two 1s atomic orbitals with exponents c and d,
located at centers A and 8 whose coordinates are denot-
ed as R„and R~, respectively:

gm —1

+md
m —1

gn

gdn

gm
—1

m —1

gn —1

gdn
—s

Now the derivative of fi requires more attention:

(9)



1456 H. TAI 45

dfi
Bc

()x dfl
c( / I+1)R2(l+1)+1 2(1 )

ac dx '+'

(10)

I =cF"'(1,0),
Bc

Qzf

2
=c Fl"'(2,0)+Fl'"(1,0),

C

d(x "I(.„)
X

—(n+1)
+n+1

and

where the differential formula for t(„has been used [11]: t3 f, =c Fl"'(3,0)+3cFi"'(2,0),
e

a'fI =c FI"'(4,0)+6c Fi' (3,0)

+3Fi"'(2, 0),

(14)

BX =R uc/x .
Bc

Define the quantity

FI'' (m n)=(-1)m".™"
I+m+n

(12)
a'f, =c F,"'(5,0)+10c F,"'(4,0)

+15cFI"'(3,0), etc.

By inspection, we can write the general derivative as

gm
I

Cm

yR 2(1+m +n)+t m+p(1 )n+q (13)

The introduction of constant parameters p, q, t is need-
ed for accommodating different angular functions later.
In the present case, p =q =t =1. Thus we have the fol-
lowing successive derivatives:

[m /2] m
(2j —1)!! . c IFI"'(m —j,0) .

j=0 J
(15)

In Eq. (15) each quantity is well defined; [m/2] is un-
derstood as an integral part of m/2; ( —1)!!=1, and (zl. )

is the standard binomial coeScient. Likewise,

m, n
I gcm gdn

[m/2] [n/2] Nl n
(2j —1)!!(2i—1)!! 2. 2. c Id" 'Fl"'(m j,n i) . — —

21j=O i =0

In order to show the dependence of fI "on the parameters p, q, and t, we write instead fI p q, ; i.e., we define

(16)

[m /2]ftn, n

j=0

[n/2] Nl n
g (Zj —1)!!(2i—1)!! 2. 2,

. c jd" 'FI' '(m j,n I ). ——'

2J 21 (17)

Therefore, a two-center overlap integral between an ms orbital and an ns orbital can be expressed as

(ms'!Ins8 ) =( —I )
+" [C (c)C„(d)/2][cdfz, ,'," '+(n —1)cfz ] ]',"

+(m —1)dfz], '," '+(m —l)(n —1)fz, ]'," ], m ~1, n ~1 . (18)

In Ref. [9(a)] it was shown that Eq. (4) can be integrated numerically rather simply and sometimes faster than the
analytical expression which essentially performed a summation; however, at times, it is more desirable to achieve an
analytical solution for elucidating its functional behavior. We will give the general expression for the following integral,
from Eq. (13):

J—
( I )tn +n ~ " R (I m+)+nt+m +P( I )n +qdu

] K]+ + (t(R )

0 gi+m +n (19)

[m +p) [n +q] itI ~m+n(AR ) I +p n +q 2(n+q —i)d 2j g2m+2p —2j +2i+1
~2( 1)m n+j+i+m " R I+m+n+t

d gl+m+n J 1 (Cz dz) tnn+++Pq+]j=0 i =0

[m+p] [n+q] 2(n +q —~)d 2j G2m +2p —2j+2i+1
1)m+n+j+i I+tn+n t

(cz dz)tn+n+P+q+]
j=O i =0

(20)

where the integration variable u has been replaced by A, . 6„,=G„,(R,c,d) is defined as
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R n+t
G„,=f tt„(AR))(, dA, , m=odd, (21)

which can be expressed as
cR

G R2» —m+t —1 Xtn »K (X)dX X =JRn, t
dR

n

~2n —m+t —1 ~ J .n J1 cR
x e dxm —n —1 —j —x~

0 2l(n —j)! dR

R 2» —m + t —1 ~ (n +J')!

l =0 2l(n —j)!
m —n —1 —j

X —e "x " ' j+ g (m n ——1 —j) (m n ——1 —j—k+1)x
k=1

cR

dR

m) n+1+j
m+t 1+ (n +j).

0 21(n —j)!
n+j —m—e

1)k —1

(n +j—m)(n +j m —1—) (n+j +1—m k)x"+—1+'

cR
1 )n+ j—tn+1

+ . ,
Ei( —x), m (n +1 +j,n+j —m! dR

(22)

where the exponential integral Ei(—y)= —f e x dx can only be expressed in terms of a series. However, in Ref.
[9(a)] it is proved that the coefftcient of the exponential integral is identical to zero for m =odd, which is this case, i.e.,

n
( + )1( 1)n+j —tn+)

=0 for m =odd .
=() 22(n —j)!(n +j—m)!

(23)

Therefore, the exponential integral never appears in the calculation.
In the Appendix we give the explicit expressions for two-center overlap integrals for arbitrary principal quantum

numbers of angular quantum number & 2. They are quite compact and easy to use.

III. LIMITING CASES

The case has been presented where the two orbitals' exponents are different, i.e., cAd. The condition for c =d has to
be properly invoked as pointed out in Ref. [9(a)]. For example, it is apparent that in our case the condition has to be in-
voked in Eq. (19); A, ~c, a(+ +„(AR )~tel+ +„(cR),is independent of u. Equation (19) can be expressed as

al+tn+„(CR)1)m+n +" R(l+tn+n)+t m+p(1 )n+qd
1+m +n 0

1)m+n " R(l+ +ntn)+t
(Bm+p + 1 n +q + 1)

+„(cR)
1+m +n

—
( 1) + l+ +" R(I+ + )+t (m +P)'(n +q).

cl+m+n (m +p+n +q +1)I (24)

where, in Eq. (24), B (p, q) denotes the beta function. As
for the case where the component c is almost equal to d,
Ref. [9(a)] has recommended the evaluation by a Taylor-
series expansion, namely, by expanding the integral about
the point where the two exponents are identically equal.
However, by close examination, numerical integration,
e.g., Eq. (19), gives a very stable solution, totally disre-
garding the values of the exponents. A comparison study
will be shown in Sec. IV. Next we will show that the
present formulation can transit to the one-center case.
As R ~0, the orthogonality property of the angular or-
bital will take effect, as is clearly borne out by our expres-
sions. For example, it was pointed out [12] that by exam-

ining the series representation of ~„,with j,n integers, we
have

lim R~tt„(AR )=0, j)n +1
R~0

j=n+1 .(2n )!
ngn + ln1

(25)

(26)

We point out that Eqs. (25) and (26) immediately bear
an interesting consequence; i.e., as R ~0, the overlap in-
tegral between two orbitals of different angular quantum
number would approach zero. This is clearly borne out
in our expressions [see Eqs. (13) and (Al) —(A19)]. The
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TABLE I. Comparison of overlap integrals computed by this method [Eq. (19)] (second row) and
previously published values (first row).

&sslss &

&sslspo )

& lslSpo &

&spa lspo &

&spa lspn )

&2p~lsp~&

(2po ISd(r )

(2slsdo)

(3pn lsdm&'

&sp~lsd~&

&3dol3do &

(3do'I Sdo' &

&3d&lsd&&

(Sdm ISdn'&

(sdolsdo)

(sd5lsd5)

p=l

0.977
0.981 869
0.142
0.114206
0.238
0.154 869

—0.917
0.941 272
0.972
0.980256
0.707
0.531 951
0.289
0.281 513

—0.334
0.258 236
0.055
0.047 804
0.285
0.255 456
0.175
0.088 896
0.217
0.175 369
0.891
0.767 291

—0.799
0.706 549
0.7728
0.689 580

0.761 089
—0.882

0.920 998
0.8S87
0.904 549
0.960
0.973 408

p —2

0.915
0.931 732
0.273
0.221 257
0.431
0.304 344

—0.693
0.779 014
0.893
0.923 901
0.635
0.504042
0.487
0.474 199

—0.452
0.401 807
0.191
0.169960
0.497
0.460 179
0.321
0.178 124
0.395
0.330403
0.659
0.321 797

—0.465
0.486 823
0.4110
0.440 163
0.772
0.683 354

—0.580
0.705 946
0.5225

—0.656 643
0.851
0.898 123

t =0.5
p 7

0.417
0.521 937
0.445
0.485 406
0.227
0.295 094
0.413

—0.334 816
0.277
0.392 312
0.119
0.150 366
0.199
0.193291
0.241

—0.218 250
0.327

' 0.420 788
0.287
0.368 861
0.232
0.235 806
0.342
0.452 280
0.097
0.154 959
0.304

—0.311709
0.1244
0.055 878
0.115
0.148 155
0.373

—0.400 779
0.0854

—0.039 067
0.170
0.282 865

p =10

0.166
0.280 178
0.218
0.345 197
0.052
0.090 297
0.281

—0.409 893
0.084
0.150328
0.023
0.037 266
0.043
0.041 645
0.118

—0.165 058
0.106
0.175 113
0.076
0.120 878
0.066
0.088 493
0.114
0.219 345
0.034
0.101028
0.107

—0.149 141
0.1388
0.153 925
0.020
0.032 799
0.169

—0.299 784
0.1810
0.192 548
0.039
0.084 713

Reference

[1(a)]

[1(a)]

[1(a)]

[1(a)]

[1(a)]

[1(a)]

[1(d)]

[1(c)]

[1(c)]

[1(d)

[1(d)]

[1(d)]

[1(b)]

[1(d)]

[1(c)]

[1(d)]

[1(d)]

[1(c)]

[1(d)]

& lslsp(r )

(2p~lsp~&

&3d lsp

&3p I3d )

&2polSdo &

(2slsdo. )

( 3pn I s der )

0.293
0.265 119

0.563
0.381 706

0.205
0.211 458

0.169
—0.181 535
—0.066
—0.025 815

0.021
0.008 425
0.091

—0.040 369
0.335
0.300 534

0.493
0.474 816

0.515
0.370 903

0.368
0.388 342

0.324
—0.315 229
—0.114
—0.052 233

0.078
0.033 625
0.169

—0.079 669
0.265
0.166752

t = —0.4
0.192
0.272 320
t =0.1

0.114
0.135 864

t = —0.5

0.322
0.410 794
t =0.5
0.234

—0.227 523
0.012

—0.035751
0.329
0.250 791
0.213

—0.166 637
0.052
0.031 402

0.046
Q.Q74 107 1

0.023
0.038 476

0.138
0.191 359

0.093
—0.090 999

0.064
0.029 884
0.246
0.251 877
0.115

—0.119547
0.024
0.046 932

[1(a)]

[1(a)]

[1(d)]

[1(d)]

[1(c)]

[1(c)]

[1(d)]

[1(b)]
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TABLE I. (Continued).

(3dn)5dn )

( 3d515d5)

(sdo misdo)

p=1
—0.159

0.072 059
0.1565
0.071 879
0.167
0.072 250
0.2515
0.197990

p=2
—0.126

0.069 131
0.1170
0.067 046
0.156
0.071 619
0.1914
0.175 979

t =0.5
p=7

0.059
—0.014 212
—0.0039
—0.010 826

0.055
0.043 117
0.0107

—0.020 218

p =10
0.053

—0.036014
0.0235
0.000 362
0.021
0.021 549
0.003 47

—0.005 861

Reference

[1(c)]

[1(c)]

overlap integrals in these cases contain only the quanti-
ties f) '", with t%1 [corresponding to j& n+1 in Eq.
(25)], which approach zero because of Eqs. (17), (25), and
(26) as R~0. Integrals coupling two orbitals with the
same angular quantum number do contain additional
quantities fI

'", with t = 1 [corresponding to j=n + 1 in

Eq. (26)] and approach a constant (not zero) as R ~0.
Next, we will show the normality condition between two
atomic orbitals for a simple case. For example, by letting
R ~0 and setting c =d in the expression of the integral
(2p;~2p~ ) [Eq. (A3)], we have

(2p, ~2p, ) = lim 2m.
,

c'(2c) K3R

R 0 4l

X g21 g2
0 4~ 'J

(2c) q 6! 2!2! 32'
4! 2c 3! 5! 4~

(27)

Therefore, the orthonormality condition of two orbitals is
restored when R ~0.

IV. NUMERICAL STABILITY STUDY
AND COMPARISON OF RESULTS

In this section we demonstrate that by using the
method mentioned above, accurate numerical values can
be easily obtained which are free from any numerical in-
stability problems. Comparison was done with values
[1(a)—1(d), 2(a)] that were published some 40 years ago to
make sure that our expressions are correct and also to re-
veal if some of the old results may have suffered from the
instability. Since the expressions (Appendix) are fairly
straightforward, we decided to code with RM/FORTRAN
[13] on a PC using double-precision arithmetic. Both
Eqs. (19) and (20) were coded so that we can compare
their results as a function of the exponents as well the
principal quantum numbers. By comparing our results
against some of the published results, we also found some
misprints and inaccuracies associated with those reports.
Since all of those results were generated by using
spheroidal coordinates in which the quantization axes are
pointing to each other, therefore, an overall sign
difference may be possible, but of no concern for the pur-
pose of comparison. Most of the earlier results were list-

ed as a function of two parameters p and t, which are
defined as

p =(c + 8 )R l2, t =(c—d ) l(c +0 ) . (28)

We computed our results as a function of the exponents c
and d and as a function of the intercenter distance R.
However, a direct comparison can be obtained quite easi-
ly. We have done quite an extensive comparison, and we
found the numerical values listed in Ref. [2(a)] to agree
with ours quite well, up to the d states, since we do not
have any values for f states. The comparison to the Ref.
[1(a)] is also fairly good in most cases; however, we did
find some misprints in this 40 year old report which
might not be known to some workers in this field. Their
Table IX labeled the overlap integral S(ls, 5s), which
should be labeled S( ls, 4s) and also their Table XXI la-
beled S(2pm, 2pn), which . should read S(2pn, 3pn. ). The
comparison between our results to the results listed in
Refs. [1(b)—1(d)] are mixed; some values show good
agreement, and some do not. For example, we found ex-
cellent agreement in the values of S(3do, 3do ) in Ref.
[1(b)] and S(3dm, 3dm ) and S(3d5, 3d5) in Ref. [1(c)]but
not other values. In Table I we listed only those which
show discrepancy, ranging from 1% to a factor of 2, and
we believe these discrepancies are solely due to the nu-
merical instability associated with the higher principal
quantum numbers, rather than by mistakes possibly con-
tained in the expressions themselves. Of course, the
tables are by no means exhaustive, we merely point out
that there are some discrepancies between the values ob-
tained this way and some of the values published in the
open literature. Our expression is quite general. In this
case the center B is placed at distance R from center A
along the z axis in order to have a viable comparison.
Tables I—III are generated using Eq. (19) by a 12-point
Gauss-Legendre quadrature integration routine, while
Table IV is generated by a 40-point routine because quad-
rature routine using more points is needed especially
when the orbitals have largely differing exponents,
whereas in Tables I—III, in general, we can get by with a
quadrature routine using fewer points, especially when
the two exponents are not largely difFering (correspond-
ing small ~t~). The previously published values are listed
in the first row along with the reference and our comput-
ed values are listed in the second row for each entry. In
Table II we compare the overlap-integral values generat-
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TABLE II. Comparison of integral values evaluated by the analytic method [Eq. (20)] and by numer-
ical integration [Eq. (19)]as a function of the exponents c and d at R = l.

c =1.5, d=0. 5

Eq. (20) Eq. (19)
c=1.5, d=1.4

Eq. (20) Eq. (19)

( ls
i
ls &

(2$ i2$ )
&4si4$ &

(Ss)5$)
(3do i2$ &

(Sdoi3$)
(3d513d5 &

&Sd5~5d5&

0.579 709
0.480 678
0.278 761
0.210 167

—0.010237
—0.011 158

0.346 583
0.203 622

0.579 713
0.480 392
0.276 016
0.148 093

—0.010237
—0.011 159

0.346 621
0.203 093

0.738 054
0.894073

bad
bad

0.098 029
0.051 052
0.860 599

bad

0.738 054
0.894073
0.948 151
0.956 843
0.098 029
0.051 944
0.860 605
0.938 978

V. CONCLUSION

We have derived the explicit expressions for two-center
overlap molecular integrals coupling any arbitrary higher
principal quantum number with angular s, p, and d orbit-
als. The final expression is compact and quite easily
adopted for automatic numerical application. Since the
radial and angular dependences are completely separated,
the angular dependence, independent of the coordinate
system, is manifested in the radius vector connecting the

TABLE III. Test of numerical stability of overlap integrals
when the two exponents are approaching to each other at R = 1.

( lsils )
(2si2$)
(4$14$,
&5si5$)
(3do i2$)
&5d [3.)

(Sd5~5d5)

c=1~ 5,
d =1.499

0.725 312
0.889 799
0.949 785
0.960 266
0.114273
0.061 949
0.855 551
0.941 278

c =1.5,
d =1.4999

0.725 187
0.889 738
0.949 757
0.960244
0.114419
0.062038
0.855 474
0.941 245

c=1.5,
d =1.5

0.725 173
0.889 731
0.949 754
0.960 241
0.114435
0.062 048
0.855 465
0.941 242

ed by these two methods: one by the analytic method,
essentially summing up all the finite alternating terms
[Eqs. (20) and (22)], and second, by the numerical method
[Eq. (19)] as a function of the orbitals' exponents. We
confirm that if the two exponents are close enough, the
analytic method simply cannot give a numerically stable
solution for an orbital with higher principal quantum
number. In Table III the numerical procedure definitely
demonstrates that it can provide a stable solution no
rnatter how close the two exponents are. In Table IV we
try to repeat the same calculation shown in Ref. [7]
(Table V); however, only 12 digits are retained in the re-
sults, and they do agree quite well. Table IV seems to
suggest that when the two exponents are largely differing,
the analytical method is more capable of giving better re-
sults than the numerical integration based on the com-
parison to the results of Ref. [7]. Of course, we cannot
use the analytical expressions when the two exponents of
the orbitals are close or identical.

two centers. The separation of radial and angular depen-
dences offers great computational advantage; i.e., the ra-
dial part is identical for integrals having identical angular
quantum number orbitals, e.g. , & d„» i d„» & and

(d & 2id, 2& and only needs to be generated once. A
x —y x —y

simple computer code can be written, in essence, just to
perform a summation and not involve any numerical in-

tegration at all. Preliminary tests of the numerical stabil-
ity study have shown, however, that this claim is true
only for n and m not too large, for example, &3 (of
course, this also depends on the values of the exponents c
and d). For a value greater than 3, the numerical integra-
tion [Eq. (19)] definitely offers a more stable solution.
Closer observation reveals the reason. The finite-sum
solution [Eqs. (20)—(22)] may involve large numbers with
alternate signs, and in the subtraction of two large num-

bers, the relative errors may soar to a point that makes
the result worthless. This is especially true when c is not
very different from d, since the power of (c —d ) appears
in the denominator. When we compared the numerical
results generated by our method and the previously pub-
lished results [1,2], we did find good agreement when the
principal quantum numbers involved are not high, say,

3; however, when the principal quantum numbers are
higher, )3, quite a discrepancy is found. The earlier
treatments which exclusively employ spheroidal coordi-
nates also exhibit such alternating finite-sum behavior
[1(a)—1(c)] and subsequently encounter the numerical in-

stability problem. We believe this is exactly the reason
for such a discrepancy. The approach here is to derive
the simplest form coupling the specific angular momen-
tum of the lowest-principal-quantum-number orbitals and
then use the parametric differential process to step up in

the direction of reaching a higher principal quantum
number. Also, we may add that caution has to be exer-
cised if a highly accurate integral value is desired for in-

tegrals involving two largely differing exponents, large in-

tercenter distance, and higher principal quantum num-

bers. The reason is quite simple and purely a numerical
one. Higher principal quantum numbers, in this formula-

tion, means more terms in the integrand and therefore
more cancellations, larger R, and largely differing ex-

ponents, higher quantum numbers meaning bigger num-

bers with higher power. For example, as is indicated by
the integral ( 2p o i 5d cr ) in Table IV with largely
differing exponents 2.0 and 0.3, a Gauss-Legendre quad-
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TABLE IV. Comparison of STO overlap integrals computed in Ref. [7] (Table V) and this method.

A =(0,0,0)

Exponents Bhattacharya and Dhabal [7]

8 =(0,0, 1.4)
This method

Numerical [Eq. (19)] Analytical [Eqs. {20)—(22)]

& lsils&
(Ss i5s )
& isl2po&
(4s )4po )
&2po ~2pcr &

(2pol5do &

&3dol5do &

10
0.1

10
0.5
2.0
2.0
1.5

10
0.1

2.0
0.4
2.0
0.3
0.3

6.679 947 376 8( —5)
9.996 371 894 1( —1)

—1.174 137 896 9( —1)
—1.230 350 868 9( —1)
—1.007 403 821 5(—1)
—2.332 300 8172( —3)

1.228 363 5964( —2)

6.679 947 258 4( —5)
9.996 372 192 6( —1)

—1.174 137959 2( —1)
—1.230 350 883 4( —1)
—1.007 403 806 6( —1)
—2.332 253 640 4( —3)

1.228 364 352 2( —2)

—1.174 137 896 9( —1)
—1.230 280 9114( —1)

—2.332 300 81.7 2( —3)
1.228 363 5964( —2)

rature with a rather large number of 40 points seems not
adequate for higher accuracy. In this case the finite-sum
solution is able to produce more accurate results, as may
be seen by comparison with the results of Bhattacharya
and Dhabal. In the other case of similar exponents, the
situation is reversed. Here the numerical quadrature
method is much more accurate than the inherently unsta-
ble sum solution of Eqs. (20)—(22). Therefore, we have
established the criterion of choice depending upon the
two exponents; we use the numerical integration method
for the cases that the two exponents are identical or simi-

lar; we use the finite-sum expressions for the cases that
the two exponents are largely differing; in the middle
ground, either method can be employed. For the numeri-
cal integration method, the following options might im-
prove the accuracy of the integral values: (1) better nu-
merical integration scheme [14], (2} further subdivision of

1

the region of integration, (3} employment of uneven
points of integration, (4} use of a computer with larger
word length, and (5} possibly use of a certain scaling
scheme —e.g., Eq. (28), indeed, suggested at the scaling
may be possible. Of course, this approach is not limited
to the molecular-overlap integrals just studied. Other
types of integrals [1(e}]can be formulated in a similar
fashion.

APPENDIX

In the following the integers m and n assume the
values ~ 1 for the s state, ~ 2, for the p state, and ~ 3 for
the d state. For the overlap integral between different
combinations within the set of angular orbitals that was
prescribed earlier, we have the following list:

(ms' ~nsB) =( —1) +" [C (c)C„(d)l2]

X [cdf m —1, n —1 + ( n 1 }cfm —I, n —2 + ( m 1 )df m —2 n —1 + ( m 1 }(n 1 }fm zn —2 —
]

(mp;~ns) =(—1) +" 'v'trp;(R)C (c)C„(d)

X [cdf m —2 n —1 + (n 1 }cfm —2 n —2+(m 2}dfm 3n —1 +(—m 2)(n 1)fm 3, n —2 ]—
(Al)

(mp; ~npJ ) =(—1) +"27rc (c)C„(d)

(i =x, y, or z), (A2)

X I [cdf3 2 z," 2+(n —2)cf 3 z z'," +(m —2)df 3 z z," +(m —2)(n —2)f3 z z;" ]35; /4m. .

—[cdfz z z 3" +(n —2)cfz z z'3" +(m —2)dfz z z 3" 2+(m —2)(n —2)f z z z 3" 3]p, (R)p (R)],
(A3)

where 5, . is the usual Kronecker symbol:

( md, ~

ns ) =( —1) +"&m.C (c)C„(d)d; (R)

X[cdfz3 133" '+c(n —1)fz31'3" +d(m —3)fz 313" '+(m —3)(n —1)fz 313" ],
(md, ~ns ) =( —1) +"&mC (c)C„(d)d,(R)

X[cdfz 3, 3" '+c(n —l)fz 313" +d(m —3}fz313" '+(m —3)(n —l)fz 31'3" ],
(md 2 2~ns)=( —1) +"t nC (c)C„(d)d ~ 2(R)

X [cdf m —3n —1 + ( 1)fm —3n —2+d( 3)fm —4n —1 +( 3)(n 1 )fm —4n —2]

(A4)

(A5)

(A6}
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(md, ~npk ) =( —1) +" '2nC (c)C„(d)

X {[cdf 3 3 2 2" +(n —2)cf 3 3 2 2" +(m —3)df 3 3 2 2" +(m 3)(n 2)f33,22"

X(p (R)5,k+p, (R)5~k )(15/42r)'

—[cdf 2 3 234" 2 + ( n —2)cf 2 3 2 4" + (m —3 )df2 3 2 4" + (m —3)( n —2)f 2 3 2 4" ]d
&
(R)pi, (R

(A7)

(md &~np; ) =( —1) +" '2~C (c)C„(d)

X [[cdfm n +(n —2)cf m 3 n 3+(m —3)df m 4 n 2+(m —3)(n —2)f m 4 n 3]

X(2p, (R)5;, —p (R)5; —p„(R)5;,)(5/4~)'i

—[cdf 2 3 24" +(n —2)cf 2 3 24" +(m —3)df 2 3 24" +(m —3)(n —2)f2 3 24" ]d &(R)p;(R)j,

(A8)

(md 2 2~np; ) =( —1) +" '2~C (c)C„(d)

X [ [cdf m 3n ——2+( 2)cfm —3 n —3 +( 3)df m —4 n —2+( 3)( 2)f m —4 n —3
]

X [p„(R)5;„—p»(R)5;» ](15/4m )'

[cdf m —3, n —2 + ( n 2 )cfm —3, n —3 + ( m 3 )df m —4, n —2 + ( m 3 )( n 2 )fm —4, n —3
]

Xd 2 2(R)p;(R) j (i =x, y, or z),

(md~j ~ndj ) =(—1) +"2~C (c)C„(d)

X[[cdf433( +(n —3)cf433'&" +(m —3)df433'," +(m —3)(n —3)f433'&" ](15/4m)

[cdf m —3, n —3+(n 3)cfm —3, n —4+(m 3)df m —4n —3 +(m 3)(n 3)fm 4, n —4
]

X5[p, (R)p;(R)+pj(R)p&(R)]+ [cdf 2 3 3
'5" +(n —3)cf2 3 3'&" +(m —3)df 2 3 3 g

+(m —3)(n —3)f233/ ]d; (R)d; (R)j,

( md 2~ nd, ) = (
—1)m+n2n. C (c)C„(d)

X [[cdf 3'" 3+(n —3)cf '" +(m —3)df '" +(m —3)(n —3)f '" ]

X (10/3/3)p„(R)p (R)

+ [cdf m —3, m —3+(n 3) fm —3n —4+( 3)df m 4n —3+—
( 3)(n 3)fm —4n —4

]

Xd 2(R)d,»(R)j,
(md &~nd„, ) =( —1) +"2mC (c)C„(d)

X [ [cdf m —3, n —3+(n 3)cfm —3, n —4+( 3)df m —4, n —3+( 3)( 3)fm —4, n —4]

X (
—5/v'3)p„(R)p, (R)

+[ df m —3n —3+( 3) fm —3n —4+( 3)dfm
—4 n —3+(m 3)(n 3)fm —4 n —4]

Xd (k)d, (R)j,
(md &~nd, ) =(same as above except replace x,z by y, z),

(md; ~nd, k) =( —1) . "2vrC (c)C„(d)

dfm
—3n —3+( 3) fm —3n —4+( 3}dfm —4 n —3+(m 3)(n 3)fm —4 n —4]

X (
—5)pi(R)pk(r)

+[cdf m —3, n —3+(n 3) fm —3, n —4+(m 3)df m —4, n —3+( 3)(n 3)f m —4, n —4]

Xd,, (R)d,„(R)j,

(A9)

(A10)

(A 1 1)

(A12}

(A13}
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(md ~ ~~nd„, ) =(—1) +"2m.C (c)C„(d)

X {[cdf m —3, n —3+( 3}fm —3, n —4+( 3}dfm —4, n —3+( 3}( 3)fm —4, n —4

X( —5)p„(R}p,(R)

df m —3, n —3+( 3}fm —3, n —4i( 3)df m —4n —3+( 3)( 3)fm —4n —4]

Xd 2 2(R)d„,(R)],
(md 2 zind, ) =(—1) +"2nC (c)C„(d)

(A14)

X {[cdf33 3'3" +(n —3)cf3 3 3'3" +(m —3)df 3 3 3 3" +(m —3)(n —3)f3 3 3 3" ]Sp (R)p, (R}

+ [cdf m —3, n —3 + ( n 3 }cfm
—3, n —4 + ( m 3 }dfm —4, n —3 + ( m 3 )( n 3 )fm 4, n——4

]

Xd p, (R)dy, (R)],
(md 2 &ind„) =( —1)™+n2mC (c)C„(d)

X {[cdf '" +(n 3)cf —'" +(m 3)df —'" +(m —3)(n —3)f '" ]

Xd 2 2(R)d„y(R)],

(md 2ind, )=(—1)™+n2nC (c)C„(d)

X{[cdf433'&" +(n —3)cf433'&" +(m —3)df433'&" +(m —3)(n —3)f433'&" ](15/4m)

[ df m —3, n —3+( 3)cfm —3, n —4+( 3)df m —4 n —3+(m 3}( 3)fm —4 n —4
]

X —', [p„(R)p„(R)+p (R)py(R)+4p, (R)p, (R) ]

+[cdfm —3, n —3+( 3)cfm —3, n —4+(m 3)df m —4, n —3+(m 3)( 3)fm —4, n —4]

Xd 2(R)d 2(R)],

(md 2ind 2 &) =( —1) +"2nC (c)C„(d)

X{[cdf3333" +(n 3)cf333—3" +(m —3)df3333" +(m —3)(n —3)f3333" ]

X(5/n)'i d ~ g(R)

+[ df m —3n —3+( 3}fm —3n —4+( 3 }dfm —4n —3+( 3}( 3}fm —4n —4]

Xd 2(R)d„2 2(R)],

(md & 2ind 2, )=(—1) +"2nC (c)C„(d)

(A15)

(A16}

(A17)

(A18)

X [cdf;" +(n 3)cf '" +(m ——3)df 4 3 3'&" +(m —3)(n —3)f '" ](15/4n. )

[cdf m —3, n —3+(n 3)cfm —3, n —4+(m 3)df m —4n —3+(m 3)(n 3 }fm —4 n —4]

X 5[p„(R)p„(R)+py(R)py(R)]

+ [cdf m 3n —3+—(n , 3)cfm —3,n —4+(m 3)df m 4n —4+—(m, 3)(n 3)fm 4n —4]—
Xd 2 ~(R)d 2 g(R)} .

Of course, we have the simple relation

(4„1 (c,r„)iP„ i. .(d, r~)) =( —1)'+' (4„,I, ,(d, r„)ig„ 1 (c,r~),
to obtain the numerical value of the rest of the other integrals.

(A19)

(A20)



H. TAI 45

[1] (a) R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, J.
Chem. Phys. 17, 1248 (1949); (b) D. P. Craig, A. Maccoll,
R. S. Nyholm, L. E. Orgel, and L. E. Sutton, J. Chem. Soc.
76, 354 (1954); (c) J. L. Roberts and H. H. Jaffe, ibid. 27,
883 (1957); (d) H. H. Jaffe, ibid. 21, 258 (1953); (e) C. C. J.
Roothaan, J. Chem. Phys. 19, 1445 (1951);(f) D. A. Brown
and N. J. Fitzpatrick, ibid. 46, 2005 (1966); {g) K. Rueden-
berg, K. O. Ohata, and D. G. Wilson, J. Math. Phys. 7,
539 (1966); (h) D. M. Silver and K. Ruedenberg, J. Chem.
Phys. 49, 4301 (1968); (i) N. C. Datta and B. Sen, J. Com-
put. Chem. 8, 1 (1987); (j) H Eschrig, Phys. Status Solidi
96, 329 (1979);{k)A. Lofthus, Mol. Phys. 5, 105 (1962).

[2] (a) D. A. Brown and N. J. Fitzpatrick, ADI-9288, Auxili-
ary Publication Projection, Photoduplication Service, Li-
brary Congress, Washington D.C. (b) Masao Kotani,
Ayao Amemiya, and Tuneto Simose, Phys. Math. Soc.
Jpn. 20, 1 (1938).

[3] E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14,
177 (1974); E. Clementi and D. L. Raimondi, J. Chem.
Phys. 38, 2686 (1963); E. Clementi, Table ofAtomic Func
lions (IBM Corp. , San Jose, CA, 1965).

[4] F. P. Prosser and H. Blanchard, J. Chem. Phys. 36, 1112
(1962); M. Geller, ibid. 39, 853 (1963);I. R. Epstein, Chem.
Phys. Lett. 9, 9 (1971).

[5] (a) E. O. Steinborn and E. Filter, Theor. Chim. Acta 38,
273 (1975); (b) E. Filter and E. O. Steinborn, Phys. Rev. A

18, 1 (1978); (c) E. J. Weniger and E. O. Steinborn, ibid.
28, 2026 (1983); (d) E. J. Weniger, J. Grotendorst, and E.
O. Steinborn, ibid. 33, 3688 (1986); (e) J. Grotendorst, E. J.
Weniger, and E. O. Steinborn, ibid. 33, 3706 (1986); (f) E.
J. Weniger and E. O. Steinborn, Theor. Chim. Acta 73,
323 (1988).

[6] (a) H. J. Silverstone, J. Chem. Phys. 45, 4337 (1966); 46,
4368 (1967); {b) H. D. Todd, K. G. Kay, and H. J. Silver-
stone, ibid. 53, 3951 (1970).

[7] A. K. Bhattacharya and S. C. Dhabal, J. Chem. Phys. 84,
1598 (1986).

[8] E. J. Weniger and E. O. Steinborn, J. Chem. Phys. 87,
3709 (1987).

[9] (a) H. Tai, Phys. Rev. A 33, 3657 (1986); (b) 40, 6681
(1989).

[10]M. Weissbluth, Atoms and Molecules (Academic, New
York, 1978), p. 4.

[11]G. Arfken, Mathematical Methods for Physicists, 2nd ed.
(Academic, New York, 1969), p. 531.

[12]H. Tai, Chin. J. Phys. 27, 297 (1989).
[13]RM/FoRTRAN, version 2.00 (Ryan-McFarland Corp. Aus-

tin, TX; 1985).
[14] H. H. H. Homeier and E. O. Steinborn, J. Comput. Phys.

87, 61 (1990); E. O. Steinborn and H. H. H. Homeier, Int.
J. Quantum Chem. Symp. 24, 349 (1990).


