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In the approach proposed by Harbola and Sahni for the determination of electronic structure, the
correlations between the interacting electrons are directly related to the local effective many-body poten-
tial in which they move by Coulomb s law. As such this potential is the work required to move an elec-
tron in the force field of its Fermi-Coulomb-hole-charge distribution. In this paper we have applied this

approach within the Pauli-correlated approximation, in which only correlations between the electrons
due to the Pauli exclusion principle are considered, to atoms from He (Z=2) to Rn (Z=86). For
open-shell atoms the central-field model is assumed. The calculations are also spin restricted and nonre-
lativistic. The self-consistently-determined atomic properties presented are the total ground-state ener-

gy, the highest-occupied-orbital eigenvalue, and the expectation value of the single-particle operators
r, r, r ', r, and 5(r). The total ground-state energies and expectation values are essentially
equivalent to those of Hartree-Fock theory, with the relative differences diminishing with increasing
atomic number. The total ground-state energies lie above, as must be the case, and within parts per mil-

lion of the Hartree-Fock theory results. By F this difference is 50 ppm, by "Br 10 ppm, and by Hf less
than 5 ppm. The most remarkable results, however, are those for the highest-occupied-orbital eigenval-
ues. In the Harbola-Sahni approach, the asymptotic structure of the effective potential in the Pauli-
correlated approximation is that of the fully correlated system, in which correlations between the elec-
trons due to Coulomb repulsion are also considered. This is manifested by the fact that in comparison
with Hartree-Fock theory, the highest-occupied-orbital eigenenergies for the majority of atoms are
closer to the experimental ionization potentials. For the remaining atoms, the differences between the
two theories are of the order of hundredths of a rydberg or less. Furthermore, we note that in the
central-field model the density-functional-theory exchange-energy-potential sum rule due to Levy and
Perdew is rigorously satisfied by the potentials and orbitals of this approach. For the present calcula-
tions this sum rule is satisfied numerically from six to eight significant figures, as is the virial theorem.
Finally, the Harbola-Sahni approach in the Pauli-correlated approximation is contrasted to Hartree-
Fock theory, and directions for future research to go beyond it within this framework are indicated.

PACS number(s): 31.10.+z, 03.65.—w

I. INTRODUCTION AND FORMALISM

The determination of nonrelativistic electronic struc-
ture requires knowledge of electron correlations which
arise due to the Pauli exclusion principle and Coulomb's
law. In Schrodinger theory the physics of these correla-
tions is incorporated in the wave function. The effect of
Pauli correlations is explicitly manifested by the require-
ment that the wave function be antisymmetric in an inter-
change of the coordinates (including spin) of any two
electrons. However, closed-form analytical solutions of
the Schrodinger equation for interacting systems do not
exist, and the explicit dependence of the wave function on
the coordinates of the electrons due to Coulomb repul-
sion is unknown. The wave function xnust therefore be
approximated. The best approximate wave functions are
determined by application of the variational principle for
the energy. For each approximate wave function a
rigorous upper bound to the true total ground-state ener-
gy is thereby obtained. Hartree-Fock theory provides the
best wave functions when only Pauli correlations between
the electrons are considered. This wave function is the
Slater determinant of the solutions of the Hartree-Fock

equations. The approximate effect of Coulomb correla-
tions are usually determined by the use of correlated or
configuration-interaction-type wave functions.

The physical consequence of the correlations between
the electrons due to the Pauli exclusion principle and
Coulomb's law is that there is a reduction in the
quantum-mechanical probability of electrons approach-
ing each other. This reduction in probability is the
Fermi-Coulomb-hole-charge distribution surrounding
each electron. The effect of electron correlations is there-
fore to lower the total energy of the system by the many-
body (exchange-correlation) energy. Thus, physically the
exchange-correlation energy E„, is the energy of interac-
tion between the charge density of the electrons and the
Fermi-Coulomb-hole charge. As such it is given as

E„,=—,
' JI, drdr',p(r)p„,(r, r')

where p(r) is the electronic density and p„,(r, r') the
Fermi-Coulomb-hole charge at r' for an electron at r.

In recent work [I—9], Harbola and Sahni have pro-
posed an approach for the determination of electronic
structure that is based on the Fermi-Coulomb-hole-
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charge distribution in whose structure all correlations be-
tween the electrons are accounted for. According to
Harbola and Sahni the loca/ many-body effective poten-
tial seen by the interacting electrons is the work required
to move an electron against this charge. However, in
contrast to the electronic and external charge distribu-
tions, which are static, the Fermi-Coulomb-hole-charge
distribution is a dynamic (nonlocal) distribution whose
structure changes as a function of electron position.
Thus, to account for this dynamic behavior in calculating
the work required to move an electron, the force field due
to its Fermi-Coulomb-hole charge must first be deter-
mined. This electric field C„,(r }is given as

p„,(r, r')(r —r')
C„,(r) dr',

r —r'' (2)

[ ——,'V + V„(r)+W„,(r)]4;(r)=s;4;(r), (4)

where V„(r) is the Hartree electrostatic potential and
where the orbitals 4;(r} lead to the density
p(r)=g;~4;(r)~ . The work W„,(r) may also be written
as the sum W„(r)+ W, (r}, where W„(r} and W, (r) are
the work done against the electric fields 8„(r}and 8,(r)
due to the Fermi [p„(r,r')] and Coulomb [p,(r, r')] hole-
charge distributions, respectively. The Fermi hole is a
consequence of the Pauli principle, whereas the Coulomb
hole arises due to Coulomb repulsion. The work W„(r)
against the force field due to the Fermi hole charge can
be determined exactly since the Fermi hole is known ex-
plicitly in terms of the orbitals 4;(r) as

p„(r,r') = ~y(r, r')
~ /2p(r), where y(r, r') =g;4,'(r)4;(r')

is the single-particle density matrix with the index i in-
cluding spin. However, since the determination of the
Coulomb-hole charge requires knowledge of the true
wave function, its structure is unknown and must be ap-
proximated. Thus the work W, (r) is unknown and also
to be approximated.

Implicit in the association of a force field with the
Fermi-Coulomb-hole charge is that the work W„,(r)
done is path independent or equivalently that the curl of
the electric field vanishes in order that the potential be
well defined. This is rigorously the case for symmetric
systems [2,3] such as spherically symmetric atoms and
jellium metal surfaces as well as open-shell atoms in the
central-field model. For nonsymmetrical systems there is
as yet [2,3] no rigorous proof of the path independence of
the work W„,(r). In the literature, it has been shown [10]
that for nonspherical densities as obtained from degen-
erate states of atoms within the central-field model, the
curl of the electric field due to the Fermi hole is finite.

and the local many-body potential W„,(r} in which the
electrons move is then given by the line integral

W„,(r)= —I C„,(r') dl' . (3)

The differential equation to be solved for the determina-
tion of the properties of an interacting electronic system
in the presence of some external potential (charge) is then

This, however, does not constitute [ll] a rigorous proof
that the work W„(r) or more generally W„,(r) is path
dependent for nonsymmetrical systems. The reason for
this is that these calculations are non-self-consistent, and
therefore intrinsically inconsistent with the fact that in a
central potential the curl of the electric field must vanish.
If for systems of arbitrary symmetry, the curl does not
vanish, it has been proposed [2,3,7,8] that an approxima-
tion to the many-body potential be constructed from the
irrotational component of the electric field. The applica-
bility [8] of this approximation in a non-self-consistent
calculation of the potential for nonsymmetric atoms has
been demonstrated. It has been shown [9] that the
solenoidal component of the electric field is negligible in
comparison to the irrotational component and therefore
the approximation is accurate. Further, what is observed

[8] is that the difference between the potentials in

different directions is small and occurs primarily in the
intershell regions.

Since the effective many-body potential W„,(r) is local,
the Harbola-Sahni approach falls within the framework
of Hohenberg-Kohn-Sham [12,13] density-functional
theory. However, the Kohn-Sham and Harbola-Sahni
potentials are not equivalent. The reason for this is that
Kohn-Sham theory is a mathematical formalism based on
the variational principle for the energy, whereas the
Harbola-Sahni approach relates the quantum-mechanical
correlations of the interacting electrons directly via
Coulomb's law to the local effective potential in which

they move. For a comparison between these approaches
to the many-body problem, we refer the reader to the
literature [1—11,14,15].

The Pauli-correlated approximation within the
Harbola-Sahni approach is comprised of setting 8', =0 in

Eq. (4} and calculating the work W„(r) exactly from the
orbitals 4;(r) of the resulting differential equation. This
approximation is thus the counterpart to Hartree-Fock
theory for which the orbital-dependent potentials are also
explicitly known in terms of the orbitals. A fundamental
difference between Hartree-Fock theory and the Pauli-
correlated approximation of the Harbola-Sahni approach,
however, is that the former is derived via the variational
principle for the energy, whereas the latter is based en-

tirely on physical arguments. Furthermore, whereas the
effects of Pauli correlation in Hartree-Fock theory are
represented by an integral operator, the potential W„(r)
is multiplicative. This locality of the many-body poten-
tial in the Harbola-Sahni approach makes calculations
for atoms and jelliurn metal surfaces easier to perform,
and in all probability this should also prove to be the case
for more complex systems. The orbitals %,.(r), however,
are not the Hartree-Fock theory orbitals because they are
derived from a local potential. Thus the total ground-
state energy, calculated with a Slater determinant of
these orbitals, will be a rigorous upper bound to the
Hartree-Fock-theory value.

Within the Pauli-correlated approximation, the
highest-occupied-orbital eigenenergy of the Harbola-
Sahni differential equation has important physical
significance. This arises as a consequence of the fact that
the asymptotic structure of the many-body potential
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W„,(r) for the fully (Pauli and Coulomb) correlated sys-
tem is known exactly and is that of the potential W„(r)
alone. The reason for this is that the hole charge around
each electron is the same in magnitude as that of the elec-
tron whether one considers only Pauli or both Pauli as
well as Coulomb correlations. Since both the Fermi-
Coulomb and Fermi holes satisfy the charge-conservation
sum rule

J p„,(r, r')dr'= fp„(r,r')dr'=1, (5)

it follows that the total Coulomb-hole charge is zero.
Thus the Coulomb hole contributes to the potential
W, (r) for electron positions within or about this charge
distribution. The asymptotic structure of the potential
W„,(r) is determined entirely by the Fermi hole. There-
fore, by solving the problem in the Pauli-correlated ap-
proximation, the asymptotic structure of the potential for
the fully correlated system is automatically determined.
As a consequence, the corresponding highest-occupied-
orbital eigenvalue which depends principally on this
asymptotic structure should approximate well the experi-
mental ionization potential. On the other hand, the
highest-occupied-orbital eigenvalue of Hartree-Fock
theory can only be interpreted as a removal energy via
Koopmans's theorem [16]. The highest-occupied-orbital
eigenvalue of Hartree-Fock theory is the difference be-
tween the total ground-state energies of the neutral and
singly ionized systems, with the latter energy being deter-
mined by the orbitals of the neutral system. Thus, if the
true orbitals of the ionized system do not differ from
those of the neutral system, as is the case for metals, then
the Hartree-Fock highest-occupied-orbital eigenvalue can
be interpreted as a removal energy. However, if there is a
relaxation of the orbitals on ionization, as is the case for
atoms, the interpretation of the highest-occupied-orbital
eigenvalue as a removal energy is less rigorous.

The results of application of the Harbola-Sahni ap-
proach in the Pauli-correlated approximation to the inho-
mogeneous electronic systems at metallic surfaces
[1,2,4,5] and atoms [1—3,6] with closed subshells confirm
the above remarks on the total ground-state energy, the
asymptotic structure of the potential, and the highest-
occupied-orbital eigenvalues. It has been shown [2,4,5]
that the asymptotic structure of the potential at a metal
surface is the image potential, in agreement with the re-
sults of classical physics. The asymptotic structure of the
potential in atoms [1—3,6] goes as —( I/r), in agreement
with both classical physics and Schrodinger theory. The
total ground-state energies [6] of the atoms considered
are upper bounds to and lie within 50 ppm of the
Hartree-Fock-theory results [17] for atoms heavier than
beryllium. The highest-occupied-orbital eigenvalues [6]
are good approximations to the experimental ionization
potentials [18], being closer to experiment than those of
Hartree-Fock theory. More recently [19],employing the
Harbola-Sahni approach, convergent self-consistent solu-
tions for stable negative ions within the Pauli-correlated
approximation have been achieved. In the past [20] such
convergent solutions within the local-density approxima-
tion [12,13] have only been obtained by constraining the

electrons with a fictitious spherical barrier. As is the case
for neutral atoms the ground-state energies are essentially
the same and lie above those of Hartree-Fock theory [21].
More significantly, the highest-occupied-orbital energies
are closer to the experimental electron affinities [22] of
the corresponding neutral atoms than those obtained by
Hartree-Fock theory. In addition, Hartree-Fock quality
values of the static dipole and quadrupole antishielding
factors for negative ions have also been obtained [23].

In this paper we present the results of self-consistent
calculations on atoms from He (Z =2) to Rn (Z =86) as
performed via the Harbola-Sahni approach in the Pauli-
correlated approximation. The central-field model is as-
sumed for the open-shell atoms so that the effective ex-
change potential for all atoms is path independent. How-
ever, as noted previously, the noncentral part of the ex-
change potential for open-shell atoms is a small perturba-
tion in the less significant intershell regions (see Fig. 4 of
Ref. [8]), and thus the central-field approximation for
these atoms is accurate. The calculations are also spin re-

stricted and nonrelativistic. The results presented are the
total ground-state energies, highest-occupied-orbital ei-

genvalues, and the expectation values of the single-

particle operators r, r, r ', r, and 5(r). (Results for
total energies and highest-occupied-orbital eigenvalues
for atoms with closed subshells up to Xe (Z =54) have

been given previously [2,6].) All the results are com-

pared with those of Hartree-Fock theory [17] within the
central-field model of atoms. The highest-occupied-
orbital eigenvalues are in addition compared to the exper-
imental ionization potentials [18]. We reiterate, however,
that in our calculations we have not incorporated either
Coulomb-correlation or relativistic effects. Both these
effects are important for the determination of electronic
structure, with the latter being particularly significant for
the heavier atoms (Z &30). Our purpose for comparing
the highest-occupied-orbital eigenenergies with the exper-
imental ionization potentials, however, is to demonstrate
that it is the exchange potential W„(r) which corre-
sponds to the total local effective potential in the asymp-
totic regions of the atom. We note that in contrast there
is no such connection between the asymptotic structure
of the orbital-dependent potentials of Hartree-Fock
theory and the total effective potential.

In Sec. II we describe the central-field model of an
atom as defined within the Harbola-Sahni approach. The
results of application and their evaluation are given in
Sec. III. Concluding remarks and directions for future
research are given in Sec. IV.

II. CENTRAL-FIELD MODEL OF ATOMS

In the central-field model of atoms, the electrons are
assumed to move in a central potential so that the elec-
tronic wave functions are separable and may be written
as

(r)=R„I(r)YI (8,$),
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where R«(r } is the radial part of the wave function and

Y& (O, t)It), the angular part, is the spherical harmonic of
order (l, rn) .In the Harbola-Sahni approach within the
Pauli-correlated approximation, the central-field model is
comprised of spherically averaging the single-particle
density matrix y(r, r') over the coordinates of the elec-
trons of a given orbital-angular-momentum quantum
number. For open-sheH atoms this is equivalent to spher-
ically averaging the radial component of the electric field
due to the Fermi hole so that the resulting field and po-
tential are spherically symmetric. For closed-subshell
atoms, this is automatically the case. The spherical aver-
age of the radial component of the electric field defined

by Eq. (2) is

6„„( )=— f „(,'), d'dQ, ,
1 1

4m. " '
Br r —r'

and the expression for the Fermi hole p„(r, r') to be sub-

stituted into it is

Ir«, r') I'
p( ) ()

R«(r )R«(r')R„.~.(r}Rn't'(r )
p(r) „,

where the density p(r} is

X Yi' (Q)Yi (Q')

X Yt. .(Q) Yt* (Q'),

p(r ) = g(21+1)R„&(r) .1

n, l

Employing the expansion
I"

=4~ g Y,'„„(Q)Y,„„(Q')

(10)

where r & (r & ) is the smaller (larger) of ~r~ and ~r'~, the
expression for the electric field becomes

= 2 16„„(r)= R t(r)R„/(r )R 'i'(r)R„.i.(r')
p(r) „i (21"+ 1)

r'"
8

r dr'
Qr r I"+ i

X f Y,
" (Q)Y, (Q)Y,'„„(Q)dQf Y( (Q')Yi', , (Q')Y,„„(Q')dQ'.

Using the orthonormality condition [24], and the coupling rule [24] for spherical harmonics, which is

(21 i + 1)(213+1)
Yi (Q) Y& (Q)=g C(lil21;mimz)C(l, lzl;000) Y& + (Q), (12)

where C are the Clebsch-Gordan [24,25] coefficients, the integrals over the solid angles in Eq. (11) which are complex
conjugates of each other are

(21i + 1)(212+1)
f Y; (Q) Y, (Q) Y, (Q)dQ= C(l, l, l, ;m, m, m, )C(l, 1313 000)5 +

3m3 Z 2 4ir(213+ 1) 3' 1 2
(13)

Substituting for these integrals, the expression for the spherically averaged field becomes

@„„(r)= f g R«(r)R«(r')R„ i (r)R„ t.(r') r' dr'1 8 r &,2, (21+1)

I tt

X C (ll "1',m, m' —m, m')C (ll "1',000) . (14)

W„(r)= —f 6'„„(r')dr' . (15)

The above expression Eq. (14) for the electric field has
been derived for closed-subshell atoms so that an occu-
pancy of (21+1) has been assumed. For open subshells a
partial occupancy of Nt l(21 + 1 },where N& is the nuinber
of electrons in the subshell, should be used. Since the
curl of this electric field vanishes, the spherically sym-
metric local exchange potential W„(r) is given by the in-
tegral

Vhth this local potential, the resulting radial differential
equation [see Eq. (4)] is then solved to self-consistency
following Madelung's law [26] for the configuration of
atoms. According to this law, the electron shells for con-
secutive atoms are filled in the order of the sum of the
quantum numbers (n+I), and shells with equal (n+1)
numbers are filled in the order of the quantum number n.
(The configurations assumed in Fischer's Hartree-Fock-
theory calculations are those of Madelung's law. ) The to-
tal ground-state energy is then the sum of the kinetic Ek,
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electrostatic E„,and exchange E„energies, where

E„=—
—,'g f%,*(r)V 4;(r)dr,

E„=—,
' fp(r)V„(r)dr, (16)

p(r)p„(r, r')

[Note that the sum of the expressions of Eq. (16) is
equivalent to the expectation value of the nonrelativistic
Hamiltonian taken with a Slater determinant of the orbit-
als. ]

III. RESULTS

In this section we present and analyze the results for
ground-state energies, highest-occupied-orbital eigenval-

ues, and various single-particle operator expectation
values of atoms as obtained in the central-field model de-

scribed in the preceding section. However, prior to dis-

cussing the results we make the following general re-
marks. A sensitive indicator of the accuracy of numeri-
cal computations such as these involving local potentials
is the degree to which the virial theorem based
exchange-energy-potential sum rule of density-functional
theory due to Levy and Perdew [27] is satisfied. (The sa-
tisfaction of the sum rule is also an indicator of the accu-
racy of difFerent formalisms. ) The sum rule is an integral
relationship between the exchange potential p„of Kohn-
Sham theory, which is the functional derivative of the ex-
change energy functional, and the exchange energy, and
is given as

E„[@;]=—Jdrp(r)r Vp, (p(r);r) . (17)

It has been shown analytically [1,8] that for orbitals gen-

erated from a field whose curl vanishes the potentials
(and the orbitals) satisfy this sum rule. In our calcula-
tions, the self-consistently-determined orbitals and ex-

change potentials satisfy this sum rule from six to eight
significant figures. We refer the reader to Ref. [6] on
closed-subshell atoms for a comparison of the accuracy of
the exchange energy as obtained from the orbitals and

from the local exchange potential. The orbitals generated
also satisfy the virial theorem to the same degree. The
structure of the local exchange potential is as described in

our previous work [1—3,6]. The slope of the potential is

always positive, there being a distinct change in the slope
in the intershell regions. This indicates that work must

always be done against the attractive force of the Fermi
hole in order to remove an electron from the atom. For
asymptotic positions of the electron, the effective poten-
tial is —(llr), and is that of the exchange potential
alone. Lastly, as is implicit in the Harbola-Sahni ap-

proach, all the results for the He atom are the same as

those of the Hartree-Fock theory. For purposes of com-

pleteness we also include here results for the closed-
subshell atoms given previously [6]. We next discuss the
specific results.

A. Total ground-state energies

In Table I we present our results for the total ground-
state energies in atomic units together with those of
Hartree-Fock theory. The latter calculations are also
performed [17] in the central-field model of an atom. The
negative values of the energies in atomic units are quoted.
Observe that since the energies are obtained from orbitals
generated from a 1ocal potential, they all lie above those
of Hartree-Fock theory, as they must. However, the two
sets of results are essentially equivalent. In Table II we

quote the differences in parts per million between the en-

ergies obtained by us and those of Hartree-Fock theory.
Note that as the number of electrons in the atoms in-
creases, these differences diminish. For the hghter atoms,
Li to 0, the differences lie between 137 and 53 ppm. By
F these differences are down to 50 ppm, by Br they are

down to 10 ppm, and by Hf they are less than 5 ppm.
For Rn, our result differs from that of Hartree-Fock
theory by 2 ppm.

B. Highest-occupied-orbital eigenvalues

As noted in the Introduction, the asymptotic structure
of the potential W„(r) is that of the fully correlated sys-

tem. Consequently, it is meaningful to compare the self-

consistently-determined highest-occupied-orbital eigen-

values obtained within the Pauli-correlated approxima-
tion to the experimental ionization potentials. In Table
III we present the Harbola-Sahni (HS) approach results

for the highest-occupied-orbital eigenvalues together with

the experimental ionization potentials and those of
Hartree-Fock (HF) theory. The negative values of the

eigenenergies are quoted. In the table the atoms are

grouped together on the basis of the commonality of
chemical properties. The atomic configurations accord-

ing to Madelung's law [26] are also given.
We summarize the results for all the atoms by plotting

in Figs. 1 and 2 the magnitude of the difference between

the experimental ionization potential and the highest-

occupied-orbital eigenvalues as obtained via Hartree-
Fock theory and the Harbola-Sahni approach. Panels (a)

of these figures correspond to those atoms for which the

HS results are closer to the experimental ionization po-
tentials than those due to HF, and panels (b) for the cases

where the reverse is true. Note that whereas the scales of
Figs. 1(a) and 2(a) are the same, those for Figs. 1(b) and

2(b) are diff'erent. It is evident from these figures that for
the majority of atoms considered, the HS results lie closer

to experiment. Furthermore, for those atoms for which

the HF results are closer, the differences between the two

theories [see Figs. 1(b) and 2(b)] are of the order of a few

hundredths of a rydberg. For atoms with Z & 55 the HS
highest-occupied-orbital eigenvalues lie within 0.05 of the

experimental ionization potentials and for the heavier

atoms within 0.1. These results clearly demonstrate that

in the outer regions of an atom, the potential W„(r) is in

fact the exact effective potential. The differences between

the HS results and experiment of course arise because

both correlation and relativistic effects are not accounted

for in the present calculations.
We also note that the observed structure of certain
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TABLE I. Total ground-state energy of atoms in the central-field model as obtained by the Harbola-Sahni approach in the Pauli-
correlated approximation. The corresponding Hartree-Fock-theory results are also given. The negative values of the energies in
atomic units are quoted.

Atomic
number

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Atom

He
Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
T1
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru

Hartree-Fock'

2.862
7.433

14.573
24.529
37.689
54.401
74.809
99.409

128.547
161.860
199.615
241.877
288.854
340.719
397.505
459.482
526.818
599.165
676.758
759.736
848.406
942.884

1 043.310
1 149.866
1 262.444
1 381.415
1 506.871
1 638.950
1 777.848
1 923.261
2 075.360
2 234.239
2 399.868
2 572.441
2 752.055
2 938.357
3 131.546
3 331.684
3 538.995
3 753.552
3 975.443
4 204.789
4441.487

Harbola-Sahni

2.862
7.432

14.571
24.526
37.685
54.396
74.805
99.405

128.542
161.851
199.606
241.868
288.844
340.707
397.493
459.470
526.804
599.149
676.743
759.717
848.382
942.858

1 043.280
1 149.833
1 262.414
1 381.386
1 506.843
1 638.922
1 777.820
1 923.235
2 075.334
2 234.212
2 399.842
2 572.416
2 752.030
2 938.330
3 131.519
3 331.656
3 538.963
3 753.517
3 975.405
4 204.747
4441.448

Atomic
number

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Atom

Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn

Hartree-Fock'

4 685.801
4 937.783
5 197.518
5 465.133
5 740.169
6 022.932
6 313.485
6 611.784
6 917.981
7 232.138
7 553.934
7 883.544
8 221.064
8 566.920
8 921.181
9 283.883
9 655.099

10034.953
10423.543
10 820.617
11 226.568
11 641.453
12 065.290
12 498.153
12 940.174
13 391.456
13 851.808
14 321.250
14 799.813
15 287.546
15 784.533
16290.649
16 806.113
17 330.949
17 865.212
18 408.991
18 961.825
19 524.008
20 095.586
20 676.501
21 266.882
21 866.772

Harbola-Sahni

4 685.762
4 937.744
5 197.479
5 465.093
5 740.130
6022.893
6 313.447
6 611.746
6 917.944
7 232.101
7 553.895
7 883.506
8 221.021
8 566.871
8 921.125
9 283.822
9 655.034

10034.883
10423.466
10 820.546
11 226.500
11 641.385
12 065.223
12498.087
12 940.109
13 391.389
13 851.745
14 321.187
14 799.750
15 287.484
15 784.469
16290.588
16 806.054
17 330.891
17 865.153
18 408.932
18 961.768
19 523.953
20 095.532
20 676.448
21 266.830
21 866.721

'See Reference [17].

atoms differs from that of Madelung's law. These atoms
and their observed structures are Cr ([Ar]31 4s '), Cu
([Ar]31' 4s'), Rh ([Kr]41 5s'), Pd ([Kr]41' ), Ag
([Kr]41' Ss'), La ([Xe]51'6s ), Gd ([Xe]4f 51'6s ),
and Au ([Xe]4f' 51' 6s'). However, we expect that
the difference in configuration cannot affect to any degree
the results quoted since the energy separation between
the last 1 and s shells or 1and f shells is small.

C. Expectation values

In Table IV we present our results for the expectation
value of the single-particle operators r, r, r ', r, and
5(r) in atomic units. These expectation values sample
both the exterior and interior of atoms as well as deter-
mine its size. They are also related to various atomic
properties [28] such as the diamagnetic susceptibility
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Atoms

He
Li, Be

5B
6C

N
8O

9F 34Se

"Br—"Lu
72Hf 86Rn

Differences (ppm)

0
137
122
106
92
53

50-10
10—5

&5

TABLE II. Total ground-state energy differences in parts per
million between the results of the Hartree-Fock theory and
Harbola-Sahni approach.

((r ) ), nuclear magnetic shielding ((r ') ), and the Fer-
mi contact term ((5(r))). Since Fischer's [17] calcula-
tions are performed in the central-field approximation
with a single-configuration wave function, the expecta-
tion values of these operators taken with the resulting
Hartree-Pock-theory wave functions are, according to
Brillouin's theorem [29], correct to second order in the
error of the wave function. Thus, for purposes of com-
parison we also include in Table IV these expectations as
determined via Hartree-Fock theory.

As a consequence of the fact that the operator r ' ap-
pears in the Hamiltonian, its expectation value as calcu-
lated from wave functions obtained by application of the
variational principle for the energy is particularly accu-

TABLE III. Highest-occupied-orbital eigenvalues of atoms in the central-field model as obtained by
the Harbola-Sahni approach in the Pauli-correlated approximation. The corresponding Hartree-Fock-
theory results as well as the experimental ionization potentials are also given. The negative values of
the eigenenergies in rydbergs are quoted.

Atom Structure Hartree-Fock' Harbola-Sahni Experiment

Atoms with last closed subshell an s subshell

He
4Be
' Mg
2Oc

"Zn
38S

48Cd

Ba
7oYb
80Hg

2s
[He]2s '
[Ne]3s'
[Ar]4s
[Ar]3d i04

[Ar]3d' 4p 5s
[Kr]4d' 5s'
[Xe]6s~

[Xe]4f' 6s
[Xe]4f' 5d' 6s

1.836
0.619
0.506
0.391
0.585
0.357
0.530
0.315
0.365
0.522

1.836
0.626
0.521
0.402
0.646
0.369
0.583
0.325
0.383
0.580

1.807
0.685
0.562
0.449
0.690
0.419
0.661
0.383
0.460
0.767

' Ne
"Ar

Kr
Xe
Rn

[He]2s'2p 6

[Ne]3s23p
[Ar]3d'04s 4p
[Kr]4d '05s 5p
[Xe]4f'"Sd' 6s'6p

Noble-gas atoms

1.701
1.182
1.048
0.915
0.856

1.713
1.178
1.035
0.899
0.838

1.585
1.158
1.029
0.892
0.790

First transition group

21SC

22Ti
23+

24Cr

Mn
26F
27co
28N

[Ar]3d "4s'

n —2
n =3
n=4
n=5
n=6
n =7
n=8

0.420

0.442
0.461
0.479
0.496
0.516
0.535
0.553

0.446 (4s)
0.415 (3d)
0.478
0.505
0.529
0.552
0.571
0.591
0.610

0.481

0.501
0.495
0.497
0.546
0.578
0.578
0.561

Second transition group

41Nb

Mo

[Kr]4d "Ss n=1

n =3
n=4

0.392

0.415

0.433
0.449

0.423 (Ss)
0.337 (4d)
0.458 (5s)
0.438 (4d)
0.484
0.504

0.469

0.503

0.506
0.522
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TABLE III ( Continued).

Atom Structure Hartree-Fock'

Second transition group

Harbola-Sahni Experiment

4'Tc
44Ru

4'Rh
46pd

n=5
n=6
n =7
n=8

0.463
0.480
0.494
0.507

0.523
0.536
0.548
0.560

0.535
0.542
0.548
0.613

Third transition group

Hf

73Ta
74W

"Re
76OS

Ir
78Pt

[Xe]4f"Sd"6s' n =2

n =3
n=4
n=5
n=6
n =7
n=8

0.418

0.435
0.450
0.461
0.478
0.491
0.503

0.470 (6s)
0.426 (5d)
0.494
0.513
0.531
0.540
0.551
0.561

0.515

0.580
0.587
0.579
0.639
0.669
0.662

58Ce

59Pr

Nd
'Pm

"Sm
"Eu
646d
65Tb

660'
"Ho
68Er

Tm
70gb

[Xe]4f"6s n =2
n =3
n=4
n=5
n=6
n =7
n=8
n=9
n =10
n =11
n =12
n =13
n =14

Rare earths

0.324
0.328
0.332
0.335
0.339
0.342
0.346
0.349
0.352
0.356
0.359
0.362
0.365

0.338
0.342
0.347
0.351
0.355
0.359
0.362
0.366
0.369
0.373
0.376
0.380
0.383

0.402
0.398
0.404
0.408
0.414
0.417
0.451
0.430
0.436
0.442
0.448
0.454
0.460

57La

71L [Xe]4f' Sd'6s

0.320

0.398

0.332 (6s)
0.267 (4f)
0.435 (6s)
0.330 (5d)

0.410

0.399

Li
"Na
19K

Rb
55Cs

[He]2s '

[Ne]3s '

[Ar]4s '

[Kr]5s '

[Xe]6s '

Alkali metals

0.393
0.364
0.295
0.276
0.247

0.405
0.390
0.317
0.299
0.268

0.396
0.378
0.319
0.307
0.286

9F
17C1

"Br
53I

At

[He]2s '2p '
[Ne] 3s '3p '
[Ar]3d '04s 24p '
[Kr]4d '05s 25p '
[Xe]4f' Sd' 6s 6p'

Halogens

1.460
1.013
0.914
0.806
0.760

1.464
1.006
0.900
0.791
0.743

1.281
0.953
0.868
0.768
0.708

Atoms with less than half filled p subshells

5B
6C

'3Al
14S1

[He]2s 2p'
[He]2s 2p

[Ne]3s 23p '

[Ne]3s 3p2

0.620
0.867

0.420
0.594

0.581
0.818

0.406
0.571

0.610
0.828

0.440
0.599
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Atom Structure

TABLE III. (Continued).

Hartree-Fock' Harbola-Sahni Experiment

Atoms with less than half filled p subshells

'Ga
32Ge
49I

"Sn
"Tl
82Pb

[Ar]3d' 4s 4p'
[Ar]3d' 4s'4p'
[Kr]4d' 5s Sp'
[Kr]4d' Ss 5p'
[Xe]4f' Sd' 6s 6p'
[Xe]4f 5d 6s 6p

0.417
0.575
0.395
0.530
0.385
0.511

0.410
0.556
0.387
0.511
0.378
0.494

0.441
0.581
0.425
0.540
0.449
0.545

Atoms with half and two-thirds filled p subshells

N
8g
15p

16S

As
'4se
51Sb

52Te
83B

84p

29Cu
47A

"Au

[He]2s '2p '
[He]2s '2p '
[Ne]3s 3p'
[Ne]3s'3p'
[Ar]3d 4s 4p
[Ar]3d' 4s 4p
[Kr]4d' 5s 5p'
[Kr]4d' Ss 5p
[Xe]4f' Sd' 6s 6p'
[Xe)4f ' Sd' 6s'6p'

[Ar]3d 4s'
[Kr]4d 5s'
[Xe]4f' 5d 6s'

1.135
1.264
0.783
0.875
0.739
0.806
0.669
0.720
0.640
0.683

Noble-metal atoms

0.569
0.519
0.513

1.078
1.249
0.754
0.861
0.712
0.789
0.644
0.702
0.616
0.665

0.628
0.572
0.570

1.068
1.001
0.771
0.761
0.721
0.717
0.635
0.662
0.536
0.619

0.568
0.557
0.678

'See Reference [17].
See Reference [18].
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FIG. 1. The magnitude of the difference (in Ry) between the

experimental ionization potential I and the highest-occupied-

orbital eigenvalue c, as obtained in Hartree-Fock theory and

the Harbola-Sahni approach within the Pauli-correlated ap-

proximation as a function of the atomic number Z for Z =2—42.
Panel (a) corresponds to atoms for which the Harbola-Sahni re-

sults are closer to experiment than those of Hartree-Fock

theory, and panel (b) to atoms for which the reverse is the case.

0.00
43

1 /
/

/
/

I ~ I a d

53 63 73
Atomic Number 2

83

FIG. 2. The figure caption is the same as that of Fig. 1 with
the exception that the atomic number Z ranges from Z =42 —86.
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TABLE IV. The expectation value of the single-particle operators r, r, r ', r, and 5{r)for atoms
in the central-Seld model as obtained by the Harbola-Sahni {HS) approach in the Pauli-correlated ap-
proximation. The corresponding Hartree-Fock (HF) theory (Ref. I'17]) results are also given. The ex-
pectation values quoted are in atomic units.

Z Atom

He HS
HF

0.9273
0.9273

1.1848
1.1848

1.6873
1.6873

5.9955
5.9955

3.5959
3.5959

Li

Be

HS
HF

HS
HF

1.6320
1.6733

1.5140
1.5322

5.8541
6.2107

4.2211
4.3297

1.9073
1.9052

2.1040
2.1022

10.0624
10.0706

14.3918
14.4045

13.8014
13.8148

35.3514
35.3877

10

B

N

0

Ne

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

1.3525
1.3621

1.1854
1.1908

1.0468
1.0500

0.9466
0.9512

0.8597
0.8642

0.7852
0.7891

3.1391
3.1702

2.2892
2.2987

1.7234
1.7261

1.3851
1.3961

1.1260
1 ~ 1371

0.9280
0.9372

2.2779
2.2760

2.4502
2.4482

2.6212
2.6194

2.7847
2.7824

2.9490
2.9465

3.1138
3.1113

18.6997
18.7310

23.0792
23.1273

27.5369
27.6000

32.0602
32.1529

36.6658
36.7818

41.3537
41.4890

71.7560
71.9214

127.0741
127.4580

205.2651
205.9683

310.2906
311.6609

446.1298
448.3222

616.7369
619.9221

12

Na

Mg

HS
HF

HS
HF

0.9594
0.9858

1.0051
1.0215

2.2373
2.4687

2.3549
2.4676

3.2241
3.2209

3.3294
3.3267

46.1839
46.3181

51.1017
51.2379

829.9235
833.7575

1 089.0796
1 093.7178

13

14

15

16

17

18

Al

Si

Cl

Ar

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

1 QAAA

1.0551

1.0265
1.0343

0.9920
0.9982

0.9616
0.9673

0.9257
0.9307

0.8885
0.8928

2.5191
2.5751

2.2729
2.3043

1.9968
2.0183

1.8021
1.8227

1.6081
1.6255

1.4322
1.4464

3.4255
3.4231

3.5197
3.5174

3.6120
3.6099

3.7009
3.6988

3.7887
3.7869

3.8755
3.8736

56.0418
56.1829

61.0165
61.1619

66.0241
66.1736

71.0606
71.2166

76.1275
76.2892

81.2239
81.3908

1 397.2025
1 402.8456

1 758.8655
1 765.6069

2 178.3614
2 186.3141

2 660.0332
2 669.4696

3 208.1531
3 219.1902

3 827.0091
3 839.7817

19

20 Ca

HS
HF

HS
HF

1.0028
1.0237

1.0484
1.0623

2.4780
2.6964

2.7114
2.8283

3.9439
3.9417

4.0100
4.0080

86.3706
86.5382

91.5533
91.7232

4 524.3597
4 538.6539

5 303.5527
5 319.6070

21 Sc HS
HF

1.0099
1.0227

2.4179
2.5317

4.0831
4.0814

96.7001
96.8718

6 164.4231
6 182.3042
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TABLE IV. (Continued).

Atom (5(r) )

22

23

24

25

26

27

28

29

Mn

Fe

Co

Ni

CQ

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

0.9686
0.9815

0.9295
0.9426

0.8929
0.9061

0.8582
0.8715

0.8284
0.8407

0.7997
0.8114

0.7727
0.7839

0.7473
0.7579

2.1585
2.2798

1.9439
2.0659

1.7627
1.8820

1.6042
1.7229

1.4793
1.5822

1.3656
1.4588

1.2645
1.3497

1.1742
1.2526

4.1569
4.1555

4.2306
4.2293

4.3041
4.3028

4.3776
4.3764

4.4497
4.4483

4.5218
4.5203

4.5938
4.5921

4.6655
4.6638

101.8553
102.0276

107.0212
107.1951

112.1992
112.3751

117.3902
117.5669

122.5926
122.7760

127.8085
127.9967

133.0376
133.2301

138.2798
138.4765

7 113.4939
7 133.2301

8 155.1872
8 176.9552

9 293.8828
9 317.8305

10533.938
10560.077

11 879.715
11908.704

13 335.544
13 367.382

14905.764
1494).568

16594.700
16632.599

30 Zn HS
HF

0.7230
0.7334

1.0920
1.1660

4.7372
4.7355

143.5356
143.7352

18406.677
18447.675

31

32

Ga HS
HF

HS
HF

0.7467
0.7548

0.7502
0.7563

1.2722
1.3219

1.2703
1.3005

4.7969
4.7952

4.8557
4.8540

148.8447
149.0477

154.1725
154.3779

20 352.768
20 397.202

22 432.300
22 480.118

33

34

35

36

As

Se

Br

HS
HF

HS
HF

HS
HF

HS
HF

0.7461
0.7509

0.7430
0.7472

0.7356
0.7392

0.7258
0.7289

1.2235
1 2AAA

1.1940
1.2110

1.1443
1.1577

1.0875
1.0981

4.9136
4.9119

4.9699
4.9683

5.0256
5.0240

5.0807
5.0792

159.5176
159.7251

164.8775
165.0882

170.2531
170.4667

175.6439
175.8599

24 649.641
24 700.939

27 009.198
27 064.393

29 515.406
29 574.567

32 172.660
32 235.890

37

38

Rb HS
HF

HS
HF

0.7927
0.8055

0.8279
0.8372

1.7051
1.8447

1.9179
2.0016

5.1281
5.1264

5.1745
5.1729

181.0577
181.2747

186.4894
186.7082

34 990.627
35 057.626

37 971.637
38 042.812

39

41

42

43

Zr

Mo

TG

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

0.8229
0.8298

0.8102
0.8173

0.7962
0.8036

0.7818
0.7895

0.7668
0.7750

1.8176
1.8818

1.6916
1.7611

1.5807
1.6536

1.4828
1.5569

1.3921
1.4693

5.2226
5.2212

5.2710
5.2698

5.3193
5.3182

5.3674
5.3663

5.4154
5.4143

191.9137
192.1329

197.3434
197.5623

202.7793
202.9982

208.2219
208.4409

213.6716
213.8903

41 114.120
41 189.282

44425. 160
44 504.257

47 909.362
47 992.582

51 571.257
51 658.750

55 415.360
55 507.100
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(Continued). TABLE D .

Z Atom

45

46

47

48

Ru

Rh

Pd

Ag

Cd

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

0.7542
0.7616

0.7409
0.7480

0.7277
0.7345

0.7147
0.7212

0.7016
0.7081

1.3239
1.3903

1.2570
1.3177

1.1946
1.2509

1.1365
1.1893

1.0813
1.1325

5.4627
5.4616

5.5098
5.5087

5.5568
5.5557

5.6035
5.6024

5.6502
5.6490

219.1275
219.3482

224.5906
224.8126

230.0607
230.2839

235.5378
235.7619

241.0218
241.2466

59 446.034
59 542.829

63 667.865
63 769.628

68 085.261
68 192.073

72 702.656
72 814.609

77 524.497
77 641.557

49

50

51

52

53

54

In

Sn

Sb

Te

Xe

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

0.7195
0.7248

0.7253
0.7294

0.7259
0.7294

0.7271
0.7301

0.7252
0.7277

0.7212
0.7233

1.2188
1.2552

1.2374
1.2609

1.2197
1.2366

1.2129
1.2261

1.1872
1.1973

1.1524
1.1602

5.6909
5.6898

5.7313
5.7301

5.7713
5.7701

5.8104
5.8093

5.8492
5.8481

5.8876
5.8866

246.5312
246.7584

252.0496
252.2786

257.5767
257.8074

263.1115
263 3AAA

268.6545
268.8893

274.2056
274.4421

82 563.142
82 686.163

87 816.418
87 945.278

93 288.803
93 423.567

98 984.739
99 125.883

104908.79
105 056.34

111065.41
111219.44

55

56

Cs

Ba

HS
HF

HS
HF

0.7721
0.7816

0.8015
0.8085

1.6646
1.7796

1.8685
1.9399

5.9220
5.9208

5.9558
5.9547

279.7693
280.0067

285.3428
285.5817

117465.26
117625.45

124 109.98
124 276.86

57

59

62

63

65

La

Ce

Pr

Nd

Pm

Sm

Eu

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

0.7891
0.7956

0.7762
0.7825

0.7634
0.7696

0.7508
0.7569

0.7386
0.7446

0.7266
0.7326

0.7149
0.7209

0.7039
0.7098

0.6931
0.6989

1.7915
1.8627

1.7195
1.7913

1.6526
1.7248

1.5906
1.6622

1.5327
1.6034

1.4782
1.5481

1.4265
1.4960

1.3793
1.4460

1.3342
1.3988

5.9952
5.9943

6.0350
6.0343

6.0749
6.0744

6.1149
6.1145

6.1548
6.1545

63948
6.1945

6.2347
6.2346

6.2744
6.2742

6.3141
6.3138

290.8814
291.1199

296.4212
296.6589

301.9633
302.2001

307.5081
307.7447

313.0560
313.2926

318.6072
318.8437

324.1620
324.3977

329.7198
329.9579

335.2813
335.5210

130987.12
131 160.11

138 113.04
138292.14

145 492.49
145 677.79

153 130.05
153 321.83

161030.21
161 228.74

169 197.52
169402.77

177 636.42
177 848.32

186 351.40
186571.24

195 346.93
195 574.58



1446 VIRAHT SAHNI, YAN LI, AND MANOJ K. HARBOLA 45

TABLE IV. (Continued).

z Atom 2)

66

67

68

69

70

Dy

Ho

Er

Tm

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

0.6826
0.6883

0.6723
0.6779

0.6624
0.6679

0.6527
0.6581

0.6432
0.6485

1.2912
1.3541

1.2505
1.3117

1.2119
1.2713

1.1750
1.2330

1.1396
1.1965

6.3537
6.3535

6.3933
6.3931

6.4329
6.4326

6.4724
6.4721

6.5119
6.5116

340.8466
341.0874

346.4155
346.6576

351.9881
352.2316

357.5645
357.8089

363.1448
363.3897

204 627.47
204 862.90

214 197.48
214 440.88

224 061.42
224 312.96

234 223.74
234 483.40

244 688.89
244 956.57

71

72

73

74

75

76

77

78

79

80

Lu

Hf

Ta

Re

Os

Pt

Au

Hg

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

0.6427
0.6468

0.6384
0.6426

0.6335
0.6378

0.6281
0.6326

0.6223
0.6271

0.6178
0.6221

0.6127
0.6168

0.6075
0.6113

0.6021
0.6057

0.5964
0.6001

1 ~ 1189
1.1609

1.0756
1.1186

1.0349
1.0790

0.9971
1.0416

0.9597
1.0061

0.9340
0.9738

0.9064
0.9426

0.8794
0.9130

0.8532
0.8847

0.8270
0.8578

6.5470
6.5466

6.5820
6.5815

6.6167
6.6162

6.6511
6.6505

6.6853
6.6847

6.7191
6.7184

6.7526
6.7520

6.7860
6.7853

6.8193
6.8186

6.8524
6.8516

368.7549
369.0013

374.3710
374.6179

379.9924
380.2400

385.6192
385.8672

391.2511
391.4992

396.8873
397.1367

402.5284
402.7788

408.1742
408.4253

413.8246
414.0762

419.4795
419.7314

255 475.02
255 751.36

266574.60
266 859.03

277 991.90
278 284.59

289 731.46
290 032.49

301 797.83
302 107.03

314195.08
314 513.80

326 928.18
327 256.11

340 001.48
340 338.64

353 419.47
353 765.87

367 186.65
367 542. 13

81

82

83

84

86

Pb

Bi

Po

At

Rn

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

HS
HF

0.6093
0.6126

0.6153
0.6180

0.6182
0.6204

0.6214
0.6234

0.6226
0.6243

0.6224
0.6239

0.9241
0.9480

0.9496
0.9658

0.9508
0.9628

0.9586
0.9680

0.9525
0.9597

0.9391
0.9447

6.8824
6.8816

6.9122
6.9114

6.9418
6.9410

6.9709
6.9701

6.9998
6.9991

7.0286
7.0278

425. 1479
425.4016

430.8217
431.0767

436.5006
436.7569

442. 1842
442.4420

447.8727
448. 1319

453.5661
453.8265

381 318.41
381 684.67

395 809.60
396 186.26

410 664.66
411 051.72

425 888.02
426 286.07

441 484.32
441 893.32

457 458.02
457 878.01
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rate. For the He atom, for example, the Hartree-Fock-
theory result for (r ') differs from that of Pekeris's [30]
result by only 0.06%%uo, whereas for the expectation (r )
the error is 0.7%, an order of magnitude greater. The
HS values of (r ') are greater but the same as those of
HF to at least three, and for many of the heavier atoms
(Z )47) to four significant figures. For the heavier atoms
the differences between the two are at most one part per
ten thousand.

For the lighter atoms (Z &25), the HS and HF results
for ( r ) are the same to two significant figures and for
the heavier atoms to three significant figures. The
difference for the heavier atoms is one part per thousand
or less, and diminishes with increasing atomic number.

Since the HF total energies lie below those of the HS
formalism, we expect the HF electron density at the nu-
cleus (5(r)) to be better. However, the HS results are
the same to two significant figures for the lighter atoms
(Z &25) and to three significant figures for the heavier
ones. The differences for the heavier atoms are a max-
imum of only two parts per thousand, and once again this
difference diminishes with increasing atomic number.

The HS results for ( r ) and ( r ) are consistently
smaller but in general the same as HF to two significant
figures. For (r ) the difference between the two theories
is greatest for those atoms for which the outermost shell
is comprised of s electrons. However, since the HS
highest-occupied-orbital eigenvalues are in general closer
to the experimental ionization potentials, we expect these
HS expectation values to be better.

It is evident from a study of Table IV and the above
analysis that the HS and HF orbitals are essentially
equivalent; the expectations are essentially the same and
all trends in the various expectations are equally repro-
duced. For example, the monotonic decrease in (r ) as
all p, d, and f subshells are filled with the exception of the
6p subshell for which it increases, the increase in (r ) as
all s subshells are filled with the exception of the 2s sub-
shell, the dramatic increase in ( r ) for s subshells follow-
ing the filling of a p subshell, etc., are exactly the same in
both formalisms.

IV. CONCLUSION

In this work we have applied the Harbola-Sahni ap-
proach to the theory of the inhomogeneous electron gas
for the determination of the electronic structure of atoms
within the nonrelativistic Pauli-correlated approxima-
tion. In these calculations the central-field model is as-
sumed for open-shell atoms, so that the effective many-
body potential is path-independent for all atoms con-
sidered. This assumption is justified since the noncentral
part of the exchange potential for these atoms constitutes
a small perturbation [8]. In both the Harbola-Sahni ap-
proach in the Pauli-correlated approximation, as well as
in Hartree-Fock theory, only correlations between the
electrons due to the Pauli exclusion principle are con-
sidered. In Hartree-Fock theory the absolute minimum
of the total ground-state energy is guaranteed by the vari-
ational principle for the energy, and the accuracy of the

single-particle operator expectation values by Brillouin's
theorem [29]. An examination of the present results indi-
cates that for properties such as the total ground-state en-

ergy and various single-particle operator expectation
values, they are essentially equivalent to those of
Hartree-Fock theory with the differences diminishing
with increasing atomic number. The total ground-state
energies, of course, lie above those of Hartree-Fock
theory as they must. However, for the more significant
and sensitive property of the removal energy, the corre-
sponding highest-coupled-orbital eigenvalues for the ma-
jority of atoms considered are closer than those of
Hartree-Fock theory when compared with experimental
ionization potentials. For the remaining few atoms, the
results for the highest-occupied-orbital eigenvalues of the
two theories are equivalent.

For external potentials that vanish at infinity, the or-
bitals [31] of Hartree-Fock theory all have the same
asymptotic structure P, (,r) —exp( —+2s r), where e

f~oo
is the corresponding highest-occupied-orbital eigenvalue.
Thus, in Hartree-Fock theory, all the orbitals, rather
than just the highest occupied orbital as physically is the
case, contribute to the asymptotic structure of the densi-
ty. As such the relationship between the highest-
occupied-orbital eigenvalue of Hartree-Fock theory and
the experimental ionization potential has meaning only
within the context of Koopmans's theorem [16].

In contrast to Hartree-Fock theory, the Harbola-Sahni
approach to the many-electron problem is based entirely
on physical arguments founded in Coulomb's law. Thus
the equivalence of the results for the ground-state energy
and expectation values to those of Hartree-Fock theory is
indicative of the correctness of this physical interpreta-
tion of the local effective many-body potential. Further,
the fact that the highest-occupied-orbital eigenvalues are
good approximations to the experimental ionization po-
tentials clearly demonstrates that the asymptotic struc-
ture of the Harbola-Sahni potential is that of the exact to-
tal effective potential.

Hartree-Fock theory may, of course, also be interpret-
ed physically as described by Slater [32]. In this descrip-
tion each electron moves in an independent exchange po-
tential which is due to a nonlocal orbital-dependent Fer-
mi hole charge distribution p„,(r, r ). Although this pic-
ture is appealing, the orbital-dependent Fermi holes can-
not be interpreted in terms of quantum-mechanical prob-
abilities since in fact they can be negative [5,33]. Furth-
ermore, the orbital-dependent Fermi holes and conse-
quently the potentials are singular at the nodes of the or-
bitals. Within this interpretation of Hartree-Fock theory,
the single-particle potentials are obtained by treating the
orbital-dependent holes as iF they were static charge dis-
tributions. If the dynamic nature of these holes is explic-
itly taken into consideration by first calculating the elec-
tric fields, and then determining the total field by sum-
ming the weighted average of these fields weighted by the
probability of occupation of each state, then the
Harbola-Sahni potential W„(r) of the Pauli-correlated
approximation is recovered [34].

As noted in the Introduction, the Harbola-Sahni ap-
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proach to the many-electron problem falls within Kohn-
Sham density-functional theory. However, whereas the
potential 8„ is physically derived, the exchange-only
Kohn-Sham potential is de'tned [35] as that potential
whose orbitals minimize the Hartree-Fock energy. Thus
within exchange-only [35] Kohn-Sham theory, the
Harbola-Sahni potential 8'„and the Kohn-Sham poten-
tial p„are not the same. For atoms, the exchange-only
Kohn-Sham potential is obtained via the variational prin-
ciple by the optimized potential method [36,37]. As not-
ed in our previous work [3,6], the total ground-state ener-
gies [15,37] of atoms obtained within the optimized po-
tential method are closer to Hartree-Fock energies by ap-
proximately half the difference of those of the present
work. Further, the highest-occupied-orbital energies
[15,37] in this method have the same meaning as those of
Hartree-Fock, and can be interpreted [38] as the removal
energies only via Koopmans's theorem [16].

Finally, although the highest-occupied-orbital eigen-

values in our calculations within the Pauli-correlated ap-
proximation are good approximations to the experimen-
tal ionization potentials, the differences are in general
greater for the heavier atoms. This, as noted previously,
is primarily due to the neglect of relativistic effects.
Thus, in future research we 6rst propose to incorporate
these effects within the Pauli-correlated approximation.
We then propose to go beyond this approximation by also
incorporating the effects of Coulomb correlations via the
random-phase approximation and by the use of correlat-
ed wave functions.
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