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Mass efFects and one-particle detectors in quantum-measuring processes
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The measuring process of an object system and a detector are studied in the von Neurnann model and
one of its variants, in which the detector consists of a single particle. If the states of the particle after the
interaction with the object system are described partly by coherent states, then the particle can play the
role of a detector under certain conditions. The mass (or free Hamiltonian) of the detector does not
affect the measuring process at all, while the mass of the object system plays an important role. In the
von Neumann model, if the mass of the object system is quite large, the position measurement can be
considered, and under certain conditions the statistical operator p tends to just its mixed-state part, i.e.,
quantum interference disappears. However, when the time after the interaction becomes very large, in-

terference emerges again. On the other hand, if the mass of the object system is small, we can even con-
sider the momentum measurement and show that p approaches its mixed-state part when the time be-
comes very large, i.e., p is equivalent to its mixed-state part. The momentum can also be measured al-
most completely in the variant model; the operator p becomes equivalent to its mixed-state part. The
different quantum states distinguish the detectors from the object systems.

PACS number(s): 03.65.Bz, 02.20.+b

I. INTRODUCTION

In quantum-measuring process, we always consider an
interaction between an object system S and a detector A.
Since we get information about the object system through
the interaction, the detector must register each state of
the system, and the states including the information
about S must be almost stable. As a result, the detector
inay be a macroscopic body with many (N) degrees of
freedom. These macroscopic detectors have many desir-
able characteristics as measuring apparatus when N is
very large. In fact, on the basis of their macroscopic
properties, many authors have discussed measuring pro-
cesses [1—15], irreducibility, quantum macroscopic states
and their superpositions [16,17], etc.

We have presented recently several models for the
measuring process [18—22] with the help of generalized
coherent (GC) states, and shown that the (macroscopic)
detectors in these models have many desirable functions
as measuring apparatus. The GC states in these models
were generated by applying elements of the coherence
groups SU(2) and SU(1,1) to a "base state. " Using a
group such as SU(1,1) we have given an explanation of
why particle trajectories in the Wilson cloud chamber are
straight and almost stable [19,20]. Also the notion of an
equivalence class of quantum states, which was. first dis-
cussed by Jauch [23], has been introduced into the above
GC-state formalism [21], this notion being well suited to
our approach.

The GC states have been developed by many authors
[24—26] in order to find a link between quantum and clas-
sical theories; coherence groups and GC states are central
in their treatments. In the large-N limit, the expectation
value of any product of reasonable operators (called clas-
sical operators) approaches the product of the expecta-
tion values of each operator, which is called factorization

[24]. This is a very important property of classical opera-
tors because the factorization relation shows that quan-
turn fluctuations of these operators become irrelevant in
this limit.

It should be noted here that some quantum theories
with the fi~O limit have the same mathematical struc-
ture as those with the large-N limit; the quantum theories
approach the corresponding classical theories in the
small-tri limit [24]. Small fi implies that it can be neglect-
ed in comparison to other quantities of the physical sys-
tem under consideration.

In a previous paper [27], using the Heisenberg-Weyl
(HW) group, we have applied the above approach to a
quantum-measuring process with a one-particle detector,
i.e., the detector consists of a single particle with a few
(one or three, for example) degrees of freedom. It has
been shown that the one-particle detector can behave ma-
croscopically or classically under certain conditions; if
the time t after the interaction between S and A is very
long, then these conditions are satisfied. Differing from
macroscopic detectors, the possibility of one particle act-
ing as a quantum detector depends on its object system.
All calculations have been done in the impulsive approxi-
mation, that is we have neglected the free Hamiltonians
of Sand A.

It is the purpose of this paper to investigate the roles
played by the masses (or free Hamiltonian) of the object
system and the one-particle detector. Thus we have to
treat the free part as well as the interaction part. The
models we will adopt are the von Neumann [28] and one
of its variants. Using the canonical transformation,
which has been developed in considering the squeezed
states in quantum optics [29—34], it is shown that the
mass of the one-particle detector does not play an impor-
tant role, at least in these models. On the other hand, the
mass of the object system is critical.
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We will show that, in the case of the position measure-
ment of S in the von Neumann model, the statistical
operator p approaches its mixed-state part po under cer-
tain conditions when the mass of S is very large. Howev-
er, the difference between p and po is very large as the
time t ~ ~, which means that quantum interference ap-
pears again. Because of noncornmutativity between the
free Hamiltonian of S and the interaction, even the
momentum measurement can be performed if the mass of
S is quite small, although the von Neumann model has so
far been considered adequate to measure only the posi-
tion of S. In this case, the operator p approaches po when
the time t is very large. The momentum measurement
can also be considered in the variant model. The calcula-
tion works out very nicely and the operator p becomes
equivalent to its mixed-state part with respect to any ob-
servables of S and any polynomials in the position and
momentum operators of A.

A short review of the HW group and the Glauber
coherent states [25,27,35,36] will be given in Sec. II. The
position measurement in the von Neumann model is dis-
cussed in Sec. III; the momentum measurement is investi-
gated in Sec. IV. We also give the momentum measure-
ment in the variant model in Sec. V. Finally, Sec. VI is
devoted to conclusions.

II. GLAUBKR COHERENT STATES

~a }= ~ai, az, a3}=D(a}~0), (2.2)

D(a, P)=e ' eiei",

where a, P, y 6C, P=Pi+iPz
P, = —

—,
'

I a I
and y = —a',

D(a,P)= exp(iPz)D(a), and

D (a,P)D (a', P') =D (a",P" )

with

(2.3)

(P; ER). Setting
then we find

(2.4)

a"=a+a', p"=p+ p' —a'a', (2.5)

where p'i' —= Re(p" ) = —
~

a"
~

/2. The 3 X 3 matrices

u(a p)= a
—u* 1

(2.6)

where a, EC, D(a)=D(ai)D(az)D(a3}, and ~0}
—= ~0) ~0 }~0} is a base state with a; ~0) =0. For simplici-

ty, we consider only one component a,. =—a and a; =—a .
Each D (a) is defined by D(a) =e '

Let us introduce a representation of the HW group.
Define [27]

In our previous paper we considered the Glauber
coherent states and their application to several measuring
processes [27]. The classical limit we adopted these was
A'~0, which implies that fi can be negligible in compar-
ison to other quantities of a physical system under con-
sideration. In most measuring processes, the small-A' lim-

it corresponds to large time or large coherent parameter.
For simplicity, we use the small-A limit in this section.

Several models have been investigated in the previous
paper on the assumption that the free Hamiltonian of an

object system S and a (one-particle} detector A is much
smaller than their interaction (i.e., impulsive measure-
ment). In order to treat the masses of S and A, we have
to introduce their free Hamiltonians. Then we show that
the mass of the object system, not of the detector, does

play an essential role in the process.
Let us give a brief review of the Glauber coherent

states [25,27,35,36]. Consider a single particle with three
degrees of freedom; its position Q; and momentum P~
operators satisfy the HW algebra [Q;,P/] =i A'5;~.

(i,j =1,2, 3). The theory is defined in a Hilbert space &.
Using annihilation and creation operators defined by

1/2

satisfies u (a,P)u (a', P') = u (a",P"), where a" and P" are
given by Eq. (2.5). Defining D(a, P)=—D(u(a, P)} we
have a representation D of the HW group consisting of
u(a, p). On the other hand, the matrix u is expressed by
[27]

u(a, p) =e e 'e+P— ~P3 &P+

where

(2.7)

0

p+= 0
0

0

p — 1

0

0
p3= 0

1

0 0
0 0
1 0

0 0
0 0
0 0

0 0
0 0
0 0

(2.8)

Define p, =p++ p and pz
= i (p+ —

p
—}, then p;

(i =1,2, 3) construct the HW algebra. Using
D ( expp; ) = expD (p; ) we find

a =
J

g

Q + P
2As D(p )=+a, D(p )=a, (Dp )=31 . (2.9)

a
za

1/2

P. ,&Ms

(2.1) The coherent states are obtained by applying elements

of the HW group to a base state
~
in ) [25],

~a,P) = D(a, P~i }}n. (2.10)

where s is a constant with dimension (mass)/(time), the
basic commutation relation reduces to [a, , a ]=5, .

The Glauber coherent states are given by

Note that ~a,p) = exp(ipz)~a} and a ~in) =0. Different

coherent states are not orthogonal; their overlaps are

given by
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(a,PIa', P') =(O, OID((u '(a, P)u(a', P'))Io, o)

=e' ' ' exp[ —
—,'(Ial'+ la'I' —2a*a')],

ing, for example, a Stern-Gerlach-type device [37—39].
Without this spectral decomposition we cannot prove at
present that p is equivalent to its mixed-state part po.
This needs further investigation.

(ala'& = exp[ —
—,'(lal'+ la'I' —2a*a')],

(Z. 1 la)

(2.11b)

which is a well-known result.
Since any operator does not have a sensible macroscop-

ic (classical) limit, we have to introduce a restricted set K
of classical operators to control this limit [24]. In the
present case, it follows from Eq. (2.11) that the internal
products are nonzero: ( a, Pl a', P' )%0 for all
a,g, a', P'EC. Thus the definition of a classical operator
is as follows [21]: an operator A is called classical if
lim& 0(a,PI A la'P') /(a, Pla'P') is finite for all

la, P), la', P')E&. Recall that A' can be negligible in
comparison to other quantities of our physical system.
Under this definition, all polynomials in Q and P are clas-
sical operators (see Ref. [24], p. 413).

Now consider a quantum-measuring process in which
an object system S interacts with a detector A (one parti-
cle). After the interaction between S and A, the state of
the total system may be written as

(2.12)

Tr[(p —po)(08 A ) ]~0 (Pi~0), (2.13)

where 0 is any observable of S and A any classical opera-
tor. Now set p=l1(i)(1(il and let po be its mixed-state
part. Then we have

where In ) are states of S, Ia„) coherent states of A and
c„coefficients. We will derive Eq. (2.12) in several simple
models, and show that the condition of small A is satisfied
when the time after the interaction between S and A be-
comes very large.

In the previous paper [21] we introduced an
equivalence class which is defined as follows: two statisti-
cal operators p and po are equiua1ent if

III. POSITION MEASUREMENT
IN THE VON NEUMANN MODEL

A. Impulsive measurement

As in Sec. II, the total system consists of the object sys-
tem S and the detector A. The detector is one particle; at
least one component (the z component, for example} of
the detector state becomes a coherent state.

Let the total Hamiltonian be given by
H =Hz+H~ +H', where Hs and H„are, respectively,
free Hamiltonians of S and A, and H' their interaction
[28],

p2
Hs=, H~ =, H'=gq. P,

2m
' " 2M' (3.1)

where p and q are, respectively, the momentum and posi-
tion operators of S, P the momentum operator of A, m
and M masses of S and A, respectively, and g a coupling
constant. As is well known, in the impulsive approxima-
tion, Hs, H& (&H', corresponding to, for example, very
large masses of S and A.

Using a Stern-Gerlach-type device, a state of S is as-
sumed to reduce to

lip& =c, lq„& lip, &+c2lqz, & Iip2&, (3.2)

where c; are constants, lip; ) contain the spin, x, and y
components of each wave packet, and Iq;, ) are well-
localized wave packets so that Iq,, ) may almost be eigen-
vectors of q, : g, lq;, ) =q;, Iq;, ). That is, using the Stern-
Gerlach-type device, we can always change a wave pack-
et of S to a spectral-decomposed one in which the expec-
tation value of g, is much larger than its uncertainty.
The initial state of the detector is to be
lin) =IO, O, O)—:Io)lo)lo). Thus the initial state of S
and A (at t =0) becomes%'(0)= lip) Io&lo&lo&

Using H =H', the state at time t can be obtained,

Tr[(p —po)(O A)]

„c(cmlOln )(a I Ala„), (2.14)
qp( t )

—(i /R)Higgs( 0 )

2
= g c;U„&„lq;,&lq, &Io, o&e *Io)

Thus, if (a Ia„)I„& ~0 (A'~0}, then Eq. (2.14)~0; p
and po are equivalent, which is written p-po. Although
the two equivalent states in Jauch's treatment cannot be
distinguished by measurement of any observables of a
physical system [23], it is possible in principle with our
approach, but more di%cult as A'~0.

In our theory of "coherent measurement, " it seems
quite difficult to measure directly a continuous observable
of S such as the position and momentum. Hence we have
to change a state of S to a spectral-decomposed one us-

=g c, U„U, lq„,q „.0,0) la, ), (3.3)

where U; = exp( igg, P, /fi). Since Ia; )—are c. o.herent
states, the state %(t) has the structure of "coherent corre-
lation. "

The statistical operator p corresponding to the state
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%(t) is written as

p=po+(e fc2U„U lq2„ip»;0, 0&

X&q„,q7, ;D,D~U U„S~a &&a, ~+H. c. ), (3.4)

where po is the mixed-state part of p. Any classical

operator can be written as

A(Q;, P, )= A„(Q„,Q», P„,P»)A, (Q, P, ) .

The difFerence between the expectation values of Ots) A
( A HK) for p and po is given by

Tr[(p —po)(O A )]=c;c2&q„,ip&, 0, 0~ U» U„O A„U„U»(q2, qr2,'0, 0&&a&~ A, )az&+c.c.
= const Xc fcz&ql„ip&, 0, 0~ U„U„OS A„» U„U» ~q2„ip2,'0, 0& &ai a&&+c.c.

2 2 2= const Xc,'e2&q„, ip, ;D,D~U»U„OA„»U U»~q2„ip2, 0,0&exp — ' ' +c.c.
4A

(3.5)

when A'= 0, which means physically
g (q„—qz, ) st ))4'. We thus have p-po under this
condition. Note that q,, is a constant of the order of the
expectation value of q at t =0.

It becomes more difficult to distinguish the two
equivalent states p and po as fi~0 or very large time t.
Although we cannot derive the relation p- po if
g (q„—q2, ) st (4A', we obtain p-po again when the
time t becomes very large. However, as will be seen in
Sec. IIIB, t cannot become very large. In the case of
detectors with many degrees of freedom, we can derive
the equivalence relation independent of their object sys-
tems [18—22], while the possibility of one particle acting
as a quantum detector depends on its object system.

B. General case

In order to clarify the roles of the free part H&+Hz,
especially the masses of S and A, we must treat the total
Hamiltonian H. We will show that the position measure-
ment of S can be performed approximately only if the ob-
ject mass m is very large, i.e., in this case the statistical
operator p approaches its mixed-state part po under cer-
tain conditions. This also occurs at very small time, im-

where

—(i /fi)H~ t
U UyU, ,

r

g2t2

2M 6m

(3.6)

—(i/A)(t/2M+g t /6m)P, .
U;=e

—(i /A)(gt /2m)P. P —(i /A)gg. P.
Xe I je j

Suppose that ~q;, & are also localized in the momentum
space, then we find

mediately after the beginning of the interaction. Howev-
er, the final state in the large-time limit will recover the
interferences, and p +po.

The initial state of S and A is the same as that in Sec.
IIIA: 0'(0)=~ip&[0&~0&~0&, where ~ip& is given by Eq
(3.2).

To obtain the state of the total system S+ A at time t
after the interaction, we must decompose the time evolu-
tion operator as follows:

—(j/fl)Ht
—(i/A)H~ t —(~'/A)H~ t

( /g)( t2/2m)y P ( /g) P

—(i/fi)(gt /2m)p P —(i/A)gg P
[ & ~ & I ~ &

—(i/fi)tIgtq, . +gt p,- /2m]P
dp;, ~p;, ~~p;, Iq;, «

i'Z' KÃ0 +N» Z'
1

pt'z piz piz qiz-

= f, dp;, ~p;, &&p;. ~q;. &e
I

I ~
—(i/+) tgtqgz jPz

(3.8)

when m is very large such that m »p;ot/2q;„where V;
is a finite nonzero region of & p;, ~q;, & and p, o the maximal
value of the region V;. Note here that qi, is the order of
the expectation value of q at t =0, and that it is constant.

Using the above equations, the state at time t can be
obtained,

y(r) —e
—(i')Hl@(0)

2=X;
—(i /fi)[t/2M +g t /6m]P —(I /$)gtq. PXe 'e &z z 0 3 9
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Equation (3.9) contains the Glauber coherent states:
Igtq;, v's /2A &. Thus. 0'( t) has "coherent-correlation"
structure.

In order to treat the action of an operator such as
exp[ —(i/iri)(t/2M+g t /6m)P, ], we can make use of
techniques developed in squeezed states [29—34]. Let us
introduce new operators given by the following canonical
transformation:

b =S(co)a,S '(co), b =S(co)a,"S '(co),

& a;pvly;vv &
=

&Pluri & =exp( —
—,
' IPI' ——,

' lai'+P*fi),

(3.13c)

where fi=py+o y*, h =IM*p —v*o, f =po —vp, and B is
a polynomial in b and b T.he proof of Eq. (3.13) is made
in a similar way to Yuen [30].

Using the above new states, the final state p(t) be-
comes

4(t)=pc;e U„U~lq;, &lp;&IO, O&la;;p, v&

where S(co)=exp[ (i/—A)coP, ] (coER), which may also
be written as

~ ~

b p v az

b v' p* a,

—=g c;e U„U lq;„y;;0,0& la;;pv&,

where

(3.14)

where @=1+icosand v= ico—s with I)M, I

—Ivl =1. Note
that the transformation matrix in Eq. (3.11) belongs to
SU(1,1) and [b, b ]=1. In a siinilar way to sqeezed
states, we define a new state (which is not a squeezed
state)

la;pv& =D(a)S(pv)IO& =S(pv)D(P)IO& (3 12)

3

co= +, a; =gtq;, v's/2A' .
2M 6m

(3.15)

In deriving Eq. (3.14), we have used the equality
S(co, )D(a, ) =D(a, )S(co, ) or a; =P;.

The statistical operator p corresponding to the state
%(t) is written as

where S(pv)—:S(co) and P=pa+va'. The matrix ele-
ments with respect to such states are given by

r

& a;pvl y;po &
= —exp ,' IPI' —,' Ifi—l'+—P—'fi—

—(i /A)H~tp=po+[cicze ' U. U, lq„,y„0,0&

X(q„,y, ;O, OIU U„

@la„lM,v&&a„p, v +H. c.], (3.16)

(a;pvIB (b, b ) Iy:pcr &

f p.i+ f*fi
2h 2h

(3.13a)
where po is the mixed-state part of p. Any classical
operator can be written as

A(Q, ,P, ) = A„,(Q„Q„—P„,P, ) A, (Q„~.) .

=B —+,p' &a;pvly;per&
2 c)P»

(3.13b) Assuming that A, (Q„P,)—:B (b, b t) [b—:(1+icois )a,
icoisa,—], we find

Tr[(p —po)(O A )]=ci c2(q„,yi,'O, OI U U„e 08 A„ye U„Uy lq2, q'2'0 0&

X ( a„p, vlB( bb )la2;p, v&+c.c. (3.17)

Recall that B(b,bt) is a polynomial in b and b . Then,
using Eq. (3.13), we get

&a, ;p, , vlB(b, b )la2;p, , v&
r

207g; ))t »
g s(q„—q, )~Pio

which gives the condition for the time

4A
(3.20)

1 + ~pi &a)'&p~vlaiip~v&2 c)Pi

g t s(q„—qz, )
=F(a„az)exp (3.18)

m », g (qi, —
qz, ) st »4iri,pio

2giz
(3.19)

where F(ai, az) is a polynomial in a, .
It follows from Eqs. (3.8), (3.17), and (3.18) that the sta-

tistical operator p approaches its mixed-state part po if
the mass m of S is very large such that

The free Harniltonian H~ of the detector has nothing to
do with this approximation. The first condition in Eq.
(3.19) is requisite for the position measurement, and the
second one is needed for p=po. It should be noted that
the second condition is the one for impulsive approxima-
tion, for which the condition Hz ((H' is not needed.
We cannot have taboo because of the first condition.
Hence we arrive at our conclusion: the statistical opera-
tor p is not equivalent to its mixed-state part po. We can-
not measure the position of S using a one-particle detec-
tor in the von Neumann model. This is because the free
Hamiltonian H& of S disturbs the position measurement.
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IV. MOMENTUM MEASUREMENT
IN THE VON NEUMANN MODEL

lq) & =ci Ip), & ltp) &+czlpz, & lt((tz&, (4. 1)

where lp;, ) are well-localized wave packets in the
momentum space so that lp;, ) may almost be eigenvec-
tors of P, : P, lp;, ) =p;, Ip;, ). Using a Stern-Gerlach-type
device, we can always change a wave packet of S to a
spectral-decomposed one in which the expectation value
ofp, is much larger than its uncertainty. The initial state

So far the von Neumann model [the Hamiltonian of
which is given by Eq. (3.1)] has been used to measure the
position of the object system S because the interaction
with the detector A contains position operator q of S.
However under the condition of very small object mass
m, we can discuss the momentum measurement and show
that the statistical operator p approaches its mixed-state
part po as the time t becomes very large, i.e., we have
p-po. This is because [Hs, H']%0. We will elaborate
this in this section.

In a similar way to Sec. III, a state of S may reduce to

—(i/fi)(gt /2m)p PXe

where

—(i /A)H~t
x y z (4.2)

1 g2t2 2P

—(i/&)I t/2M —g t /3m ]P . —(i/g)ggy. P.'e

—(i/A)(gt /2m )P.J'.
Xe I l (4.3)

Suppose that lp, , ) is localized in the configuration space,
then we find

of the detector is to be lin) —= IO, O, O) =—IO) IO) IO). Thus
the initial state of S+ A (at r =0) becomes %(0)
=Iq &IO&IO&IO&.

The decomposition of the time evolution operator now
becomes

—(i /A)H&t —(i /fi)H& t (ig)gtq pe ' =e e e

(i/K)gag, p, — (i/A)(g—t /2m)P, P. . . , , ,
—(i/tt)(gttt, +gt p,, /2. m)P,

d I &( P

f I ) ( I )
(i/s)(gt p ~ /zm )P

—(i/A)(gt p,. /2m)P
(4.4)

when m is very small such that m ( (p;, t/2q;o, where V~ is a finite nonzero region of (q;, lp,, ). q;0 is the maximal
value of the region V;, which is constant

The state at time t is given by

qt(r) —e
—(i/ )Ht(tq(0t)

—(i/S)Hst
~ y ~ y ~ y

—(i/pt)(t/2M g t /4m)p ——(i /pt)(gt p, /zm)P~ ~.'e (4 5)

The right-hand side of Eq. (4.5) contains the Glauber coherent states: l(gt p;, 2/m)&s 2/())1. Here let us introduce new
operators b, bf and new states Ia;t(zv) given by Eqs. (3.10)—(3.12) to treat the action of S(ctt) =exp[ (i/A)coP, ]. T—hen
the state %(t) is written in terms of the new states

0 (t) =pc, e '
U„Uplp, , ) lq; ) IO, O) la;;p, v)

=g c,.e U„U IP,„(p,;0,0) Ia,.;p, v), (4.6)

where

t g2t 3 gt'p
co= —,a,. = &s/2A' .

2M 3m
' ' 2m

(4.7)

The statistical operator p corresponding to the state %(t) is written as

p=po+(c*, cze U„U IPz„tpz, 0,0)(p„,tp);O, OIU U„e @ Iaz, )M, v)(a);p, , v]+H. c. ),
where po is the mixed-state part of p. In this case, Eq. (3.17) now becomes

(4.8)
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Tr[(p p—o)(o A )]=cl c2&pi„ipi', 0,0l U U„e oe A„ze U„Uz lp2„ip2', 0,0)

X &a, ;ili„vl8(b, b )la2;iM, ,v)+c c. . (4.9)

Using Eq. (3.13), we get

&a, ;I,vl&(b, b')la2.,1,v &

a=s +,P; &a„iM, vla2;i, v&
QPo

g t (Plz P2z) S
=F(al, a2) exp

16m 4
(4.10)

where F(a„a2) is a polynomial in a;.
Equations (4.4), (4.9},and (4.10) show that the statisti-

cal operator p is very close to po if the mass of S is quite
small such that

Plz g t $(Plz P2z)
(4.11)

V. MOMENTUM MEASUREMENT
IN THE VARIANT VON NEUMANN MODEL

That is, we can assert that in the situation (4.11), the
momentum of S can be measured in the von Neumann
model. The first condition in Eq. (4.11) is needed for the
momentum measurement, while the second one gives us
p=po. Since the two conditions are satisfied for the
large-time limit, '

p is equivalent to its mixed part. Al-
though the von Neumann model was presented to mea-
sure the position of S, it is performed very approximately.
On the other hand, the momentum of S is measured nice-
ly. The mass of the detector M does not contribute to the
condition (4.11).

unimportant in the measuring process. As easily seen
from Eq. (3.1), the free Hamiltonian of the detector Hz
commutes with the interaction H', and as a result the
detector mass M does not influence the process. We thus
consider in this section a simple variant model with
[H„,H']%0, and investigate the effect of the mass of the
detector.

The total Hamiltonian we now consider is
H =Hs+H„+H', where Hs and H„are as defined pre-
viously, and the interaction H' between S and A is given
by

H'=gp. Q (5.1)

(5.2)

where

1 g t2 2

2m 12M

—(i/A)(t/2M)P, . —(i/A)[(gt /2M)P, .P,. +gtP,.Q,. ]U;=e e

Hs

(5.3)

which commutes with Hs, not H„. The initial state of
the total system S+2 is the same as that in Sec. IV:
0'(0}=lip) l0) l0) l0), where lip) is given by Eq. (4.1). To
obtain the final state we must decompose the time evolu-
tion operator as follows:

e =e—(i/g)Ht
—(i Ifi)H~ t —(' IR)HA t —(i/fi)[(gt /2M)p P+gtp Q]e e

In the von Neumann model investigated in the previ-
ous sections, the mass M of the one-particle detector is

Using the above decomposition, the state at time t is
given by

lP(t) e lils)HtlP(0—)

( 'IA)Hst
( y ~ y ~ y ( l&)(t/2M)P ( 'I&)[(gt P;, /2M)P, +gtP;, Q, ] ~ (5.4)

which contains the Glauber coherent states:

Using the operators b, b t and the states la; pv) defined by Eqs. (3.10)—(3.12), the state %(t) is written in the form

q(t)=pc, e ' U„U, IP,, &l~, &10,0&la;;p, v&

(5.5)

—:g c;e U„Uy lp;„ip;;0,0) la, ;p, v), (5.6)

where

CO= CX. =
2M '

gtS'iz tS

v'2fis 2M (5.7)
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In deriving Eqs. (5.6) and (5.7), we have used S (pv)D (P; ) =D(a; )S (pv) with P; =pa, +va,'. .
The statistical operator p corresponding to the state %(t) is written as

—(i /A)H~t g y (i Ifi)H~t
p=po+[c/c2e '

U„Uylp2„qp, '0, 0)&p)„q],0,0IUyU e 's~a2,'p, v)&a„p, v~+H. c.],
where po is the mixed-state part of p. Equation (3.17) in this case becomes

Tr[(p —po)(OI8I A )]=c*,c~(p„,q)„0,0~ U U„e OS A„e U„U ~p2„(p2;0, 0)

X (a„p,v~B (b, b ) ~a2, p, v) +c.c .

(5.8)

(5.9)

Using

(a, ;p, v~B(b, b )~az,'JM, v) =B +,Pf (P, ~P2)
2 gp;

=F(P*„P,)&P, lP, ),
2 2

P 1z P2z 4M +s
4~ 4M'

(5.10a)

(5.10b)

where F(p,*,pz) is a polynomial in pf and p2, the statisti-
cal operator p is equivalent to its mixed-state part po
when

g't'(P, z
—P,z)' 4M +t s »1.

4As 4M
(5.11)

Differing from the position measurement in the von Neu-
mann model, this condition can be satisfied for all values
of mass M of the detector except zero. In the large-M
limit (2M ))ts), the above condition reduces to
g t (p„—p2, ) ))4fis, which is the condition for p-pain
the impulsive measurement. In the small-M limit (or
large-t limit) the condition (5.11) reduces to

(P lz P2z ) t s »1.
4fis 4M 2

(5.12)

Thus we have p-po. Also in this model, the mass of the
detector does not play an essential role in the measuring
process.

VI. CONCLUSIONS

Using the von Neumann and its variant models, we
have investigated the mass effects. The detector A we
have considered consists of a single particle with three
degrees of freedom, which we have called a one-particle
detector.

The von Neumann model with the Hamiltonian given
by Eq. (3.1) has been used for the position measurement
of an object system. In the impulsive approximation,
Hz, Hz»H', the position measurement was neatly per-
formed, that is, we can prove the statistical operator p is
equivalent to its mixed-state part po with respect to any
object observable 0 and any polynomial 3 in detector
operators Q,. and P . The condition for the impulsive ap-
proximation is a very large mass satisfying Eq. (3.20).

The mass M of the detector need not be very large; it
does not affect the measuring process. This is the physi-
cal meaning of the impulsive approximation.

As discussed in Sec. IIIB, we cannot prove p-po in
the general case of the position measurement. However,
under the conditions given by Eq. (3.20), the statistical
operator p is quite close to its mixed-state part. Since
this condition breaks down as the time taboo, the ap-
pearance of the quantum interference between two
coherent states depends on the time. Consequently,
strictly speaking, the object position can only be mea-
sured very approximately in the von Neumann model.
This results from the noncommutativity between Hz and
H'; the free part H& disturbs the position measurement.
Note that the position operator q is not a quantum-
nondemolition (QND) observable because [g;,Hs)%0
[40—43].

Next we have studied the momentum measurement in
the von Neumann model, which can be performed almost
completely if the mass m of S is quite small, satisfying
two conditions (4.11). Under these conditions, the statist-
ical operator p approaches po. Note here that the time t
satisfying the conditions (4.11) can become very large (or
t ~ ~). The possibility of the momentum measurement
in the von Neumann model also comes from noncommu-
tativity between Hz and H'; the free part Hz again dis-

turbs the measurement. The momentum operator is not
a QND observable, and the interaction H' is not back-
action-evading (BAE) type [40—43]. Nevertheless, the
operator p can be very close to po under the condition
(4.11), and get p-po.

In the last model with the interaction H'=gp Q, the
momentum measurement can be performed almost com-
pletely. We have shown in Sec. V that the operator p is
equivalent to po. Although the detector Hamiltonian Hz
does not commute with the interaction H' ([H„, 'H]% ),0
it does not disturb the measuring process at all. Since

[P;,H'], [P, ,Hs]=0, the interaction H' is a BAE type
and p a QND observable.

The above four cases we have investigated show that
the mass of the detector M is not important in the
measuring process. Hence we can consider (especially in

the second and the fourth models) the paradoxical case
where the object mass m is very large whereas the detec-
tor mass M is quite small; in this case also, the essentials
of the situation remain unchanged. Moreover, if each
state of an object system S is partly described by a
"coherentlike" state, then there may be a possibility of a
model without a detector.
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The quantum-measuring process is said to be irreversi-
ble, a derivation of this being possible for macroscopic
bodies. In the case of a one-particle detector, is it possi-
ble to derive the irreversibility of the measuring process?
Such a derivation may result from considerations of
quantum chaos [44], for example.
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