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Thomas-Fermi-Scott model in momentum space
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We incorporate the Scott correction into the momentum-space energy functional of the Thomas-

Fermi model and so improve the description of the strongly bound electrons. The resulting differential

equation is then discussed, and we report numerical results for neutral mercury.
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INTRODUCTION

"The well-known failure of the Thomas-Fermi (TF}
model in the vicinity of the atomic nucleus requires a spe-
cial treatment of the strongly bound electrons. This is
generally called the Scott correction [1]. It can be incor-
porated consistently into the TF model, provided the
language of potential functionals is employed [2]. Thus
one arrives at the Thomas-Fermi-Scott (TFS}model. All
physical quantities, for which the contribution from the
innermost electrons is dominating or at least substantial,
are treated much more realistically in the TFS model
than in the TF model. " So begins a recent paper [3] on
the Scott correction to the momental density. It is the

objective of the present contribution to present the
momentum-space formulation of the TFS model, thereby
improving upon the TF approximation reported in the
preceding paper (I) [4].

MOMENTAL TFS MODEL

The reasoning that produced the spatial TFS energy
functional in Chap. 3 of Ref. [5] can be repeated for the
E, [7+g] given in Eq. (41}of I. This leads to

E, [T+g]=E,"[T+g]+hsE,[T+g] (1}

with the Scott correction

[v, 1

hsE, [T+g]= gN, —2Z [v, ]+J (dp')T(p') g 2v ~f„~,„(p')— 1 —(g, —g) E) [T+g, ]
v=1 S

, sp

(2)

Here, ~g„~,„(p') is the average momental density of one
electron in the vth Bohr shell, explicitly given by [6]

8 (v/Z)
6 [1+(vp'/Z) ]

(3)

v, plays the role of a continuous principal quantum num-
ber; the binding energy g, that separates the specially
treated strongly bound electrons from the other ones is
related to T(p') and v, by

The various smooth parts are [5]

[[v, ]]sp=v, —
—,', [N, ]sp= 3 $

and [3]
'[v] '

1 2P/Z
g 2v'lg. l,'.(p') =~sp(p')+
„=] sp 3 1+(vsp'/Z)

with

(6)

'3

Z —f (dp') [T(p') —
—,'p']

I &„ I!,',(p' };

and the number N, of strongly bound electrons is

(4) 2
4Z " (v/Z)

„=i [1+(vp'/Z) ]

3

1 2Z
3 tr p

lv, l

N, = g 2n =
—,'[v, )([v, ]+—,')([v, ]+1) .

v= 1

(5)
[Retp(iZ/p')+ln(p'/Z) ],1 Z t}

p t)p

(8)
The curly brackets [f(v, )]sp in Eq. (2) symbolize the in-

junction to evaluate the smooth part of this function of v„
thereby discarding all oscillatory contributions that arise
because some terms involve the integer part [v, ] of v, .

where the latter version involves the logarithmic deriva-
tive of the factorial function: y(x) =din(x!)/dx. Conse-
quently, the Scott correction (2}is
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~sEi —
—,'Z + dp' T P —P + hsP P

—Z v+ dp' T p' —
—,'p' +

3
2v, /Z

X
3m 1+(v,p'/Z)

1 —(g, —g) E,"[T+g,],
S

(9)

12 Z2 1 ZT(p')+g, =—imp' + = — [1+(v,p'/Z) ]2 v

(14)

produces
r

1 —(g, —g) E,"[T+g,]=——', Z v, ——,'v, (g, —g)

where the identities

P' ~sP&' =o

dP' hsP P 2P' = —
—,'Z

3
2v, /Z

(dp') 2

3m 1+(v,p'/Z)

2v, /Z(dp'), , —,'p'=Zv, '
3n 1+(v,p'/Z)2

'3

(10)

have been used for regrouping the terms. The first two
contributions to b,sE, in (9) are independent of v„
whereas the other three do depend on this parameter.
This dependence, however, is only apparent. For, since
g, is large on the TF scale of energies and small on the
Bohr scale, [1,2,5]

z"'«g, «z', (11)

(12)

with C related to the energy as in Eq. (67) of I. Then (4)
implies

Z —C
2v

(13)

and because the main contribution to the last two terms
on the right-hand side (rhs) of (9) comes from p' values
around p'-Z/v, —=Q2g, ))Z, these terms are —not
unexpectedly —significant only for strongly bound elec-
trons. For those, the eff'ective kinetic energy T(p') difFers
from Tk;„=—,'p' by an additive constant,

T(p')= —'p' +C,

(15)

as well as

p p pp
2v, /Z

'3

—=—'Z v ——'v (g —g}, (16)

E "(Z,N)=E "(Z,N)+ 'Z— (18)

As is typical for a Scott correction, it is the same for all
degrees of ionization.

When the Scott correction is added to the TF function-
al given in Eq. (60) of I, we arrive at the momental TFS
functional,

so that the v, -dependent terms in (9) compensate for each
other exactly, where they are relevant. This leaves us
with

~sEi[T+0)= ,'Z'+ J (-dp'}[T(p } p'+0)~—sp(p'}

(17}

In view of (10), the contribution proportional to g equals
zero, but we prefer to include it anyway in order to em-
phasize that hsE, is a functional of the sum T +( as it
should be. The perturbative evaluation of AsE „
achieved by inserting (12) into (17), reproduces the well-
known [1]Scott correction of —,'Z to the actual energy of
the atom,

E'
l T p 0)= ,'Z'+ J (dp'}—-

3

, [T(p')+0] '—J(dp'}[T(p') —
—,'p'1[p(p') —~sp(p'}]

+—'(3m. )
' J (dp')(dp" )(p p 'p ) gN—— — (19)

E,„, [p]=Z +f (dp')

X [ 3n. [p( p') —Esp(p') ] )

=Z +E,„",[p h, sp] . — (21)

The stationary property under variations of T(p') implies
3

p(p )= [T(p')+0) '+~sp(p'» (20)
3

which replaces the TF relation in (50) of I, and variations
of p(p') and g reproduce (64) and (30) of I. We can solve
(20) for T+g, use this expression in (19), and find the
TFS approximation to E,„,[p],

I

This functional equals the ground-state expectation value
of H,„„see (29b) of I, and should therefore be linear in
the atomic number Z. The intrinsic Z dependence of Esp
and the additive constant Z are, however, of higher or-
der in Z. These Z dependences must be regarded as im-
plicit, because they originate in the hydrogenic wave
functions that were used in the derivation of (17}and (21).
So the TFS functionals apply to T„;„(p)=—,'p only; the
structures of (17) and (21) are not universal in the sense
that they can be used for any Tk;„. We need to keep this
in mind to not run into inconsistencies [7]. For example,
when invoking the stationary property of the energy
functional to derive
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T(p') ——'p' ~— E "(Z,N) as p'~DO
2 az (22)

(23)

2Z 3

(3}+ + E "(Z,N), (25)
4n " Z2 BZ BN

and the ellipses indicate terms of order p' ' . Note, in
particular, that the two p' terms in (20) cancel each
other. More details about b,sp(p') and TFS expectation
values of momentum functions are reported in Ref. [3].

When the transition from the TF model to the TFS
model is made either in configuration space or in momen-
tum space, the same physical ideas enter. Nevertheless,
the TFS model defined by the momental functional (19) is
not identical to the model based on the spatial functional
of Refs. [2] or [5]. Of course, where the TFS approxima-
tion is reliable, the predictions of the two versions must
agree. But the perfect equivalence, that was found for
the TF models in I, cannot be expected for the two TFS
variants.

It is remarkable that the spatial TFS energy functional
[2,5] could not be brought into as compact a form as (19),
because the spatial analog of (7) is not available as yet.
Therefore, it was not possible to extract the smooth part
from the spatial analog of (2) explicitly, and the discard-
ing of the oscillatory terms had to be left as an injunction,
which can be realized in a numerical scheme by averag-
ing over a suitable range of v, values. Matters are much
simpler in momentum space in this regard, since the aver-
age momental density (3) is a rather elementary function
of the quantun1 number v, whereas the average spatial
density possesses a comparably complicated v depen-
dence, which could not be extended to noninteger values
of v as yet.

DIFFERENTIAL EQUATION

The TFS set of equations, namely (30}and (64) of I sup-
plemented by (20), is more conveniently handled after
rewriting the integral equations in tern1s of an equivalent
difFerential equation with appropriate boundary condi-
tions. The change of variables that was useful in trans-
forming (64) of I into (73) of I suggests the following pa-
rametrizations:

[3n. p(p')]' =»I'=Z 'i ax,
T(p')+0 —

—,'p'=, [1—f (x}]
Z4/3

(26)

in analogy to (66) of I, only the explicit Z dependence of
E,„", must be taken into account.

In conjunction with g= B—E " (Z, N)/BN and [3]
3 '2

1 2Z 4 Z
~sp(» '}=—, , + —,, 4(3)+

377 p ~ p

where gz(z) is the Riemann zeta function, Eqs. (20) and
(22) reproduce Eq. (11)of Ref. [3],

8 Z
p(p') = n— + (24)

1T p
Here, np denotes the spatial TFS density at the site of the
nucleus,

Z'" q
—f(xo}

(27}

where q =1 N/Z —is the degree of ionization. The value
of g must not be negative, so that f (xo ) & q is implied.

Next we insert (26) and (27) into (64) of I and arrive at

f (x)=1— [q —f (xo)]
Xp

Zp
xx mlnxx p x

0
(28)

which has the consequences

f (xo) xof'(xo—) =q

[f'(x)=df (x)/dx) and

(29)

d f (x)=f"(x)=x [y(x)] (30)
dX

Note that for y (x }=&f(x)/x this is the well-known TF
equation. In the TFS model, however, the relation be-
tween y(x), x, and f (x) is difFerent. It is given by Eq.
(20), which now appears as

f (x)= 1+x [y (x) ] — 1—h(w)
Z x

' —1/3

(31)

with

and

w =(p'/Z) =—Z '[y(x)]'2 2 —2/3

a

h (w)=3m (Z/a) bsp(p')
oo 5

1(2/a ) 6
„=& (1+v w) w

'3
2 d

[Req)(i W'w )+In&w ] .
0 dw

(32)

(33)

In view of y(xo)=0 and h(0)= —4/(21a ), we learn
from (31}that

f(xo}=1— 1—h (0)
Z x 0

' —1/3
4/21

Z (axo)
(34)

so that f (xo } 0. Together with the inequality implied

with a =
—,'(3n/4) =0.8853, a constant familiar in the

TF model. The various powers of Z in (26) are chosen in
accordance with the Z dependences known from the TF
model, and (26) follows, of course, the TF pattern quite
deliberately. Before proceeding, we observe that the R'
range 0 ~ R ' R 0 corresponds to 0 X ~ Xp and
oo ~y ~0. The situation xp= ~ is possible and, indeed,
realized for neutral TFS atoms. Equation (68) of I, which
remains valid, then relates the value of the function f (x)
at the boundary x =xo to g,
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by (27), we thus have

0&f(xo)&q . (35)

For neutral TFS atoms, when X=Z and q =0, this says
f (xo)=0, and then Eq. (34) requires xo = ~. After sup-
plementing Eqs. (29)—(31) and (34) with the boundary
condition at x =0,

f(0)=1, (36)

x y ~ aZ n for x~0.3 8 3~ —7/3
0 (37}

Combined with the large-w form of h (w), see Eq. (23),
3

2h(w)=
a

64 3

N3 N4
(38)

this produces

—f'(0)=a(„(3}Z — aZ / —no (39)

as implied by (28), we have succeeded in writing the mo-
mental TFS equations as a differential equation with
boundary conditions.

The new differential equation differs from the corre-
sponding TF equation by the presence of the h ( w ) terms
in (31) and (34). Indeed, for h (w) =0, we return to the
TF model. Also, the momental TFS differential
equation —(30) with y(x) determined by (31)—is not
equivalent to the Poisson equation obeyed by the effective
potential in the spatial TFS model [2,5]. This observation
illustrates the remark, made in the paragraph after Eq.
(25), that the spatial and the momental version of the
TFS model are not identical.

The h(w) terms in (31) and (34) are most important,
naturally, for large momenta, which is to say for small
values of x. The qualitative statement that y~co as
x ~0 is quantified by Eq. (24),

for suSciently small values of x. This is markedly
different from the TF function, for which the first term
beyond the linear one is

3

For small momenta, thus large values of x, the effect of
the h (w) terms in (31) and (34) is negligible to a large ex-
tent. For instance, the asymptotic form of f (x) for neu-
tral atoms is given by

f (x)= (I+a)(1—Px r+. . . ),144

X

y= —,'[ —7++1+72(1+@)'/ ], (44)

where the constant P is very close to its TF value of
13.270974, and the deviation of e from the TF limit
(e=O) is found by solving

1+a=(1+a) + '(Zo/Z)— (45)

NUMERICAL RESULTS

We leave solved the new differential equation numeri-
cally for neutral mercury (Z =N =80). This was done
be integrating (30) both from x =0 on outwards, and in-
wards from x = ~, whereby the appropriate power series,
of which the leading terms are given in (43) and (44), were
used to get away from the singularities at the boundaries.
The values of the respective parameters —the limit of (37)
for the small-x expansion, and P of (44} for the large-x
one —were then determined by matching both f (x) and
f'(x) at an intermediate point. The resulting numbers
are

with Zo= —,', v' —h (0)=0.0437. Since (Zo/Z) «1 is al-

ways true, this yields

e = (Zo/Z—)

which is indeed very small.

when used in (31). In view of (25),

f'(Q) —= —az —4» + ET~(Z, N)
a a

BZ dN

2
az np =54.904994455

1.0001

(47)

can be expected to hold with high accuracy. In particu-
lar, for neutral atoms this reads

1.0000

—y (0}—=a —aZ-'", (41)
0.9999—

where 8 =1.588071 is Baker's constant [8], the initial
slope of the neutral-atom TF function. Another conse-
quence of (37) is

' 3/8

0.9998—

f"(x)—= aZ no
3K
2

x ' for x~0, (42) 0.9997—

so that

f (x)= 1+f'(0)x+—64 3m.

105 2
aZ np

3/8
15/8

0.9996—

20

p&/ Z
2/3

12 5 10 50

=1+f'(0)x

+ w [3ag (3)Z2/3+3f'(0)]3/Sx15/8 (43)

FIG. 1. Ratio of e8'ective kinetic energies, T " /T ", as a
function ofp', for neutral mercury. The abscissa is linear in the
square root ofp'.
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