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Geometric phases in two-level atoms excited by pulses propagating without loss
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We consider the geometrical phases arising in the state vector of two-level atoms due to their in-
teraction with a self-consistently generated classical electrical field propagating without loss through
the atomic medium. Three conservation laws are shown to exist generally and are used to solve
for the individual quantum amplitudes, phases, and the electric field. We calculate the geometrical
phases in two situations: (a) where the atoms are initally in the ground state and (b) where the ini-
tial state is a coherent superposition of the ground and excited states. In both cases the geometrical
phase is the Aharonov-Anandan phase resulting from the atomic state vector tracing out a closed
curve on the projective Hilbert space —here the Bloch sphere. We show that geometric quantities
associated with the curve on the Bloch sphere are directly related to physical observables. The solid
angle subtended by the closed curve (shown to equal twice the geometric phase) is a measure of the
maximum atomic inversion, while the speed with which the curve is traced is related to the energy
uncertainty in the state. An experimental method to observe the total phase change in a two-level
subsystem is outlined, using photon echoes in a three-level medium.

PACS number(s): 03.65.—4w, 42.50.gg

I. INTRODUCTION

The paradigm for Berry's phase [I] has been the sys-
tem of a spin-& particle in a magnetic field. We prepare
the system in one of the energy eigenstates. The time
evolution of the magnetic field is chosen to be both adi-
abatic and periodic, the period being much greater than
the period of precessional motion of the particle. The
state vector then remains in the eigenstate at all times
and picks up a phase in addition to the usual dynamical
phase when the magnetic field completes a cycle. The ad-
ditional phase depends only on the solid angle subtended
by the closed loop, traced by the magnetic field, at the
origin and hence is called geometric. Consider a more
general situation where the time evolution of the Hamil-
tonian is not necessarily adiabatic but the state vector
varies periodically in time. In this case Aharonov and
Anandan [2] showed the state vector again picks up a
geometric phase after each period. This Aharonov and
Anandan (AA) phase depends on the closed loop traced
by the ray representative of the state vector in the pro-
jective Hilbert space. In particular, the state vector for
a spin-& particle in a constant magnetic field undergoes
a cyclic evolution and if initially the state vector is not
an energy eigenstate, the. geometric phase equals one-
half the solid angle subtended by the closed loop traced
out by the spin vector. Both the Berry phase for an en-
ergy eigenstate with an adiabatically varying magnetic
field and the Aharonov-Anandan phase for the state vec-
tor have been measured in nuclear magnetic resonance
(NMR) experiments [3, 4].

There are close analogies between magnetic resonance
and optical resonance. By the result of Feynman, Vernon,

and Hellwarth [5], the interaction of two-level atoms with
resonant electromagnetic radiation can be mapped onto
the problem of a spin-

&
particle in a magnetic field. This

has been used recently to show that the energy eigenstate
of a two-level atom develops Berry's phase when placed
in an external, nearly resonant electric field and that the
phase affects the Rabi frequency of oscillation [6]. It has
also been generalized to study Berry's phase arising in
a two-level atomic system described by a density matrix
(either because it is prepared in a mixed state or to in-

clude the effects of dissipation) and interacting with an
external classical laser field [7]. However there is one
significant aspect in which optical resonance differs from
magnetic resonance and that is the emission of radiation
by the atomic dipoles at wavelengths close to that of the
applied field. Under the influence of the resonant field the
atoms may emit radiation which then propagates through
the medium composed of two-level atoms.

In this work we will consider the phenomenon of self-
induced transparency (SIT) [8—10] where optical radia-
tion propagates without loss in an absorbing medium and
show that the state vector for the atom may develop a
geometric phase as a consequence of the interaction. In
contrast to most other work on the geometric phase, the
phase we study develops as a consequence of the self-
consistent interaction between the medium of two-level
atoms and the electric field and not due to the variation
of some external parameters. As a consequence of this,
the state and the electric field vary on the same time
scale and the assumptions for the appearance of Berry's
phase are not met. However, for special choices of initial
conditions the state vector goes through a cyclic evolu-
tion tracing out a closed curve on the projective Hilbert
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space leading to the appearance of the AA phase. There-
fore in this paper we will concentrate on the st, udy of this
AA phase for SIT. We will show explicitly the intimate
connect, ion between the geometry of the curves traced
on the projective IIilbert space (here the Bloch sphere)
and physical observables of the system such as the maxi-
mum atomic inversion and the instantaneous energy un-
cer tainty.

In Sec. II we review the derivation of the Maxwell-
Bloch equations describing the interaction of the two-

level atoms with the nearly resonant classical electric
field. Losses leading to homogeneous broadening of spec-
tral lines are neglected. In other words we restrict our-
selves to electrical pulses which last for a time much
shorter than the time given by the homogeneous decay
width of the Lorentzian spectral line. With the slowly-

varying-envelope approximation, the coupled equations
reduce to a system of first-order differential equations.
We show that there exist three conservation laws, gen-

eralizing the forms of the laws as usually stated. The
solution of these equations can only be obtained by mak-

ing further assumptions on the nature of the inhomoge-
neous broadening present. For the rest of the paper we

consider only the simplest choice, that the spectral lines
are infinitely sharp. In Sec. III we assume that initially
the atoms are in their ground state and obtain the well-

known hyperbolic secant pulse solution (first found by
McCall and Hahn [8]) as the propagating electric field.
After the passage of this pulse the atoms are returned to
their ground state and we calculate the geometric phase
that develops in the atomic state at the end of this cycli-
cal evolution. We show that this phase is directly related
to the maximum atomic inversion during the course of
the evolution. A study of the curve traced on the projec-
tive Hilbert space in Sec. III A shows (a) the geometrical
phase equals minus half the solid angle subtended by the
closed curve and (b) the velocity along this curve is di-
rectly related to the instantaneous energy uncertainty in
the state. Section IV deals with another initial condi-
tion where we start with a coherent superposition of the
ground state and the excited state. Here, instead of a sin-
gle pulse, a continuous-pulse train propagates through
the medium taking the state vector through a cyclical
evolution only for certain choices of init, ial parameters.
The geometrical phase is calculated and again shown to
equal minus half the solid angle subtended by the closed
loop on the projective Hilbert space. To emphasize the
point made earlier, this loop is determined by the dy-
namics of our self-consistent system and the initial con-
ditions. This is in contrast to previous studies of the
geometrical phase, where the closed loop was determined
by the choice of the external field. In Sec. V we propose
a met, hod using photon echoes in a three-level system
by which t, he phase of the state vector may be measured
following the set, up used to observe the AA phase in mag-
netic resonance [4]. We end with a summary in Sec. VI.

II. COUPLED MAXWELL-SCHRODINC ER
EQ UATIONS

The phenomenon of self-induced transparency was first
observed nearly two decades ago by McCall and Hahn [8]

and later followed up by Slusher and Gibbs [11], Mat-
ulic and Eberly [12], and others. When light at low in-
tensities is incident upon a resonant medium it gets ab-
sorbed within a characteristic length (known as Beer's
length) of the medium. However as the intensity is in-
creased beyond a threshold value, the medium behaves as
though it were transparent to the light pulse which passes
through practically unabsorbed. In addition, the velocity
of the pulse is much slower than the phase velocity in the
medium. This behavior is nonlinear in nature and cannot
be understood as perturbations around the behavior at
low intensities. Instead this can be understood by mod-
eling the system as a collection of two-level atoms whose
dynamics is governed by Schrodinger's equation in the
presence of a classical electric field which itself evolves
according to Maxwell's equation. Our point of departure
from previous work is that we focus on both the ampli-
tude and the phase developed by the state vector and not
just the bilinear combinations of the amplitudes and the
relative phase occurring in the components of the Bloch
vector. Consequently, the system of equations we study
are somewhat different from that considered in the earlier
literature.

We consider the interaction of a medium of two-level
atoms with an electric field whose frequency is nearly
resonant with the frequency of transition between the
two levels. Let ~g) and (e) be the lower and upper energy
eigenstates differing in energy by ~0, in the absence of
the electric field. Dipole-dipole interactions between the
atoms are neglected so that the atoms interact with one
another only via the electric field. We assume that all
other atomic levels are very distant in energy and hence
do not couple resonantly to the electric field. The electric
field is taken to be a circularly polarized plane wave,
propagating in the positive z direction, the field vector
being

E = E'(z, t)[x cos4(z, t) + y sin@(z, t)],

where E(z, t) is the real envelope of the field and

4 (z, t) = ~t —I&z + P(z, t)

(2.1)

(2.2)

is the total field phase with ~ being the frequency of
the light pulse in the medium. Circularly polarized light
couples to a ~b, rn~ = 1 transition between the two levels
and the dipole moment vector for an individual atom can
be written as p = p(xoi + yo'q) where p = p = p„. The
Hamiltonian for an atom in the presence of the electric
field is

hop
H = 0.3 —p. E=

2

f huo

2
pgei4

(2 3)

The electric-field amplitude 5' is assumed to be suK-
ciently strong that the field may be regarded as classical,
yet small enough so that )pf ( « ~s. This last condi-
tion is necessary so that the atom does not get ionized
in the presence of the electric field and is well satisfied in

practice. The wave number of the field is

E~ = (~g)/c+ bk,
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where g is the refractive index of the medium and bk
reflects the possible existence of dispersion due to the
interaction between light and the atoms. The refractive
index is assumed to be unaffected by the light pulse in-
tensity so that no Kerr-like effects are present. Note that
since we wish to identify u as the carrier frequency, any
constant term arising in Bii)) must be set to zero.

It is assumed that the optical resonance line in
the medium is inhomogeneously broadened, caused by
Doppler broadening in a gas and by a distribution of
static crystalline electric and magnetic fields in solids.
We neglect the effect of other linewidth contributions
due to homogeneous broadening, e.g. , caused by radia-
tive decay, collisions with other atoms, etc. This is a
valid approximation as long as we consider pulse widths
of a few nanoseconds, that being somewhat less than the
time scale over which homogeneous broadening occurs.
The distribution of transition frequencies uo of the atoms
in the medium is described by the spectral density func-
tion g(7) where y = 4lo —4J. To a good approximation,

g(7) may be taken to be symmetrical about a central
frequency u. It is normalized as

g(V)dV = 1.

h= - (&o —Bi@)~rs —p~rri
2

while the transformed state vector is

l~ )
-=~I~) = Ale) + Big)

(2.4)

(2 5)

We have expressed the state vector as a superposition of
the unperturbed energy eigenstates with (A, B) as the
complex amplitudes in the rotating frame. Schrodinger's
equation in the rotating coordinate system reduces to the
coupled equations:

A i gp

Bt 2
= —-(~o —Bc@)A+ SB, —

h
(2.6)

For the spin-z particle in a time-dependent rotating
magnetic field, the solution of Schrodinger's equation
is obtained very simply by going to a frame rotating
with the magnetic field. A similar procedure can be fol-
lowed here. We go from the laboratory coordinate system
(x, y, z) to a rotating coordinate system whose unit vec-
tors ei, ez rotate about es = z with angular speed Bi4'.
This transformation is effected by the unitary matrix

p(z t) e(iir&iig)/2

The Hamiltonian in the rotating frame is

H, = UHU-'+ ih U-'U

t

A = Q (z t.p)ei /&.&(s&t&P)

B Q( t &)
4 (, ;~)

(2 8)

(2.9)

The macroscopic polarization density vector of the
medium is

P=Np g y eg cry „+e2 cry „dy, (2.10)

where (ir;)„are the expectation values calculated in the
rotating frame and N is the number of atoms per unit
volume. We define a pseudospin vector or Bloch vector
s whose components are

u = (o i)„=2Q, Qi, cos(Qi, —i', ),
v:—(oz)„= 2Q, Qi, sin(Pi, —P,),
=(.), =Q.'-Ql

(2.11)

(2.12)

(2.13)

From the conservation of probability it follows that the
pseudospin vector has a constant magnitude equal to
unity, i.e., u + v + m = 1. u and v are the compo-
nents of the polarization which are in phase and out of
phase (by z'j2), respectively, with the electric field. iv

is known as the inversion and measures the difference in
population levels.

In terms of the unit vectors in the rotating frame, the
electric field simplifies to E = Zei. In this frame the
electric-field vector has a constant direction and changes
slowly in time compared to the varwition in the labora-
tory frame. The electric field induces a polarization in
the medium of two-level atoms which in turn acts as a
source for the propagation of the field. The evolution
equations for the electric field and the above Schrodinger
equation together form a self-consistent set. Assuming
that the field is propagating in the z direction, Maxwell's
equation for the electric field reduces to

t' Bz 4zo B r/z Bz ) 4n Bz

(Bz c Bt c Bt ) c Btz
(2.14)

where 0 is the conductivity of the medium and g is the re-
fractive index. Here Ohmic losses of energy are assumed
to be negligible so that we can set o = 0. We will now
make the slowly varying approximation on the amplitude
and phase of the complex envelope, viz.

Bt M . Bg B$« I~8, && ~P, && I~/,
t z z

i.e., E, (t vary slowly on the time and length scale set
by the carrier oscillations. We will drop all second
derivatives and products of first derivatives of E and P.
With these approximations and also using the condition

we obtain the following equations on equating
the components of eq and e2'.

BB ip i
Bt ti 2

= —ZA+ —(~o —44)B . (2.7)

M r/ M 2+Np+-B = ' (,t;V)g(V)dV,z c Bt ~r/c
(2.15)

In order to write the complete set of coupled equations
in real form we introduce the real amplitudes Q, Qi, and
phases P~, g)y to describe the atomic states. They are
defined as

/ Bg g Bg l 2vrNp—bk
l

E' = — ~ou(z, t; 7)g(y)dy .
(Bz c Bt ) ~pc

(2.16)
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Now we look for traveling-wave solutions for the elec-
tric field. We are interested in pulses which maintain a
constant shape as they propagate through the medium.
Thus we assume that all the quantities to be determined
depend on the space-time coordinates through the single
variable (, defined as

ment of the normalization of the state vector. In terms
of the components of the Bloch vector, the other two
conservation laws may be written as

(2.28)

z
g )

Vo
(2.17) ~o p«((, 7) —

2
~(& 7) l g(7)d7

h(b, +1)

where vo is the steady velocity of the pulse. With this
ansatz, our system of coupled Schrodinger-Maxwell equa-
tions reduces to a system of six differential equations,

—„Q,= -„fQ—b sin(4)b —p, ), (2.i8)

—Qb = -ZQ, sin(pb —4),),p
d( h

OO—„8= —n ~pQ, Qb sin(pb —p, )g( 7) d7,

d 1 ( d ) pEQb
d

0" +
2

I
& ——0 I

=
h

cos(db —4.),
d 1 ( d ) pE'Q,'

cos(gb —P,), (2.22)
d( 2( d() hQb

—„p+I' = o, ~p cos(pb —p, )g(p)dp, (2.23)z Q.Qb

(2.19)

(2.20)

(2.21)

where we have defined the parameters

4~zp (i6 =4)o —(d )
4J7/C (Vp C P

I'=bk
l

———
l

(vp c)
We recall that these equations are valid only over time
intervals much shorter than the characteristic relaxation
time set by the inverse of the homogeneous decay width.
Equations (2.21) to (2.23) lead to the following equation
for the relative phase pb, ——pb —p,

l
cos Qb~

Qb&

aj
(Q.

d(
'

h Q
OO

cupQ, Qb cos pb, g(7)d'7+ b. + 1' .

1= Q'. +Qb,

I~ = n ~oQag(7)dT —-~P 2

h
CO (

Is = ~p l p~Q. QbcosA. —

(2.25)

(2.26)

)q2) ( )g

(2.27)

where I2 and I3 are constants. The erst law is a state-

(2.24)

This equation for the relative phase together with the
three equations (2.18)—(2.20) for the amplitudes form a
closed system by themselves. From these equations we

can derive with complete generality the following three
conservation laws:

(2.29)

where we have renamed the constants as I& and I3. The
second conservation law is the Manley-Rowe relation, in-

dicating the transfer of energy from the field to the ex-
cited state [13]. The third conservation law relates the
energy of interaction between the electric field and the
atoms to the energy stored in the atoms which depends
on the inversion. Matulic and Eberly [12] do obtain par-
ticular forms of the second and third conservation laws
but only after making the "factorization assumption, "
viz. that the solution for the second component of the
Bloch vector v(g, p) factorizes in the form

v(4 ~) =Fh)v(& 0) (2.30)

an assumption which is not valid in general. Here, we

have shown that (2.30) is not a requirement to obtain
the conservation laws and (2.25)—(2.27) are valid in a
more general context.

The complete solution of the system of equations
(2.18)—(2.23) will give us the amplitudes and the phases
occurring in the state vector at any arbitrary time as
well as the polarization and the inversion. In the lit-
erature on self-induced transparency, the only solutions
obtained for an arbitrary choice of the spectral density
function g(p) have been by use of the "factorization as-
sumption" (2.30). This is the case because the system
(2.18)—(2.23) corresponds to an infinite set of coupled
equations that decouple only for specific choices of g(7).
For these choices, analytical solutions have been found.

By assuming g(7) to be a sum of 6 functions located at
different values of y, Menyuk, Chen, and Lee [14] proved
that for certain values of the parameters the system ex-
hibits the Painleve property and consequently is likely to
be integrable. Here, however, we avoid the complications
of constructing a more general solution and consider only
the simplest choice for g(p), viz. a single Dirac b function,
in what follows.

YVe assume therefore that the eA'ects of inhomogeneous
broadening on the width of the optical resonance line can
also be ignored. All the atoms have the same transition
frequency and consequently each atom experiences the
same detuning from the applied field frequency ~. The
spectral density function g(7) reduces to a Dirac delta
function

g(7) = b(7 —&)

where 4 = ~0 —~. In a gas inhomogeneous broaden-
ing would be absent if we are dealing with atoms either
stationary or moving with the same velocity. Sharp-line
SIT has been observed in a beam of atomic rubidium
with a few nanoseconds pulse from a ~o~Hg ti laser [15].
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d(
'

I) (Qb
~

——'
Q, Qb cos pb, + b. + I',Qb1 a,

The Doppler width was about one-fourth the homoge-
neous width of the pulse. It has also been found that
the difFerence between broad-line and sharp-line SIT is
not very marked physically although the analysis of the
latter case is considerably simpler.

This assumption leaves the equations for the individual
quantum amplitudes and phases unchanged. However
the equations for the relative quantum phase Pb, ——Pb—
1)t, and the electric-field amplitude and phase simplify to

dp
2—rg~(rp —r) .

dg

This equation has the solution

r = rp sech (gzrp() .

(3.4)

(3.5)

Qc = ~rp sech(g))'rp(),

Qs = s/1 —ss sech (gssc()

(3.6)

(3 7)

It follows that the excited- and ground-state amplitudes
are, respectively,

(2 31) while the envelope of the electric field is of the form

d
—8 = —n, Q, Qbsin+b„, (2.32)

h
8 = -gzrp sech(g~rp() . (3.8)

QsQb—p = n, cos4tb, —I',

where

4w~pNp ( 1
o., =~pn=

~

———
~

) 0.
41'gc (sp c )

(2.33)

The secant hyperbolic form of the electric field in (3.8)
is the well-known "soliton" pulse of self-induced trans-
parency, first found by McCall and Hahn. It is also
known as a 2x pulse since the area under the envelope
of the electric field is 2n. This is the only possible sin-
gle pulse which can propagate without appreciable loss
through the medium. From the argument of the sech
function in (3.8) we see that g~rp can be identified with
the inverse of the pulse width (rp) so that (3.8) reads

III. SINGLE-PULSE SOLUTIONS

With all the atoms initially in the ground state, the
initial amplitudes for the states and electric field are

Q', (—oo) = 0, Q, (—oo) = 1, E(—oo) = 0,
respectively. Consequently the conservation laws (2.25)—
(2.27) simplify to

Q2 + Q2

g2 ~Q2
p

EQ Qb cos41b~ = Q~ .
I-(w+ r)

2p

(3.1)

(3 2)

(3 3)

Defining the variable

r(f;b, ) = Q ((;b,)
and the parameters

(W+ r)' pn, 4~~,2Np2 (1
4)h

'
h t'barge q vp cj

The solution of this system of atoms interacting with a
classical electric field depends crucially on the choice of
initial conditions. We solve it first for the usual case of
self-induced transparency, viz. all atoms are initially in
the ground state, and second in the more general situ-
ation where the initial state vector is a coherent super-
position of the ground and excited states. We remark in
passing that precisely the same form of the equations as
above occurs in the description of three-wave interactions
in plasmas [13].

P7p
sech —.

rp
(3.9)

Substituting for z and rp into harp ——1/rp2 leads to the fol-
lowing expression for the steady velocity vo of the secant
hyperbolic pulse in terms of the other parameters:

4m~ N 7
p (1+ 2~2)-i

Vo C RdgC
(3.10)

y. = —,'(a+ r)g+ c. , (3.11)

1)I1b = i(b, + r)g+ arctan tanh
~

—
~

+ cb .
&rp harp]

(3.12)

The constant c~ occurring in the phase P~ of the excited
state at the initial instant has no physical significance
and for convenience we can choose c, = cb ——c to be
such that 1t)b( oo) = 0.—The additional phase developed
in the electric field is

With typical values as ~o ——~ ——10 Hz, R = 10
atoms/cms, p = 10 esu, b, = 0, and rp ——10 sec,
the above expression leads to vp/c 0.01. Thus the in-
teraction of the light pulse with the atoms slows it down
considerably. In terms of the two independent parame-
ters 6 and rz, we can express ro and ~ as

rp —[1+(b, rp)2] ', )h = 62+ I/(rp)

Having solved for the amplitudes we can now integrate
Eqs. (2.21), (2.22), and (2.33) to find the phases. The
phases associated with the excited and ground states,
are, respectively

we find that Eqs. (2.18), (3.2), and (3.3) lead to 4 = -,'(a —ran+A. (3.13)
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Earlier we had stated that in order to consistently iden-
tify cu as the carrier frequency of the pulse we must set
any constant term in D, P to zero. Doing that for the solu-
tion in (3.13) yields I' = b, or equivalently the dispersion
relation

(1
Vp

(3.14)

Now the expressions for the excited-state amplitude Q,
and the electric field Z show that as ( ~ oo, Q, ~ 0, and
E' —+ 0. In other words, after the pulse has left the atoms
return to their initial state —the ground state. Thus the
pulse takes the atoms through a cyclical evolution. Since
the complete solution of the Schrodinger equation has
been obtained, we can calculate the dynamical and geo-
metric phases developed by the state vector at the end
of this cyclic evolution. The dynamical phase is defined
~ [2]

1
8 = —-„(@„IH„I4„)dt, (3.15)

26r„ + li (3.16)

For atoms on resonance (6 = 0) the dynamical phase
vanishes at the end of the cyclical evolution and also at

this being the generalization of the usual dynamical
phase —f df F/h to the case where the state vector is
not an energy eigenstate. Integrating the expectation
value of the Hamiltonian over time, we find that at the
end of the cyclical evolution, the dynamical phase for any
group of atoms is

all intermediate times.
The geometric phase can be found by subtracting the

dynamical phase from the total phase change undergone
by the state vector. The state vector is

I+.) = &""Ie)+ b"'Ig) (3.17)

We have as an initial condition I4„(—oo)) = Ig) and our
choice of the initial phase is Pb( —oo) = 0 which corre-
sponds to setting the integration constant e in pb to

c =
~ lim 6(+ arctan

I

1 1

$~oo (Arp)
(3.18)

1
Pb(oo) = lim b,(+ 2arctan

I(~oo (Arp
(3.20)

Hence the geometric phase at the end of the cyclical evo-
lution is

P = Pb(oo) —8
t' 1 I 2hrp

br„) 1+ (Ar )z

(3.21)

(3.22)

This is one of the main results in the paper. It relates the
geometrical phase developed in the ground state of the
two-level atom to the detuning b. and the pulse width r„.
Figure 1 shows the variation of P with the dimensionless

After the pulse has vanished at the location of an atom,
the state vector is related to the ground state by a phase,

(3.19)

where the total phase change in the state vector is [using
Eq. (3.12)]

0
0

I I I I I I I I I I I I I I I I

0.5 1 1.5

h,Wp

FIG. 1. Variation of the geometric phase P with Dr„ for the case where the propagating electric field is a sech pulse. A is
the detuning and r~ is the pulse width. At resonance (4 = 0), P(0) = a and this equals the entire phase change in the ground
state of the atom.
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quantity L7&. If the electric field is exactly at resonance
with the atoms, i.e. , 4 = 0, then

A. Geometry associated with motion
on the Bloch sphere

C8 (3.23)

and this is the entire phase change undergone by the
ground state since the dynamical phase is zero for these
atoms. This phase change encodes the history of the
atom which makes it dier from an atom that has not
been excited and deexcited by a pulse.

At resonance (6 = 0), the tip of the pseudospin vector
traces a great circle on the Bloch sphere. As the detun-
ing b, increases, the size of the loop traced by this vector
(and the solid angle subtended by this loop) shrinks cor-
respondingly. The extent of the excursion on the Bloch
sphere is a measure of the maximum value of the inver-
sion tvmax. Smce

1 —(Erp)z
1+ (&rp)'

we can relate the geometric phase P to tvm~ as

P = 2arctan
~

"
~

—gl —tvz~ . (3.24)
t' 1+ tv,„l

tvmax P

This expression relates the geometric phase developed by
the ground state at the end of the cyclical evolution to
the maximum excitation, due to energy absorbed from
the electric field by the atom during the course of the
evolution. Figure 2 shows that P is a monotonically in-
creasing function of urm~. The above relation between P
and the mm~ is true only in this particular frame rotat-
ing with the field, since the value of the geometric phase
depends on the particular frame while the inversion is
invariant under unitary transformations.

Now we will show that the phase P calculated above
is indeed a geometrical quantity. It is straightforward to
show that the density matrix can be parametrized by the
three components (u, v, ur) of the Bloch vector. Conse-
quently, a closed loop in the projective space corresponds
to the loop traced by the Bloch vector on the unit sphere
(recall that u + v + to = 1 due to conservation of prob-
ability). The components of the Bloch vector are

2b, rp
u = 2Q, Qs cos Ps, = "

z sech —,
v = 2Q, Qs sin Ps, — tanh —sech —,(3.26)1+ (b.rp) rp ri

~=Q. —Qs = &sech ——1 .1+ harp
z rp

(3.27)

If we label the polar and azimuthal angles on the sphere
by p and v, respectively, then we find

p:—arccos tv = arccos
I z

sech ——1
~+ rp rp

(3.28)

f 1v= Ps, ——arctan
~

tanh —
~

rp rp
(3.29)

The equation of the loop defines the polar angle p to be
a function of the azimuthal angle v and vo is the initial
azimuthal angle determined by our choice of the initial
phase Ps(—oo) to be vo ———arctan[1/(b, rp)]. This is a
mathematical value picked by continuity of the function
v defined in (3.29), the actual physical value of the initial

I I I I I I I I I I I I I I I I

0
-1 -0.5

+max

0.5

FIG. 2. The geometric phase P as a function of iv, „, the maximum value of the atomic inversion, for the sech pulse. Since
this is an invertible function, P can be obtained from a measurement of w, „or vice versa.
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azimuthal angle being undefined since the initial Bloch
vector is along the negative e3 axis.

The solid angle subtended by the closed loop is

—VD ~(~)
0= dv sin pdp

Pp 7r

4a~„= —4 arctan
~ ~ +
lhasa) 1y Arp 2

(3.30)

(3.31)

Hence on comparing (3.22) and (3.31) we find that the
geometric phase is related to the solid angle as

It is interesting to observe that precisely the same so-
lution for the Bloch vector as given in (3.25)—(3.27) is
obtained by making the factorization assumption (2.30)
when inhomogeneous broadening is included [8]. This
implies that the closed loop traced on the Bloch sphere
would be identical leading to the same solid angle and
hence the same geometric phase. This suggests then that
the geometric phase is relatively insensitive to the pres-
ence of inhomogeneous broadening. At present this is
only a conjecture and would have to be either confirmed
or disproved by detailed calculations or experiment.

The closed curve traced on the Bloch sphere can be
characterized by the area it encloses and its circumfer-
ence. We have seen that the enclosed area (here equal in
magnitude to the solid angle subtended) is related to the
geometric phase developed in the state vector. Does the
length along the path of the loop or the rate at which
it is traversed give any information about physical ob-
servables'? Indeed Anandan and Aharonov have recently
shown [17] that the speed on the projective space is re-
lated to the uncertainty in energy as

ds 2—= -LE
dt h

(3.33)

Here ds is the Fubini-Study metric on the projective
Hilbert space given by

ds' = d(@(d(@)

or equivalently may be defined as the difference from
unity of the squared modulus of the overlap of two neigh-
boring states. The energy uncertainty squared is defined
as usual to be the variance of the Hamiltonian,

Bloch vector on the Bloch sphere to be

(H„) = m —pfu
2

while the expectation value of H~~ is

(3.36)

(3.37)

Substituting the expressions for u, is, and E, it is seen
that (2/h) AE„agrees exactly with the speed ds/d( calcu-
lated above. This system thus provides a nontrivial veri-
fication of the claim (3.33) made in [17]. With this iden-
tification, the variation of the energy uncertainty with
time is also shown by Fig. 3. At first glance it might
appear strange that the energy uncertainty for br& & 1
is a maximum at ( = 0.0 which is where the inversion
is also a maximum. This is easily resolved once we re-
call that for a time-dependent system the instantaneous
energy eigenstates are also time dependent and the in-
version as calculated here is between the unperturbed
energy eigenstates. Let the higher and lower instanta-
neous eigenstates of the Hamiltonian be denoted ~+) and

~

—), respectively, with corresponding eigenenergies E+
and E . With the Hamiltonian given by (2.4) we find

Ep(t) = + zfz+
~ ~

= +i/'(H~) .
(hA~ '

If P+(t) is the probability of being in the state ~+), then
the energy uncertainty as a function of time is given by

ds 2
sech — 1+ (b, rz)2 tanh

d( ran[1+ (b, rp)'] rp .p
(3.35)

In Fig. 3 we show the variation of the velocity as a func-
tion of the dimensionless time (/rz for three different
values of b, r&. If g' denotes the instant at which the ve-
locity reaches a maximum, a plot of (' versus ~b,rzl will
show a bifurcation at (Arz( = 1.0. For [4'( & 1.0, (' =
0.0 while for (67'[ &1.0 there are two values of (', these
being the solutions of sech g'/7& ——

z + z(Ar&) .
We can also calculate the energy uncertainty. In cal-

culating the dynamical phase we found the expectation
value of the Hamiltonian to be

AE = (H ) —(H) EEz(t) = 4E (t)P (t)[1 —P (t)] . (3.38)

ds = dp + (sin p) dv (3.34)

Using our results above for the polar and azimuthal an-
gles, we obtain the speed along the curve traced by the

From (3.33) it follows that the time integral of the uncer-
tainty in energy for any quantum evolution is the same
for all systems which trace out the same curve on the
projective Hilbert space.

We can provide an explicit test of this claim by calcu-
lating both sides of Eq. (3.33) independently. The pro-
jective space for our two-level system is the unit Bloch
sphere for which the Fubini-Study metric reduces to the
natural metric (see, e.g. , Ref. [16])

Consequently the time at which LE reaches its maxi-
mum depends on the variation of both E+ and P+ with
time. By contrast, for a time-independent Hamiltonian
where E+ is independent of time, AE is a maximum
when P+ ——2, i.e., when the inversion is zero. Comparing
Eq. (3.33) with (3.38), one might say (in a rough sense)
that the velocity on the projective Hilbert space keeps
track of both the time variation in the eigenenergies and
the transition rate between the two instantaneous eigen-
states.

We can also use the above expression for the speed
along the curve to calculate the circumference C of the
closed loop traced by the Bloch vector at the end of a
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2.0
I I I I I I I I

VBloch

1.0—

0.5—

0
—10 0

QXp

10

FIG. 3. Velocity [esi„a = ds/d(g/rz)j on the Bloch sphere of the ray representative of the state vector as a function of the
dimensionless "time" (/rz for different values of Err . By relation (3.33) this figure also represents the variation of the energy
uncertainty with time.

cyclical evolution. We obtain

C= ds=

~

~

~ ~ ~

~

4
(3.39)/1+ (Arp)2 l /1+ (Arp)2)

where 4 is the complete elliptic integral of the second
kind. At resonance with 6 = 0, the circumference re-

duces to 2x, i.e., the Bloch vector traces out a great circle
on the sphere. Figure 4 shows that the circumference C
decreases as the parameter Lr& increases. Figures of the
closed loops traced by the Bloch vector for various values
of b.r& can be found in the original paper of McCali and
Hahn [8].

0
0

I I I I I I I I I I I I I I I I

0.5 1 1.5

hXp

FIG. 4. The circumference C of the closed loop traversed on the Bloch sphere when the atom returns to the ground state,
as a function of Ar„. At resonance, C(0) = 2x showing that the closed loop is a great circle.
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Thus from the calculations above, we see that the ge-
ometry of the curve on the Bloch sphere, namely, the rate
at which it is traversed and the solid angle subtended by
it (for a closed curve), contains information about phys-
ical observables of the system. The study of the under-
lying geometry is particularly useful in cases where we
are able to extract these geometric quantities from the
symmetries of the system alone and without having to
solve the Schrodinger equation ([18, 19]).

IV. CONTINUOUS PULSE TRAINS

Apart from the single pulse solution found in Sec.
III, infinite pulse trains may also propagate through the
medium if we choose the initial conditions diA'erently.
Here we take the initial-state vector to be a superpo-
sition of the ground state and the excited state. Our
initial conditions on the amplitudes and the electric field
are

Q, ((0) = sin —,Q&((o) = cos —,E((o) = 0,
where (o denotes the initial value of the independent vari-
able while the initial-state vector is

~iIrr((o)) = sin —e' '(f' )e) + cos —e' '( ')~g), (4.1)
2 2

where Pu((o) and Py((p) are the initial phases of the ex-
cited and ground states, respectively. A calculation of
the Bloch vector components shows that A is the an-
gle between the initial Bloch vector and the negative e3
axis. Much of the development in this section is similar
to that in Sec. III. What is qualitatively diferent is that
the state vector undergoes a cyclical evolution only for a

particular set of initial parameters.
Defining the variable

dr—= -~v'x( ),d

where y(r) is a cubic polynomial

y(r) = rcr(r+ —r)(r —r )

whose roots are

(4 3)

(4.4)

ry ———[( + (s+ sin A], ( = cos 4-=1 (~+ r)'
2 4K

Since g(r) has negative slope at both r = r+ and r =
r and positive slope at the origin, it follows that y(r)
has the shape shown in Fig. 5. Furthermore, from (4.3)
it follows that the region of physical interest is where

y(r) & 0. In addition, from the equality r = pg~/her, ,

we can exclude the possibility of r being negative since
o., is a positive parameter. The region of interest is thus
restricted to 0 & r & r+. Integrating the equation for
r(() we obtain the solution

(() = + n'[V' (+ — -)((-(.)+1~(1) t] (4 5)

where cn is one of the Jacobi elliptic functions and It (I) is
the complete elliptic integral of the first kind with mod-
ulus I = gr+/(r+ —r ). We obtain the amplitudes for
the ground and excited states and for the electric field
from the expression for r The ph. ases too are found by
using the solution for r. It is straightforward to find the

p = — o — —sin
2

and using the conservation laws we find that r(() obeys

I I I I I I I I I I I I I I I I I I I I I I I

0.2

0.1

—0.1

—0.5
I I I I I I I I I I I I I I I I I I I I I I I

—0.25 0 0.25 0.5 0.75

r

FIG. 5. Plot of the cubic polynomial X(r), given by Eq. (4.4), as a. function of the variable r defined in Eq. (4.2). X(r) = 0

atr=r, O, r+.
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phase in the electric field to be

4 =
2 (& —I')4+ 4p . (4 6)

As in Sec. III, setting the constant in 0~$ to zero yields
1 = 4 or equivalently the dispersion relation

bk = 6
I

———
I

fl
vp cp

(4 7)

This expression for bk is the same as that obtained in

Sec. III as it should be, since the dispersion relations do
not depend on the initial conditions. For the phases of
the excited and ground states we obtain the following
results:

P (g) = (q —1)[H(am U, q„ l)]&(i)
K f'+ —P

b.
+ 2(( —6)+4.(6) (4 8)

qt, (() = (1 —q,') [11(am U, q,', l)]I(.«)
K P+ —P

——(( —(p) + 4i gp)
2

II(am U', q2, 1) is the incomplete elliptic integral of the
third kind and is a function of the variable

An arbitrarily shaped pulse injected into the atomic
medium satisfying the chosen initial conditions will even-
tually settle down into the pulse shape given by Eq. (4.14)
after traveling through several absorption lengths. The
velocity vp of the pulse can also be expressed in terms of
the initial angle A, the detuning 6, and the pulse width
r as

1 (7 4+N~op 7+ (Lr cos A
Vp C CA4J g

- —1

+ 1 —Ar 4sin

(4.16)

As functions of A, both the amplitude S~ and the veloc-

ity vp are symmetric about A = vr and decrease as the
initial excitation increases or as A increases from 0 to s.
At the particular value A = z, E' vanishes, i.e. , with all

atoms initially in the excited state there is no interaction
between the injected field and the atoms in this semiclas-
sical theory, and the quantum state amplitudes Q, and

Qi, stay at their initial values 1 and 0, respectively.
Let us examine the evolution of the atomic amplitudes

Q, and Qb. Since cn (U, /) is a periodic function with
a real period 2IC(t) the amplitudes will return to their
initial values at

U = Qlc(7+ —7 )(( —(p) + I&(t) (P„—(p + 2nIql)7, (4.17)

and the constants

2 ~+ 2 — "+
&a = 0 ) g$ p ( 0

p+ + sin COS 2
—P+

am U is the amplitude function defined as am
U=arcsin(sn U). From Eq. (4.5) it follows that the am-

plitudes are

where n is an integer. For cyclical evolution the Bloch
vector s must be periodic. The atomic inversion m is cer-

tainly periodic at intervals of 2I&'(l)7 but the transverse
components u, v are periodic only if the relative phase
Pi, (( = Pi, —()t(i is periodic. In order for that to happen,
the initial parameters (A, b,7) may only take on certain
values. Let us denote

Q, = 7+ en (U, I) + sin
2 ' (4.10)

c(.) =~.u..)-~.u.), c,'"'=~ u..)-~ u')
The state vector at ( = (~ may be written as

2A
Q&

—cos ——7+en (U, I),
2

62
i(7c+n (z,UI) .J'

(4.11)

(4.12)

We introduce the parameter r as a measure of the pulse
width of the electric field. Expressed in terms of the other
parameters

i@„((~.)) = e' -
i

e'~ (~')sin —ie)

+e ( — . )e ((' ((o) cos ig)2

(4.18)

r =
K P+ —P

The electric field can then be written as

(4.13)
If at ( = (~ the components of the transverse polariza-
tion return to their initial values then i@„((p )) is related
to i@„($p))by a phase. That occurs if the following con-
dition is satisfied:

+z(t), t
ir (4.14)

C(") —C(") = yi,.((p„) —yi,.((p) = 0 mod2x .

Using the relation

(4.19)

is the maximum value of the electric field which de-
pends on the initial parameters as

h8 = 1 —(drpsin A -i cnsAVl —(dr)csin A.
2p7

(4.15)

O + —,~', l =2 +err —, ', i

= (2n+ 1)11(q', I)

[obtained from Eq. (110.04) in [20]] where 1I(q2, I) is the
complete elliptic integral of the third kind, the above
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condition (4.19) for cyclical evolution may be written as

2nd, r[(1—q&)II(q&, I)+(I—q )II(q„ I)+I~ (t)] = 0 mod2ir .

(4.20)

This equation expresses the fact that a chosen value of
the initial angle A allows only certain values of the quan-
tity A7- for which the state vector undergoes a cyclical
evolution. We solve this equation numerically to find the
dimensionless parameter 67 for a given A. Figure 6 is
a plot of these solutions of the cyclical evolution condi-
tion as a function of A. As we expect, these solutions are
symmetric about A = x; the initial populations and the
evolution of the system both possess this same symme-
try. Cyclical evolution in this system comes about not
by taking the parameters through a closed loop (as is the
case for Berry's phase), but by choosing the initial values
to lie on the one-dimensional curve shown in Fig. 6.

We also examine how the relative phase Pb (() evolves
with time for a particular choice of the parameters
(A, A7 ) lying on this curve. From (4.8') and (4.9) it fol-
lows that

dimensionless scaled variable ((—(o)/7 for the arbitrarily
chosen value of A = ir/10. Plots for other values of A are
similar. Superimposed on the linear variation (with slope

A—7) is the behavior due to the elliptic integrals. This
relative phase diA'erence goes through integral multiples
of 2x at various times and at each of these times the Bloch
vector completes a closed loop on the Bloch sphere.

If A = 0, i.e. , we return to the case dealt with in Sec.
III, the condition for cyclical evolution becomes irrelevant
since the amplitude for the excited state vanishes at the
end of the evolution. If this condition is fulfilled for A g 0
then the total phase change after n periods is

C~"1 = nor[ —2(1 —q, )II(q„l) + IY(l)] . (4.22)

The dynamical part of this total phase is evaluated as
before:

(s„
8($~„) = —— (c„IH„I@„)dg.

h
(4.23)

The expectation value of the Hamiltonian in terms of
the variable r defined in (4.2) is

A (() —qua ((o) = A~ [(1 —q,')11(am U, q,', I)
(0„IH„I@„)= -6(2r+—cos A) .

h

2
(4.24)

+(I —q') 11(am U, qo', f)]a-(i)

( —(oi
7

(4.21)

Figure 7 shows the variation of qadi„(() —Pi„(go) with the

Integrating the above expression and using the relation

no+ —,l = 2~i+ 1 0 —,l = 2n+ 1 (8 l

[Eq. (113.02) in [20]] where th(l) is the complete elliptic
integral of the second kind, we find the dynamical phase
to be

0.5

0.4

0.3

0.2

0.1
I I I I I I I I I I I I I

FIG. G. This curve determines the value of AT for a given A, the initial angle made by the Bloch vector with the negative
e3 axis, in order that the evolution be cyclic when the initial state is not the ground state. It is obtained as the numerical
solution of the condition (4.20).
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FIG. 7. Evolution of the relative phase change Pq, (() —Pq ((o), where Pq is the phase of the ground state relative to the
excited state, with the dimensionless "time" variable, " for A = x/10. When Pz, (() —P&,((s) = 2ns, the atomic system
completes a cyclic evolution.

8((p„) = 2nEr[(r+ —r )C(l) + (r + -' cos A)I~ (I)] .

(4.25)

Hence, the geometrical phase is obtained by subtracting
off the dynamical phase from the total phase:

~- = ~&"'- ~(~..)
= —2nAr[(1 —q, )II(q„ I) + (r+ —r )(E(f)

(+ (
r —sin —

) IC(l)] .
2) (4.26)

—0.2

—0.4

—0.6

—0.8

—1.0

FIG 8. Variatio. n of the geometric phase with A. The corresponding value of Ar„must be found from Fig. 6. P vanishes
when A = x, i.e., when the atoms are initially in the excited state. When A = 0 this figure is not applicable but instead the
results of Sec. III hold.
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We list the expressions for the various symbols occurring
in the above equation in terms of the parameters 67.
and A in Appendix A. Figure 8 shows the variation of
P with A. It is also symmetric about A = z at which
value the geometric phase vanishes. This corresponds to
the state vector remaining constant at all times, which is
the expected behavior if all the atoms are initially in the
excited state . At A = 0 (mod 2z.) the considerations of
Sec. III hold with P varying as a smooth function of A7.
Between the values of A = 0 and A = n the absolute value
of P reaches a maximum at A = 0.76 which corresponds
to the maximum inversion that can be achieved during
the course of a cyclical evolution with A g 0.

We can prove by an explicit calculation that this phase
P„ is minus half of the solid angle subtended by the loop.
The method is similar to that in Sec. III and the details
of this calculation may be found in Appendix B.

In both this and Sec. III we have chosen the amplitude
of the electric field to be zero initially. As a consequence
the slowly varying phase P of the electric field did not
develop in time. We point out here that the electric field
will be chirped if we choose nonzero values for the initial
amphtude of the electric field. In addition, Lamb [21] has
obtained multipulse solutions which do not preserve their
shape but still propagate without loss. Thus there exist
other possible solutions for the amplitudes and phases in
this two-level system but we do not consider them in this
work.

V. OBSERVING THE PHASES

Here we consider the question of observing the phases
associated with the state experimentally. The state vec-
tor for the two-level system at any time may be written

I@.(0)) = e"[Q.(()le)+e" Qi(()l~)l (~1)
The relative phase difference P~, between the eigenstates
can be known by measuring the components (u, v) of the
polarization vector, since

VPi„= arctan

However the overall phase would appear to be unobserv-
able since it disappears in calculating the expectation
value of any physical quantity. As was pointed out by
Bouchiat and Gibbons [22], the overall phase after a cycli-
cal evolution is observable either if the state vector above
represents only some of the degrees of freedom and is
made to interfere with an identical system whose corre-
sponding degrees of freedom have evolved unchanged, or
by subsuming the system as part of a larger system. In-
deed the first experiment (by Suter, Mueller, and Pines

[4]) to report the observation of the Aharonov-Anandan
phase opted for the second scheme by considering a two-
level system as part of a three-level system. They studied
the NMR transitions of a spin-1 system with three levels

1,2,3 and experimentally observed the geometric phase
associated with the cyclic evolution of the subsystem 2-3
by its effect on the magnetization of 1-2. We will con-
sider the optical analog of that experiment, the crucial
difference here being that the cyclical evolution of 2-3
will be governed by its own dynamics and not externally
controlled.

When considering three-level atomic systems, there are
three possible configurations known as the cascade, V,
and A configurations, all of which have level 2 in com-
mon, These are shown in Fig. 9, For definiteness we will
consider only the phases arising in the cascade configu-
ration by the propagat, ion of sech pulses in what follows.
The other two configurations and the phases due to con-
t, inuous pulse trains may also be studied but we do not
consider t, hem here.

The basic idea as enunciated, for example, by Stoll,
WolH', and Mehring [23] is as follows. Assuming that our
three-level system starts in the ground state ~1), we pre-
pare a coherent superposition of states ~1) and ~2) by ap-
plying a ir/2 pulse resonant with the 1-2 transition. Now
if a pulse resonant with the 2-3 transition (we have in
mind a SIT pulse) propagates through the system, it will
create a superposition of states ~2) and ~3) causing the
population and phase of ~2) to change relative to that of
~1). A measurement of the 1-2 transverse polarization (or
equivalently of the ofI'-diagonal elements in the 1-2 block
of the 3 x 3 density matrix) yields information about
the phase change induced in the 2-3 subsystem by the
propagat, ing soliton pulse. Since we are considering the
case of sharp-line self-induced transparency, all spectral
lines are assumed to be only homogeneously broadened.
Consequently the decoherence of the 1-2 pulse due to
inhornogeneous broadening can be neglected. With line-
widths around 10 MHz, the decay time for the 1-2 pulse
is close to 30 ns. Typical pulse lengths for SIT pulses are

5 ns. Following the passage of the SIT pulse, we inject
another 7r/2 pulse to the 1-2 transition. This pulse cre-
ates an echo pulse at a later time, this echo pulse is then
measured with a phase-sensitive detector to extract the
total phase change undergone by state ~2). The sequence
of pulses is shown in Fig. 10.

To see how the phase change in the 2-3 subsystem is
extracted from the echo pulse we provide a brief sketch
of the analysis. The results given below are derived in
Appendix C. We start initially with all atoms in the
ground state ~1). The first vr/2 pulse distributes the
atoms equally among levels ~l) and ~2). Following this
pulse at some time t~, the state vector can be written as

Cascade

FIG. 9. All possible configurations of optical transitions in a three-level atom.
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ech pulse

K pulse s

FIG. 10. Sequence of pulses applied to the 1-2 and 2-3
transitions in a cascade configuration. Time increases along
the horizontal axis to the right.

(5 2)

E(tz+ t) = 2S'o cos(nit + n)x, (5 4)

where E'o is a constant amplitude field which lasts for an
interval r and we have added a phase shift of o, to the
field. tq & ti + T is the instant at which this pulse is

applied. We find then that the echo signal following the
pulse has the following polarization components:

(P~) (tz+ r) = ccos[fz(ty + T) —Py(ty) + n] costi

(5.5)

(P„) (tz+ r) = csin[Ps(tq+T) —Pq(tq)+ n]sina .

The phase o, can be selected so as to separate the echo
pulse spatially from the applied pulses. In particular,
with n = z/2, the 1-2 polarization pulse is along the y
direction. This pulse contains the information about the
phase change $2(t& + T) —Pz(t&) undergone by level 2
during the passage of the soliton pulse.

VI. SUMMARY

The phenomenon of self-induced transparency is ide-
ally suited for studying various aspects of geometric
phases. In this paper we have focused on the Abelian
quantum geometric phase developed in two-level atoms

where Pq(tq) is an arbitrary phase of state ~1). Next the
soliton pulse is applied to the 2-3 levels. We observe the
polarization of the 1-2 levels in a frame rotating with
the frequency of this pulse. If T is the period of this
pulse, then following its passage, the transverse polariza-
tion components of the two-level subsystem 1-2 are

(P) (t +T)= 8 (t +T) —~(t))

(P„)' (tg + T) = csm[Pz(tg + T) —Pg(tg)],

where Pz(tq +T) is the total phase change undergone by
state ~2) and c is a constant. In principle, by measuring
the free induction decay of the 1-2 levels, the total phase
change Pz(t~ + T) —Py(ty) of state ~2) with respect to
the arbitrary initial phase of ~1) can be obtained. In
practice however, homogeneous broadening efFects will
cause a loss of the 1-2 polarization during the propagation
of the 2-3 pulse. To counteract this, another z/2 pulse
may be applied to the 1-2 transition to equalize their
populations and thus enhance the signal. This pulse is
represented by the field

as a consequence of their interaction with a classical elec-
tric field which is shaped by the atoms while propagat-
ing through the optical medium. This system is some-
what distinct from other systems considered in the liter-
ature on geometric phases in that the entire dynamics is
self-consistently determined and not driven by the vari-
ation of external parameters. As a consequence, both
the atomic variables and the electric field vary on the
same time scale and the geometric phase is genuinely an
Aharonov-Anandan phase. There is no limit under which
it reduces to the Berry phase.

Under the assumption that all damping processes can
be neglected, the system is exactly integrable. The shape
of the propagating electric pulse depends crucially on the
initial conditions chosen for the atomic state amplitudes.
We considered two initial conditions. In one case where
initially the atoms are in the ground state, the propa-
gating electric field is a single pulse with a secant hy-
perbolic form. Cyclical evolution in the atomic system
comes about naturally since this pulse returns the atom
to their ground state following its passage. In the sec-
ond case where the initial state is partially excited out
of the ground state, continuous pulse trains are obtained
as the analytical solutions for the propagating electric
field. Here cyclical evolution must be brought about by
choosing the parameters to take values lying on a par-
ticular curve in the parameter space. In both cases we

showed that the atomic state acquires a geometric phase
which depends on the detuning and the pulse width. An
explicit calculation shows that this geometric phase is
one-half the solid angle subtended on the Bloch sphere,
thus justifying the apellation of geometric. In turn this
relation is used to relate the geometric phase to the max-
imum value of the atomic inversion. Another physically
meaningful quantity, the energy uncertainty, was related
to the velocity along the curve on the Bloch sphere, in ac-
cordance with the result of Anandan and Aharonov [17].
We believe therefore that in cases where a solution of
Schrodinger s equation is not available, study of the ge-
ometry of the curves on the projective Hilbert space by
more formal methods would yield physically useful infor-
mation. We outlined an experimental procedure involv-
ing photon echoes with three levels of the atom whereby
the total phase change undergone by the state vector for
a two-level subsystem can be measured. In the particu-
lar case of the sech pulse exactly on resonance with the
atoms, the total phase change is entirely geometric.

There are several ways of extending the present work.
One, analysis of the case when the electromagnetic field
is also quantized, is in progress and will be the subject of
a future publication. Another is the possibility of asso-
ciating geometric phases with noncyclic paths —as done,
for example, by Samuel and Bhandari [24)—and relating
them to physical observables. Finally we mention that
self-induced transparency in the presence of degenerate
levels also allows for the appearance of the non-Abelian
geometric phase.
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APPENDIX A: PARAMETERS IN EQ. {4.26)

Here we list the symbols appearing in the expression
for the geometric phase (4.26) in terms of b, r and A where

is the detuning, r is a measure of the pulse width, ex-
pressed in terms of the other variables as

2= cos A 1 — Av sin A — A7 sin A+ 1
)

1 —67 4sin 1+2 A7 sin A 2+1

cosA)/1 —(Kr)4 sin A —(1Ar)csin A+ 1

1 —(b, r)4 sin A + 2(b, r) 2 cos2 A/2 —1
q& ———

rc(rp —r )

and A is the initial angle made by the Bloch vector with
the negative es axis. The various quantities are

n = —,[1/1 —(11r)4 sin'A+ (Ar)scosA],

This is used to determine the component u at all times
except when the electric field 8 and (Q~ —sin A/2) both
vanish as indeed they do at (p . At times after the initial
instant the components of s are given by

u=2b, —cn(U, t) = sinpcosv,p+

v = 2/r+(r+ —r )sn(U, 1)dn(U, I) = sin]u sin v,
u) = 2r+ cn (U, I) —cos A:—cos p,

(B5)

(B6)
(»)

where sn(U, I), cn(U, t), and dn(U, t) are the Jacobian el-
liptic functions and p, and v are the polar and azimuthal
angles, respectively. The explicit expressions for the an-
gles as functions of ( are

p(() = arccos[2r+ cn (U, l) —cos A],
v(() = Pi

= b, r[(1 —
q]) )II(am U, q&, I)

+(1 —q, )H(am U, q„l)jr~([)
-&(( —(o) + Aa((o) .

(B8)

y..(&~)0= dv
c~.((.)

sin p dp (B10)

Provided the condition (4.20) for cyclical evolution
holds, the Bloch vector returns to its initial position at
the instant ( = (~, having traced out a closed loop on
the unit sphere. The solid angle 0 subtended by the
closed loop at the center of the unit sphere is found by
integrating (for n = 1)

I = cos A 1 —(b, r)4 sin A —(b, r) 2 sin A + 1,1 2 2

We obtain

(cos'-", —r+
' sin'-", y r+

cosA 1 —L7 ~sin A —Ar sin A+ 1

2[)/1 —(cAr)4 sin A 1(cA r)secs A]

cosA/1 —(kr)ssin A —(iAr)csin A —1

2[)/1 —(iAr)4 sin A+ (cAr)s cos A]

APPENDIX 8: SOLID ANGLE SUBTENDED
IN THE CASE OF CONTINUOUS PULSES

u((p) = sin A cosP[, ((p),
v((o) = sin A sin Pr„((p),
u)((p) = —cos A .

(B1)
(B2)
(B3)

This shows that at the initial instant the Bloch vector
makes an angle of A with the negative e3 axis. The third
conservation law (2.29) can be written as

Here we will show that the geometric phase calculated
in Sec. IV is related to the solid angle subtended by the
closed loop on the Bloch sphere. The initial components
of the Bloch vector s are

+(r+ —r )C(l)+(cosA+r )Ic(t) . (Bll)

Using the explicit form of the condition for cyclical evo-
lution (4.20), this reduces to

0 = 4b, r (1 —q, )II(q„ 1) + (r+ —r )C(l)

= —2P .

(+
(

r —sin —
[ It(t)2)

(B12)

APPENDIX C: DERIVATION OF EQ. {5.5)

Hence we have shown by an explicit calculation that the
geometric phase is minus one-half the solid angle sub-
tended by the closed loop traced on the Bloch sphere.
All two-level systems which develop a geometric phase
must in fact exhibit this relationship.

Su=26,
~ Q, —sin—

I (, 2y
(B4)

In this appendix we obtain the polarization of the 1-2
subsystem in a three-level atom, following the sequence
of pulses mentioned in Sec. V. The components of the
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transverse polarization or the coherence between any two
levels can be obtained from the elements of the density
matrix. We will assume that our system is in a pure state
at all times. In that case the density matrix p(t) at any
time t may be calculated from the state vector lp(t)) as

p(t) = l&(t))(&(t) I

Since we already have obtained the state vector for the
two-level subsystem by solving Schrodinger's equation in
Secs. III and IV it is more convenient to use this expres-
sion for the density matrix rather than solve the Liouville
equation for the density matrix.

Let ll), I2), and I3) be the unperturbed state vectors
of the three levels with energies Ei, E3, and Es, respec-
tively. We consider the cascade configuration of the atom
where the allowed transitions are between the ground
state Il) and the intermediate state I2) and between I2)
and I3), the highest excited state. The resonance fre-
quencies of the transitions 1 ~ 2 and 2 ~ 3 are

E2 —Eg
4)y =

h ) 422 =
h

)

respectively.
With the initial population all in the lowest-energy

state, the density matrix at time t = 0 is

where ps is the dipole moment between states I2) and I3).
We transform to a frame rotating with the field by using
the unitary matrix

f'( + c)
U(t) = exp i 0

0

0 0)
Egt 0
0 zii)

(C6)

In the rotating frame the transformed state vector is

I@) ~ = U(t) I@) (C7)

which evolves according to the transformed Hamiltonian

-p,f 0)
a« = —Pss 0 0

0 0 oj
( 8)

where we have defined the detuning parameter A3 ——~3
4).

Our aim is to obtain the density matrix after the
passage of the pulse. We proceed by first solving the
Schrodinger equation for the state vector We. write the
state vector as a superposition of the unperturbed energy
eigenstates

I@)&,(t) = Ci(t) I1) + C3(t) I2) + Cs(t) I3), (C9)

(0 0 0)
p(0) = 0 0 0

L0 0 1j
(C1)

where Ci, Cs, and Cs are complex coefficients.
Schrodinger's equation then reduces to the system of
equations

where p~q represents the population in the highest state
I3), p33 that in the intermediate state I2), and p33 the
population in the lowest state I1). We now inject a pulse
of constant amplitude with area irj2 and resonant with
the 1-2 transition. This pulse equalizes the populations
of levels 1 and 2 and induces a coherence between them.
The state vector at some time t i after the passage of this
pulse is

=0,

. OC2
i h = —p3SC3,t

. OC3ih = —p&ZC&+ hb. &C3 .
t

(C10)

(C11)

(C12)

l~)(t ) = (""'l1)+12))
1

2

to which corresponds the density matrix

(C2) The evolution of the electric field is given by Maxwell's
equations. The dynamics of the 2-3 transition is inde-
pendent of level 1 and can be treated exactly as in Sec.
III. Hence the state vector at any time is

1 (0 0
p(ti) = — 0 1

'0( )

0
~-~4 ~(~i) (C3)

l@)«(ti+ t) = Ci(ti) I1) + Qse'~'12) + Qse" 13)

(C13)

E = E(z, t)(x cos 4 + y sin 4), (C4)

where 8' and C are the amplitude and phase, respectively,
of the field. The Hamiltonian in the presence of this field

Next this three-level system is subjected to a propagating
pulse nearly resonant with the 2-3 transition. Assuming
that this pulse is circularly polarized, the electric field
with carrier frequency ~ can be written as

where Q3, $3, Q3, $3 are obtained by the method used in
Sec. III. The soliton pulse takes levels 2 and 3 through
a cyclical evolution with time period T. The amplitudes
Q3 Q3 return to their initial values at time t = ti + T:

1
Q3(ti + T) =, Q3(ti + T) = 0 .2'

At this time the state vector is

H = —p2ge'~
-p3Ze-'~ 0 )

0
0 Eij

(C5)

i~)*.(ti+ T) = (""'ll)+ e""+ 'I2)), (C14)
1

2

where $2(ti + T) is the total phase change undergone by
state I2). Correspondingly the density matrix is
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(0 0

pt, (ti + T) = — 0 1

(0 e —(4 (i +T)—0 (& )I

o
to ~t&~(&1+T)—4'1(&1)1 (C15)

(Pz) —c(p23 + p32) 1 (Py) = 2c(p32 p33)

(C16)

where c is a constant. From (C15) it follows that

(P ) (ti + T) = ccos[gq(ti + T) —4)i(ti)],

(Py) (ti + T) = csin[gq(ti + T) —Pi(ti)] .
(C17)

At time t2 ) ti+T we apply another s/2 pulse to the 1-2
transition to refocus the signal. This pulse is represented
by the constant amplitude field

The components of the transverse polarization of the two-
level subsystem 1-2 are obtained from the density matrix

E(t2 + t) = 2' cos(nit + n)x (C18)

Pi~oe-'
0 )

0&t &r

(C19)

where pq is the dipole matrix element between levels 1
and 2. Solving Schrodinger's equation for the state vector
leads to the following density matrix at the end of the
pulse:

which lasts for an interval r and we have added a phase
shift of a to the field. Applying the unitary transforma-
tion effected by U(t) [given by Eq. (C6)] transforms the
Hamiltonian in the presence of this field to

o

(0 0 0
pt„(t2+ 7) = — 0 1+sin[$2(t&+ T) —p&(t&)+ cr] e ' cos[$2(tt+ T) —pi(tt)+ cr]

(0 e' cos[gq(ti + T) —Pi(t i) + n] 1 —sin[Pe(ti + T) —Wi(t i) + cr] )
We find then that the echo signal following the pulse has the following polarization components:

(P~)' (tg+ r) = c cso[$ (2t +1T) Qi(tl) + (x] coso!

(Py) (tg + r) = csin[$2(t& + T) —P&(t&) + n] sin n .

This is the result (5.5) described in Sec. V.

(C20)

(C21)
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