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The techniques of relativistic many-body calculations on atoms and ions have been used to reformu-
late the multiconfigurational Dirac-Fock techniques in such a way that good wave functions can be ob-
tained with the same accuracy as with many-body perturbation theory, and a relationship between both
approaches has been established. As an example the hyperfine interactions of the 7s, 7pl&2, and 7p3/2
states of Ra+ have been successfully calculated and are in good agreement with experiment.

PACS number(s): 31.30.6s, 31.20.Tz, 31.30.Jv, 31.20.Di

INTRODUCTION

The first-principles calculation of atomic hyperfine in-
teractions (hfi) is still a great challenge for atomic theor-
ists. It provides an excellent test of the usefulness of
physical and numerical models with which the wave
functions, required for obtaining the hfi constants, are
calculated. Accurate wave functions are of great impor-
tance for the growing need to predict various physical
properties of atomic systems either isolated or in a solid-
state environment. During the past two decades the
methods for obtaining the wave functions and the numer-
ical codes required have been developed to such a high
level that accurate wave functions can be obtained for a
large class of atomic systems, particularly those with one
electron outside closed shells. There have been many
publications in this field of which some of the leading
ones are given in Refs. [1—8]. We will here only indicate
some points important for the introduction to our ap-
proach. -The main breakthrough in the field has been the
introduction of many-body analysis and techniques, simi-
lar to those of Feynman in his famous work on quantum
electrodynamics. This means a systematic perturbation
expansion is taken to represent the wave function we are
looking for. Lindgren and Morrison [9] give in their
book many details of the approach in nonrelativistic for-
malism. The major successes, however, were in relativis-
tic theory. Even for light systems like calcium the rela-
tivistic modification to, for instance, hyperfine interaction
is as large as 4% [10]. The relativistic approach has some
additional problems to those mentioned in the book of
Lindgren and Morrison. A good idea of the problems
can be found in Ref. [11]. An alternative method,
developed at about the same time as the many-body ap-
proach, is the multiconfiguration Dirac-Fock (MCDF}
formalism [12,13], a relativistic counterpart of the
multiconfiguration Hartree-Fock (MCHF) method [14].
It is essentially a variational method similar to the "old-
fashioned" configuration-interaction" (CI) formalism
used in theoretical chemistry. This is at the basis of the

present paper. We wi11 now point out why in our view
MCDF is an attractive alternative for the well-
established many-body perturbation method (MBPT) and
discuss the changes we have made in the MCDF pro-
cedure in order to include important advantages of the
MBPT approach.

The perturbation method has the great advantage that
one can take a certain (small} property, like hfi, as a per-
turbation and, using the many-body diagrammatic
analysis, calculate just the modifications in the total wave
function which contribute to the value of that property.
Parts of the wave function, which are not contributing,
are not calculated. The CI (MCDF} method optimizes
the total energy functional and, with the component wave
functions obtained, one can calculate many properties but
this means that for getting a value for the hyperfine in-
teraction of a certain atom one has to calculate many
components of the wave function, important for the total
energy, but maybe not for hfi. So it seems that using
MCDF produces much overhead, by which we mean ex-
cessive analytical and computational effort not directly
related to the property of interest. We will argue later
that this is in general much less severe than it seems to
be. There are other disadvantages which are more seri-
ous but these will be discussed later. The great power of
MCDF, however, is the applicability to general open-
shell systems for which the MBPT approach mentioned
earher is inadequate. The coupled-cluster theory [15] is a
new development in this field, but the techniques are not
yet well developed. This is in great contrast to MCDF,
the techniques of which, thanks to the long CI history
and the pioneering work of Grant [12], Desclaux,
Mayers, and O' Brien [13], and especially Froese Fisher
[14], are almost perfect. There are good computer codes
available [16,17], so that nonspecialists can also do very
advanced atomic calculations, an aspect which in our
view is very important. We come now to the overhead of
MCDF mentioned earlier. It was shown clearly by Kelly
[1],and the detailed research of the group of Lindgren [9]
that higher orders and in many cases even all orders in
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I. METHODS

The many-particle Hamiltonian is taken to be

H+(r, , . . . ,r„)=F%'(r„.. . ,r„),

H= g ca; p, +P,-mc
Ze

2

(2)

the perturbation expansion are required to explain cer-
tain experiments. This means that parts of the total wave
function not contributing to hfi in lowest order become
important in higher order by indirect effects (shifts in en-

ergy denominators are important examples). With this in
mind the MCDF overhead is much less important. What
remains to be done is to make the choice of components
systematic (configurations) in the CI (MCDF) formalism.
Based on our experience in MBPT we have formulated a
code for analyzing the different contributions from
MBPT in terms of configurations in MCDF. Other
workers in the field use the MCDF formalism in a more
indirect way: MBPT is formulated with MCDF based
potentials, a quite different approach. For a recent paper
see Ref. [18].

With our approach it is quite easy to perform lowest-
order MBPT with MCDF techniques. We will call this
MB-MCDF. Concerning higher-order MBPT it is our
feeling that the coupled-cluster theory in practice can
best be formulated in the MCDF framework.

We handle here particularly the lowest-order parts of
MBPT, because of the transparency of these contribu-
tions and also because most of the calculations of hfi on
heavy systems like Ra+, using MBPT, are based on this
part of the contributions and so it is possible to compare
with results of other calculations. We have done two
complete calculations with this method. The first appli-
cation we considered is hyperfine interaction in Ra+.
This ion was taken because new experimental results are
available on the hyperfine structure of Ra isotopes [19]
and several MBPT calculations on the system [20,21]
have been published, including a very recent one [22].
The second example is the hyperfine interaction of the
6p3/2 state of the thallium atom where until now MBPT
could not give even an approximately correct explanation
of the measured hfi constant [23,24]. The latter calcula-
tion is planned to be submitted as a separate paper. This
paper is organized as follows.

First we discuss briefly the two methods MBPT and
MCDF. In the second section the two methods are com-
pared for single and double excitations. The third section
gives a short outline of our method and the results for hfi
in Ra+. Comparison with other work and the discussion
are given in the last section.

A. MCDF method

In order to solve Eq. (1) the total wave function ql is
written as an, in principle, infinite series of terms 4.,
which are determinants composed of n single-particle
states y;:

(3)

where n is the number of electrons. The y; are coupled
to lead to a final state with total angular momentum
characterized by the quantum numbers J and M. Fur-
ther, the following functional (variables are C and gr;) is
optimized:

&q [Hie&
&q/q)

(4)

All orbitals y, in a certain configuration function 4 are
orthonormal (not necessarily between separate 4J). In
order to optimize E(V), one needs general expressions
for the matrix elements of H between the functions 4 .
These were derived by Grant in the 1960s [25] and subse-
quently several computer codes were developed. The
most widely used is that of Desclaux [16].

The expansion (3) is the CI series of 4 involving a finite
number N of configurations with definite couplings of the
separate one-electron quantum numbers j,m to the final
J,M of the total wave function. This coupling can be ex-
tremely complex and it was Grant and co-workers who
published a ready to use computer code to accomplish
this task [26]. With this, the major techniques were also
available for nonspecialists to do high level atomic calcu-
lations. Pair correlation was mostly not included in
MCDF work, in contrast to the many publications based
on MBPT. This is due to serious deficiencies in the exist-
ing MCDF codes. We found that it was possible to modi-
fy these codes using the work of Froese Fisher in nonrela-
tivistic MCHF [17]. Further, we have added some minor
options to the code so that certain important one-electron
properties of current interest can be added to the Hamil-
tonian of Eq. (2). These are the following: (a) General po-
larization operator of the form

but it suffices for many purposes even though the poten-
tial energy term e /r, - is even not approximately Lorentz
invariant [12]. But it is the leading term in an expansion
in powers of the fine-structure constant. The next term
in this expansion, called the Breit interaction, is part of
the radiative corrections necessary for a more correct
description of the interactions between the electrons in
the atom. See also Ref. [11]for a recent overview. How-
ever, here we can safely neglect these effects because for
the hfi of the valence states of Ra+, the inhuence is small.
So we will follow the common practice by solving just Eq.
(1), which in practice is finding a good approximation to
this solution.

c is the light velocity and a and P are the well-known
4X4 Dirac matrices. Equation (1) and the Hamiltonian
(2) do not describe the physics of the atom completely,

k( k(9 )

(b) The parity-violation operator [27]

(5)
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h =G+/(2v 2)Q p&(r)y5,

and (c) the electric-dipole-moment operator [28]

h =2id, Py5cp

B. MBPT method

(6) Only E0 is a scalar constant. The state vector
l
4 ) is nor-

malized as follows:

(13)

and the total energy E =Eo+AE is obtained formally
[29] from

(14)

The MBPT method is more difficult to explain briefly
but we will give here some of the major aspects. One has
to consult Refs. [1—8] for more in-depth information.

Again the problem is to solve Eq. (1). We split the
operator H into two parts, a good approximate one Ho of
which we know the solutions precisely:

If we are interested in some property X, which commutes
with H, we have

IfX does not commute with H we have

Ho@„=E„4„, (8)
n, m

(16)

and a part (the perturbation) bH, which is the difference
of the true Hamiltonian H and the approximate one Ho.
We take Ho to have the form

with

hH
Eo —Ho

' n

and

ZeHa= g ca; p;+P, mc — +V(r, )
i=1 i

n e2 n

ha= g —g V(r;) .
ij ij i=1

i&j=l

(9)

(10)

This formalism looks very powerful and simple. In prac-
tice, however, it is very tedious and no good computer
codes are available to make this work for nonspecialists.

Concluding this section we would like to simplify the
formulas above and make some preparation for the dis-
cussion of the link with MCDF. For this we take n =1
and find from (12)

"oui

with

(1 la)

So we see that Ho is chosen to be of the independent-
particle type, involving the single-particle potential V.
For simplicity we take the 4„here to be single deter-
minantal states composed of products of n single-particle
y;, as we did in MCDF. However, the 4„are not cou-
pled. The y; are generated form

(18)

As shown by Lindgren and Morrison [9], this can be gen-
eralized to all orders. The special advantage of Eq. (18) is
that it leads to a series of coupled difFerential equations
for which good codes are available, whereas the form (12)
requires the generation of large basis sets for the evalua-
tion of the I/(E0 —HD) terms. Now we can write Eq.
(18) in coordinate space by working out the operators and
we find

Ze
h =ca p+Pmc + V(r)0

T
(1 lb)

In order to get to MBPT we assume the state we are in-
terested in is nondegenerate (closed shell or semiclosed
shell), and after switching to the formalism of second-
order quantization we can write down immediately the
formal solution for Eq. (1):

(12a)

Ho is the "vacuum" state satisfying

H, IC0& =E,lca&, (12b)

and actually it is the lowest-order approximation to the
required solution. Equation (12a) is the so-called linked-
cluster expansion of the final solution of Eq. (1) [29]. The
I in Eq. (12a) means linked cluster. The interpretation of
(12a) needs some comments, however. Because of the
formalism of second-order quantization, the wave func-
tions %' and 4 are now operator expressions instead of
scalars and also the variables Hp and hH are operators.

X@ (0r&, . . , r„) . (19.}

H0 is the scalar expression of Eq. (9}. If now we take ha
different from Eq. (10},simply to be a correction to the
one-electron potential (for instance, the nuclear quadru-
pole interaction) we find Eq. (19) to lead to Sternheimer's
one-particle equation [30]. So Eq. (18) is a generalized
Sternheimer equation and it is one of the basic concepts
of the successful MBPT approaches developed by the
Chalmers group in the 1970s.

II. RELATION OF MCDF AND MBPT

Despite the fact that it is clear that the two ap-
proaches, taken to a sufficient degree of refinement,
should give the same results, no papers have been found
in which this actually was shown to happen. We assume
this is because it is not at all clear to what level the calcu-
lations have to be taken in order to show the agreement.
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For the comparison we consider MCDF (MCHF) as a
special form of CI for which it is simpler to find the con-
nection with MBPT. It is clear that if the fixed basis set
of CI is equal to the (immense} basis set generated from
the y; of Eqs. (11), the correspondence is obvious: CI is
just another way of formulating MBPT, now formulated
as an eigenvalue problem [31].

The energy optimalization in CI is only with respect to
the CI coefticients; the basic functions are fixed. If now
we also make the wave functions variables in the varia-
tional process, as is done in MCDF, it is clear the
correspondence with MBPT becomes very complicated
because we obtain linear combinations of the MBPT
basic functions in all steps of the variational process.
However, the ultimate results should be equal to those of
CI because we only change the basis which anyhow
should be complete. For many properties the series in
Eq. (12a) is in practice very liinited and first (n =1) and
second (n =2) order in b.H are enough for good results (a
class of important higher-order corrections is included by
shifted energy denominators, a common practice). This
is the part of MBPT we will show to be clearly related to
MCDF.

AH,= 40 AH)
Eo —Ho

+ 40 ~H2 40 (26)

bE'"=
& C, ibH ~e"'&

(27)

In all the operator fractions above, one has first to work
out the numerator. We will now restrict ourselves to
hE' ' and so we have only single-particle excitations. In
the next section we will handle the bE' ' term.

In order to be less formal we take the case of Ra+,
where we have a valence orbital p, (7s, 7p, &2, or 7p3&z}
outside closed shells (6s, 6p). We can find from Eqs. (25)
and (26) an expression for the hfi contribution.

A. Single-particle excitations

We first establish a connection between MBPT, CI,
and MCDF for terms of first order in b,H of Eq. (10}.
This part is rather standard but it is given for complete-
ness and it also serves as an introduction to the more
complex second-order part.

bE(hfi) =
& a lhg la &

(a, b~ 1/r, 2~a, i &+2+
b; b Fi

Cb Ei

(a, b~ 1/r, 2~i, a &

(2g)

1. MBPT equations

The Hamiltonian is taken to be

H =Ho+AH)+AH2,

with

bH, = g I/rl —g V(r; )

(20)

(21)

where u, is the part of the potential V of Eq. (21) coming
from orbital a. The symbol b represents the closed-shell
orbitals and i an excited-state orbital chosen from the
MBPT basis set. The orbitals are those introduced in Eq.
(11).

It is common practice to use Feynman graphs to
represent these terms. In Fig. 1 we give these diagrams
in the form introduced by the group of Das [2,4].

and

bH2=+h„(i) .

hz is the hyperfine Hamiltonian:

h„=a.(pi Xr)/ri . (23)

2. CI equations

We set up the CI formalism in such a way that the re-
lation with MBPT can easily be established. The expres-
sion to optimize is that given in Eq. (4). As introduced in
Sec. IA we use

Equation (22} is only valid outside the nucleus. Inside the
nucleus h „ is set equal to zero. We now take Eq. (12a) to
second order in hH where hH is equal to the sum of hH,
and AH2 and derive an expression for hE which is
second order in hH, and first order in the hyperfine term
bH2. It is straightforward to get, from Eqs. (12a) and
(14),

H
a

b"

H

gE =LE +hE +~E

bE'"= &@,~bH, ~C, &,

(24)

(25)
FIG. 1. Diagrammatic representation of contributions to hfi

in Ra+, up to first order.
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H =Ho+ EH1+ AH2, (29)

(30)

The subscript p indexes all replacements b i intro-
duced in Eq. (28). So 4) is the ground-state determinan-
tal wave function or any other state of interest formulat-
ed as a simple determinantal wave function and the other
4„are formed by replacing one of the orbitals (pb (is to
6p in Ra+ case) by orbital (p; out of a fixed set. In con-
trast to regular CI the 4„(p) 1) are not formulated as
eigenfunctions of J and J, . This is because only in this
way is the relation with MBPT transparent. The optimi-
zation is with respect to the coefficients C„. This gives
the equations

g C„H„„=Ecq, (31)

with Ho, b,H„and AH2 as defined in Eqs. (9), (21), and
(22), respectively. The final solution of the system is writ-
ten as

The variation of (p; is in the space orthogonal to all (pb

but not to other q. .
The optimization with respect to @„leads to

Q C„(H E—)4„=0 . (35)

This can be seen as a way of rewriting our problem as in
Eq. (1) using a special expansion code. We will assume
here that the @„areorthogonal, which is a valid one be-
cause of the way our C)„are constructed (the (p; need not
be orthogonal}.

It is important to realize that the basis set in Eq. (35) is
very much smaller than the basis used in MBPT or CI.
This is a result of the additional variation with respect to
y;. At this step we may assume the coefficients C„are
known [see for this Eq. (31) of the CI description]. After
expansion of E in powers of hH, and AH2 and using the
fact that in this step C, is unity and C„()M) 1) is first or-
der in hH( or AH2 (denoted by subscripts )M and v, re-
spectively), we find the following equations which the (I)„
have to satisfy:

with

H„„=& e„lHle. &

and

(32)

C„(H() E() )4„+—(EH) E, )(I))=—0,
p (&1)

C„(H()—E() )4„+()5H2 E, )(I)(=—0 .
v (Ap&1)

(36)

(37)

g C,*C„=1. (33)

This is an eigenvalue problem. To make the connection
with Eqs. (26) and (28) we have to expand C„and E in
powers of hH( =b,H(+AH2) and we get in second order

b,E
AH, „AH„1

p(&1) 1 p
(34)

where as usual E„=& @„lHo l 4„&. We can now safely re-
place E, —E„by c,b

—c;, the c being introduced in Eq.
(11). After working out hH, we arrive at Eq. (28) for the
contribution to hfi. It is worth noting that the discussion
above only applies for systems for which a single deter-
minantal 41 can be defined as in our Ra+ system. For
our purpose this is no real restriction because most of the
MBPT work is done for these systems. This serves as in-
troduction to the comparison with MCDF, which is more
complex.

3. MCDF equations

Again we optimize Eq. (4) but now also with respect to
the wave functions 4„ introduced in Eq. (30). The varia-
tion in 4„ is realized by a variation in the orbital y; in
the excitation b i with yb fixed. We here restrict our-
selves to first order (in b,H, ) contributions to E; so no
double excitations are considered here. We will come to
these contributions in the next section. These optimized
orbitals we will denote by y; to make a distinction with
the earlier introduced y, . So every orbital yb creates its
one and only y;, which will be shown to be a simple
linear combination of the y; in such a way that after sub-
stituting this linear combination, again Eq. (28) is found.

The Eo, E1, and E2 are expectation values of Ho, AH1,
and EH2 over the state function 41.

The hfi term b.E' ' [see, Eq. (26)] is found from

bE(2)=y c„&e,laHzle„&+y c.&e, lsH, le„& . (38)
v

We now reduce to single-particle equations by rewriting
Ho as a sum of single-particle term ho and using Eqs. (21)
and (22) for b H) and EH2 (uncoupled C)z are used):

and

@(=l(p)~92»(pnl ~

@p (b i) lf 1~%2»'pi~ ~pn l

(39a)

(39b)

H= g ho(i)+i((,H, +bH2 . (40)

The only difficult term is the EH1 term, but because we
consider here only single-particle excitations, it is possi-
ble to write hH) =g; hh)(i) and so we find the following
equations for the MCDF orbitals:

C„(ho ei )(p ())+(»,—e) )ipb =0,
C (ho eb)(p, (2)+(h& —ez)(pb=0 .

(41)

(42)

(43)

y;(1) is generated by hH, and p;(2) by AH2. The con-
stants e1 and e2 are similar to E, and E2 introduced in
Eqs. (36} and (37), Eb is the orbital energy of (pb

(ho(pb =eb(pb), and Ah, is defined by the following expres
sion:

» ltb =X (& el 1«lzlc &mb
—

& el 1«lzl»V, }—Ube b .
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In Eq. (43) v& is the part of the potential V which comes
from the interaction with orbital y, . This orbital can be
any orbital (closed and opened); if V is chosen to be the
Hartree-Fock potential, only c =a remains. It is impor-
tant to point out the fact that Eqs. (41) and (42) are simi-
lar to the so-called Sternheimer equation, which is part of
the first level in the MBPT approach of the Chalmers
group [11]. They were also referred to as moment-
perturbed and exchange-perturbed equations by Das and
co-workers [32]. The entity C„qr; plays the role of the
p(b =i;r) function [8]. In order to satisfy the require-
ment of orthogonality to the other occupied state we
have to add Lagrangian multipliers and these give addi-
tional terms in Eqs. (41}and (42). For the general discus-
sion these are not very important, however.

4. MCDF in practice

It will be clear MCDF does not work as described
above. It works with the complete Hamiltonian H and
not with an Hp and a hH. We have shown, however,
that if the formalism is set up into perturbational steps,
the relation with other approaches can be made quite
simply. After closer inspection of the MCHF equations
one can show the following facts.

(a) The potential used in Eqs. (41) and (42) is of V"
form, in contrast with what may be concluded from the
equations given above, where pb is an eigenfunction of
hp.

(b) The parameter sb in the MCDF equations is a free
parameter c. However, from the preceding formalism
one can find a relation between this free parameter and
c.b, at least if the perturbation hH is small. Actually it
comes out that e,b is a good approximation for this "free"

parameter, because yb comes out to be a good approxi-
mation for an eigenfunction of Ap.

These findings are very important in MCDF practice
because it is well known a V" ' potential form is crucial
for fast convergence in the wave-function expansion
(better virtuals) and secondly a fixed energy parameter or
a good approximation to it was found to be crucial for
damping instabilities in finding the solutions of Eqs. (41)
and (42). This ends our formal discussion of single-
particle effects.

B. Two-particle excitations

We arrive now at the most important part of our dis-
cussion: consideration of effects one order higher in
hH&, which introduces correlation effects and other
effects which are the result of two-particle excitations as
formally introduced in Eq. (27). We will find a two-
particle equation similar to the pair equation used in the
earlier work of Mllrtensson [33], but now solved within
the MCDF formalism. The correspondence and
differences between this approach and the basis-set
MBPT approach will be discussed.

1. MBPT equations

First we start with MBPT in the basis-set form. Al-
though in second order there are also single excitations
contributing, we will focus on the pair excitations. So we
define the excitations c,b =i„i2,. . . , where c can be the
open-shell orbital or a closed-shell orbital and b is only a
closed-shell orbital. The i orbitals include the virtual
space of the open shell.

From Eq. (27) we find

(44)

SE',"=2 y
c, b, i

&elk„ll3&&~, , bl ls„tq&&E), t211c,b & &c2lh„lt) &&c),bl lcq, s2 &&t), (
2I Ic),b &—2 +. . . ,(s, —s; )(s, +a~ —s; —s; ) (s, —s; )(e~+e, —s; —s;

(45)

where the ellipsis represents exchange. In the equations
above c can be interchanged with b and the summations
are over all orbital indices. We have classified the corre-
lation contributions in our case (Ra+} in two classes:
one, hE, , where the hfi is sandwiched between two 1 jr&z
interaction elements, denoted by the

I I symbol and one,
b,E2, where we have two subsequent llr, 2 interaction
elements resulting in a single excitation and the hfi being
the last element (from right to left}. It is common prac-
tice to give Feynman diagrams instead of the equations
above but because this paper is primarily MCDF-like and
in this field these techniques are usually not used, we
have given the equations. The corresponding diagrams
are drawn in Fig. 2. The Das convention for diagrams is
used. With this convention hE, corresponds to the (11)-

Ha i, b H ba

H
a H

a

C

j b c, b

FIG. 2. Diagrammatic second-order contributions to hfi in
Ra+.
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type diagrams and b,E2 to the (02) diagrams. We now
turn to the comparison with CI and MCDF.

2. CI equations

It is straightforward to extend the formalism for CI
given in Sec. IIB to third order. We find the following
expression for hE' ':

with

hH iq (hH„.„E'"—5„.„)hH„,

( &1)

(46)

and

hH =EH1+ AHq

E("=AH
11

(47)

(48}

The 4'„are found from 4i (=40) by making double exci-

tations: 4„«=4,(b, =i, , bz i2}, with all other or-

bitals fixed. After reducing to single-particle equations
one finds again Eq. (44}. Equation (45} is found from two

subsequent pair excitations resulting in a single excitation
of the form introduced in Sec. II. So in order to obtain
this from Eq. (46), we have to include also single excita-
tion in the set 4„.

3. MCDF equations

In MCDF things are rather different, because we have
to define the functional derivative with respect to a two-
particle wave function. The starting equation is again

earlier; so c, , and c2 are the orbital energies of the parent
orbitals yb and yb as eigenfunctions of ho with poten-

1 2

tial V [see Eq. (40)]. These orbitals are coupled to the
same J value as that of U . Equation (50) is similar to
the equation of Mkrtensson [33], the main modification
being the occurrence of coupled C„U instead of the usu-

al radial pair function ( U„, is normalized). If now we ex-

pand this function as follows:

C„U =g ajar; (r, )yi (r2 ), (52)

the relation with the MBPT basis-set formalism can be
found by identifying the q, with the fixed (large) basis set,
the coupling being the main difference.

As shown extensively by Mkrtensson, solving (50)
directly is a much more efficient way to calculate the re-
sults of this pair function. However, the two-dimensional
integration and the inherent problems in relativistic for-
malism make this method not very practical. In MCDF
Eq. (50) is solved by taking U to be the product of two
functions y„and y, and this avoids most of the problems
with relativistic formulation [11].

4. MCDF in practice

The equation which is actually being solved in MCDF
is somewhat difFerent from (50}. First the basis functions

yb are not eigenfunctions of an ho in the sense of MBPT
but if the C„are small they are well approximated by
considering them as eigenfunctions of a certain HF-like
ho. Secondly in the MCDF equations the sum e.1+F2
looks like

H g C„P„=Eg Cq@„ (49) ei+e2 —
& q i, , qb, I 1 «i2 lq b, q i, &+

with C„ fixed (found from earlier cycle} and the 0?„are
obtained from pair excitations b„b2=r, s where r and s
denote the angular character of the two coordinate spaces
r, and r2. The radial character of the r, s function is not
necessarily formulated as a product of two separate coor-
dinate spaces.

If we sort out a certain pair b„b2 r, s we can multi-

ply Eq. (49) with all other orbitals and integrate the left-
and right-hand sides over all the corresponding coordi-
nates and we are left with a differential equation for that
pair:

[ei+E2 ho( 1 } ho(2) ]Cp(„)U

~Ei2ci q'b q'b

where

«i2 &%b,q'i, ll~"i2IV'i, qib, & &tb, ti, l 1~"i2IV'b, qib, &

(51)

where the ellipsis represents exchange. The I/riz term is
the first of several "higher-order" effects directly includ-
ed in the MCDF formalism. In MBPT it has to be added
in a separate step. Another difference is the interaction
between the excited qr„and gr„which is included and
does not require a separate step. Now we make some
final notes on the practice of solving Eq. (50}. In this
equation we substitute

q (rl )%(r2) (53)

where the quantum numbers j1 and j2 of tp„and y, are
coupled to a certain j12. After working out the angular
dependence, we first multiply with the radial part of qr,

and integrate in order to get an equation for the radial
part of tp„. The process is repeated for q, . It will be clear
that the constants c, and c.2 become free parameters
which are now not close to orbital energies of the parent
orbitals, as in the case of single excitations. The contri-
bution to the hfi can formally be obtained from

and c., and s2 are the orbital energies of yb and yb .
1 2

In order to obtain (50) we have introduced the pair
function U, belonging to a certain J value. It can be
formulated as a coupled product of two excited y,.'s.
Further we use the perturbation philosophy introduced (54)
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The "constants" C„can be approximated by

C„=
(C, fH, ie, ) —(e„iH, ie„) ' (55)

bitals. Details of these modifications can be obtained on
request.

B. hain Ra

a first-order approximation.
The set p' is the result of two subsequent pair excita-

tions mentioned earlier and C„. can be expressed as a
second-order (in hH& ) approximation similar to Eq. (SS}.
It is important to mention here that our wave function
4, is modified only by b,H, and not by b,Hz(hfi). We end
this discussion by pointing to the fact that because of
coupling our final equations are different from the MBPT
equations (44) and (45). As was mentioned by introduc-
ing the pair function U„„ this function belongs to a
definite value of the pair angular momentum j&2. Be-
cause j,z can in general have more than one value, there
are a number of q„,y, pair orbitals. This has some rela-
tion with the formalism of M5rtensson [33], where the
angular momenta of the functions y, and y, are also cou-
pled using the angular momentum variable k arising from
the expansion of 1/r &z. Further, the excitation
b„b2 r, s is handled independent of the excitation
b&, bz s, r. In MCDF, however, one usually uses the
same wave functions for all values of j&2. This is the
main reason why certain contributions to hfi in the
MCDF formalism can be very different from those of
MBPT. We will discuss this in Sec. VI.

III. RESULTS

The results of the hfi in Ra+ were obtained with a
modification of the standard MCDF procedure which we
now briefly describe.

A. MB-MCDF approach

The following steps define the approach.
1. MBPT analysis (using Feynman diagrams) of the

contributions to second order in the 1/r, 2 interaction.
2. Definition of the configurations required.
3. Calculation of the angular factors for the interac-

tion elements using the code of Grant et al. [26]. An in-
terface written by one of us (v.d.B.) was used to transform
the results to the format of the code of Desclaux, Mayers,
and O' Brien [13].

4. Calculation of the actual contributions using the
Desclaux code (modified).

The most important obstacle in MCDF practice is the
inherent instability in solving the nonlinear coupled equa-
tions. Froese Fisher [14] has published many papers on
the subject and solved the problem almost completely, at
least in nonrelativistic formalism. So we transformed her
ideas to the MCDF equations and found this worked
quite well in getting the most di%cult part of the basic or-
bitals: the correlation orbitals (required for the pair func-
tion).

Another important modification we introduced was
making the option of fixed energy parameters, which is
crucial for getting the single excitations eSciently, but
was found to be also very helpful for the correlation or-

TABLE I. Basic excitations of the MB-MCDF calculation of
hfi in Ra

Polarization 1s-6s ns

&P-6P
3d-5d ~nd

Correlation 6s, 6p, 7s, 7p ns, np, nd, nf, ng

The contributions to the hfi in Ra+ are divided into
three classes.

a. Hartree Fo-ck (HF). We generalize this contribution
to that of the lowest-order contribution of the valence
electron in some average field Hamiltonian ho. In Refs.
[20] and [21] the core orbitals were generated for a Ra +

ion, whereas in this work the core orbitals are for Ra+ in
accordance with Ref. [22].

b. Polarization. This class includes a11 polarizations of
the core resulting from the open-shell character of the
valence electron. For simplicity it is denoted by ECP (ex-
change core polarization}, but direct efFects are included.

c. Correlation. This class includes all contributions,
where double excitations play a role. As introduced ear-
lier there are two types. 1. The first one is denoted by
~1/r, 2[hfi~i/r, 2~: the sandwich type ~1/r, 2~ is short for
the pair excitation involved. 2 The second one is actually
of the polarization type, but now of second order in

1/ri2. It will be denoted by ~hfi~ I/r&z~ 1/r&2~. So one has
to apply two pair excitations sequentially to obtain a sin-
gle excitation. An important subclass is formed by the
so-called 8rueckner-orbital efFects [9]. Actually
Brueckner orbitals can be calculated in the MCDF for-
malism.

The basic excitations used in evaluating the contribu-
tions are given in Table I. In the table the 1s-6s=ns,
for instance, means excitations of is-6s to different (not
necessarily orthogonal) states (Ss, 9s, etc.). We see from
Table I that the correlation is restricted to the n =6 shell,
that is, the shell of occupied states just below the valence
electron shell. Experience has shown that this is good
enough for a system like Ra+. However, the polariza-
tions have to be calculated for all shells and we also did
lowest order consistency for s,p and p, s cross terms.

Further, we did not use all the excitations shown in
Table I for all three states. For the 7s state, for instance,
only a few contributions are sizeable whereas for the

7p3/2 state many contributions are important. The
reason is obvious: 7s itself being an s state has a large
contribution to hfi and polarizations of p shells are rela-
tively much less important than polarizations of s shells
for the 7p3/2 state, because 7p3/2 has a small hfi. The ex-
citations used will be shown in the table of results. We
have decided to give detailed information on separate
contributions, because our experience is that giving final
results without giving details of the procedure by which
they were derived is of relatively less value for the reader,
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TABLE II. Results of hfi constant in 'Ra n for the 7s and

7p&/2 states. Values are in MHz.

Type
HF'
ECP

Consistency

Correlation (1)

7s6p ~sp

7$

—1089.0
—192.8

19.5
—5.6

I/r» IhaI1/r„I
—8.7 7p6p ~ss

sd
dd

7pin

—182.6
7.2

—41.4
—1.3

0.4
2.2
0.9

Correlation (2)
7s6p sp

pd

—44.9
—78.1

IMI 1/r, I 1 /r
6p6s ~pd
7p6s ~pd
7p6p ~sd

dd
dg
pp
pf

—0.8
0.4

—18.2
—18.2
—0.9
—5.2
—2.6

Normalization'
Total
Expt.'

15.6
—1384.0
—1348.6

2.8
—258.6
—266.3

because then one cannot have an understanding of the
origin of the error bar involved. Also for other workers
in the field there is no way to make significant compar-
ison with the result of the present work.

The eFects given above can be calculated in two ways:

'The magnetic hfi inside the nucleus is neglected.
The consistency contribution includes here indirect eFects: one

polarized orbital polarizes another one (ss and sp).
'The normalization contribution is a result of the decrease in
the valence shell contribution because C, of Eq. (49) becomes
smaller than one.
dReference [19].

Type
HF
ECP

Consistency

Correlation (1)
7$6p ~ $$

sd
dd

—13.9
—4.12
—3.11

—0.70

—0.33
—0.15
—0.20

sd

pp
dd

I 1/r» Ihfil 1/r /J I

small

413.8
3.0

212.9
6.4
5.0

Correlation (2)
6p6$~ pd
7p6$~ pd
7p6p ss

sd
dd

pp
dg

pf

Normalization
Total
Expt.

0.46
—0.11

0.45
—0.56
—0.24
—0.04
—0.10

0.10
—22.55
—22.4

Ihftli «» I 1/r /2 I

small

7p6p ~sd
dd

pp

23.2
17.9
6.0

—4.0
684.2
689.7

(1) Fix all orbitals to those of the zero-order Hamiltonian
(here this means MCDF without interactions) and (2) Let
all orbitals be free to adjust after adding the interactions.

We mainly used the first approach because it gives
more insight into the mechanisms involved. Additionally
the second approach introduces higher-order effects
which are beyond our present scope. The results are
given in Tables II and III.

TABLE III. Results of magnetic (A) and electric (B/Q) hfi

coupling of the 7p3/p state of 'Ra II. Values are in Mhz and

MHz/barn, respectively.

B/Q

TABLE IV. Comparison of hfi result

Rabat

calculated by different authors. A is the magnetic and
B/Q the electric hfi constant. Results are in MHz and Mhz/barn, respectively.

7s (A)
Ref. [20]

[21]
[22]

Direct

—1089.0
—1055.0
—1032.0
—1047.0

Contributions
ECP

—179.0
—172.0
—171.0
—144.5

Correlation

—116.0

—162.0
—136.9

Sum

—1384.0

—1365.0
—1328.4

pt/2 (A)
Ref. [20)

[21)

—182.6
—176.6
—173.2

—33.9
—34.1
—31.9

—34.2

—56.7

—257.3

—261.8

7p3/2 (A)
Ref. [20]

[21]

7p3n (B/Q)
Ref. [20]

—13.9
—13.3
—13.3

413.8
401

—7.93
—8.85
—8.42

227.2
234

—0.72

—0.56

43.1

—22.55

—22.29

684.2
674
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IV. DISCUSSION AND CONCLUSIONS

From our Tables II and III we see a satisfactory ex-
planation of the measured hfi constants. It is obvious our
MB-MCDF formalism works quite well for this type of
calculations. The calculation of hfi in systems with one
electron outside closed shells like our present Ra+ system
has been almost exclusively the domain of the MBPT ap-
proach. MCDF has not been so successful yet. With this
work we have shown MCDF can do the job equally well.
However, the work involved has been found to be much
less than that required for a basis-set MBPT. We have
shown that a formal relation exists with other approaches
and we will now also compare the result with those pub-
lished earlier. In Table IV we give a direct comparison of
distinct contributions of which unfortunately there are
not so many.

We can see there is good agreement on the HF and

ECP values, but substantial disagreement is found for the
correlation part. The differences are partly due to the
fact that the correlation contribution is small and because
Refs. [20] and [21] use a Ra potential for the core or-
bitals a small correction to this potential may show up as
a relatively large modification of the correlation part.
This is particularly clear for the 7s state, where the
difference in the HF values equals more or less the corre-
lation difference.

For the 7p3&2 state the difference is almost certainly
due to the different handling of exchange contribution as
mentioned earlier in this paper, but is clearly not serious
for the final result. It is important to mention here that
for this state there is strong cancellation of large contri-
butions of opposite signs.

For the 7p&&2 state the two sources will both be active
because the difference in the HF value is only partly
covered by a change in the correlation contribution.
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