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Nontiemolition observation of a free quantum particle
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A stochastic model of a continuous nondemolition observation of a quantum system is presented. The
nonlinear stochastic wave equation describing the posterior dynamics of the observed quantum system is
solved for a free particle of mass m & 0. It is shown that the dispersion of the Gaussian wave packet does
not increase to infinity as for a free unobserved particle, but tends to the finite limit r„=(A'/2k, m}'~',

where A, is the accuracy coefficient of an indirect nondemolition measurement of the particle s position.

PACS number(s): 03.65.Bz, 02.50.+s

I. INTRODUCTION

Continuously-improving experimental technique is ap-
proaching the point in which such quantum systems as
single atoms (ions) can be observed. The development of
a theoretical apparatus appropriate for the dynamical
description of a quantum measurement should go in a
parallel manner. Although the problem of measurement
theory is as old as quantum mechanics itself, dynamical
models of the measurement process have appeared only
recently.

The Schrodinger equation describes the time develop-
ment of the wave function of a quantum system only for
the time intervals between the succeeding instants of
measurements. At the instant of measurement of some
observable with a discrete spectrum Z, the quantum sys-
tem makes an immediate transition (jump) from the g(t)
state to the eigenstate g, (t) corresponding to the eigen-
value z of Z with probability

~ ( f(t) ~ f, (t) ) ~
. Such a sto-

chastic time behavior of the system at the instant of mea-
surement assures the repeatability of the resu1ts of the
measurements. If a second measurement were taken im-
mediately after the first one, then for a discrete observ-
able Z the measurement would again give z [1]. It is in-
tuitively obvious that if one were to perform measure-
ments with a high frequency —in a limit continuously in
time —the quantum system would show a stochastic ir-
reversible behavior for the whole period of observation.
Therefore the time development of a continuously ob-
served quantum system cannot be governed by the deter-
ministic Schrodinger equation describing the reversible
motion. This statement remains true also in the case of
the measurements of an observable with a continuous
spectrum, though for observables with continuous spec-
tra, the repeatability hypothesis is not assumed [1—4] as,
in general, there are nonzero (a priori) probabilities of the
results of such a measurement belonging to disjoint Borel
sets.

The irreversible and stochastic behavior of the continu-

ously observed quantum system expressed by the so-
called collapse or reduction of the wave function has no
analog in classical deterministic mechanics. The Hamil-
ton equations do not depend on whether the dynamical
object is observed during its motion along its trajectory.
That di8'erence in the behavior of classical and quantum
observed objects cannot be ignored.

The question of the time development of a continuous-
ly observed quantum system is not easy to answer. A
seemingly promising approach to this problem —via the
standard projection postulate —leads to paradoxical re-
sults called the quantum Zeno paradox [5] (cf. also Refs.
[6—11]). The essence of the quantum Zeno paradox is
that the continuous observation freezes the state of a
quantum system. For example, "...An unstable particle
observed continuously whether it has decayed or not will
never be found to decay. .." [5].

Such paradoxes can be avoided only by consistent in-
vestigation of the disturbed stochastic dynamics of the
quantum system undergoing an observation. It is quite
natural to discuss the problem in the framework of sto-
chastic quantum mechanics of open systems [12,13] (cf.
also Refs. [14—16]) on the basis of the theory of non-
demolition measurements developed recently [17—20].

The principle of a nondemolition continuous observa-
tion of a quantum system can be formulated as follows
[20].

(i) There exist observables Q(r), r ~t, that commute,
for any t, with all Heisenberg operators 2(t) of the sys-
tem represented in the Hilbert space corresponding to
"the system plus measuring apparatus. "

(ii) According to the causality principle one does not
impose any conditions on the future observables Q(s),
s ) t, with respect to the past observables of the system
2(r), r ~ t.

A nontrivial nondemolition observation in the above-
mentioned sense is provided by indirect measurements
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that can be only realized by considering the observed
quantum system as an open one.

To avoid a misunderstanding we would like to em-
phasize that the above idea of a continuous nondemoli-
tion observation in a quantum system differs from that of
Braginsky, Vorontzov, and Halili [21] (cf. also Refs.
[22—24]). Their approach concerns a measurement in a
closed quantum system (the interaction with a measuring
apparatus is not taken into account). It requires a family
of systematic observables [0, j such that the correspond-
ing Heisenberg observables O, (t)= U,„,(t)O, U,„,(t) are
mutually compatible„ i.e., they satisfy [O, (s), O, (t)]=0
for all instants s and t. The measurement of these opera-
tors is a nondemolition one —the only possible reduction
of a state of the quantum system occurs at the beginning
of the measurement.

From the experimental point of view it is natural to
consider indirect measurements because any measure-
ment is taken with the help of some experimental device.
Some theoretical models illustrating this approach [quan-
tum system in contact with a bath (apparatus)] were
developed in Refs. [25—28]. The indirect measurements
allow one to describe the state changes resulting from the
measurements of observables with continuous spectra [4],
which are assumed to be nonideal. The necessity to use
indirect measurements for the existence of the continual
limit (with At~0) for successive instantaneous measure-
ments taken at instants separated by At is proved in Ref.
[29].

In this paper we shall illustrate the approach of the
continuous quantum-nondemolition measurement for the
example of resolving the quantum Zeno paradox for a
three-dimensional free particle undergoing an observa-
tion modeling the measurement of a trajectory of a quan-
tum particle in a bubble chamber as was briefly reported
by us in Ref. [30] for the one-dimensional case.

Section II is of a preparatory character: we present the
stochastic model of a continuous nondemolition observa-
tion of a quantum system interacting with an M-
dimensional Bose-field reservoir representing the measur-
ing device. By assuming the singular-reservoir limit
[31—33] (r~ =0, where rz is the decay time of the corre-
lation functions of the reservoir) one can consider the
measuring apparatus as a macroscopic device [32]. The
condition rz =0 is assured [31]by taking the fields of the
flat spectra (singular fields [33]) prepared initially in the
vacuum state.

In Sec. III we derive the filtering equation —the sto-
chastic nonlinear differential equation describing the time
development of the wave function of the quantum system
observed by means of the vector "field coordinate" pro-
cess. This equation was recently obtained with the help
of a quantum-filtration method [34,35]. The present
derivation —via a stochastic instrument in the sense of
Davies and Lewis [2,3]—generalizes the result of Ref.
[36] to the case of a multidimensional observation. Our
derivation utilizes the method of the generating map of
the instrument, which is essentially due to Barchielli and
co-workers [14—16,29].

Nonlinear stochastic differential equations describing a
dynamical collapse (reduction) of a wave function of the

observed quantum system were considered by Pearle
[37—40], Gisin [41—43], Ghirardi and co-workers [44,45]
and Diosi [46—49]. We would like to stress that in con-
trast to those authors we do not postulate the equation
but derive it within the model of a quantum system in-
teracting with a measuring device represented by the
Bose field. However, in this paper we deal with the
"diffusion" observation; we would like to mention that an
analogous stochastic differential equation describing the
time development of the wave function of the quantum
system observed by means of the continuous photon-
counting measurement can be found [50—52]. From the
latter, by a limiting procedure, the filtering equation cor-
responding to the difFusion observation can be obtained

[52]
In Sec. IV we solve the filtering equation for the three-

dimensional free quantum particle undergoing the con-
tinuous nondemolition observation of its position. We
prove that the dispersion of the Gaussian wave packet
does not spread out in time but tends to the finite limit
lim, „r (t) =(R/2)(m)', where m )0 is the mass of the
observed particle and A, stands for the accuracy
coefticient of the indirect nondemolition measurement of
the particle's position. We call this result the watchdog
effect (observation effect): the continuous observation
prevents the Gaussian wave packet from spreading out.
(In some papers, cf., for instance, Refs. [8] and [10], the
term "watchdog effect" appears in the context of the con-
tinuous observation of a quantum system based on the
standard projection postulate and can be replaced with
"Zeno paradox" ). The same asymptotic behavior of the
dispersion of the Gaussian wave packet was obtained by
Diosi [48,49] and Caves and Milburn [53]. Nevertheless,
there are significant differences between our approach
and theirs. These problems will be discussed at the end
of Sec. IV.

II. STOCHASTIC MODEL OF A CONTINUOUS
MULTIDIMENSIONAL-DIFFUSION OBSERVATION

OF A QUANTUM SYSTEM

Let us assume that a quantum system S' with the Ham-
iltonian H existing in the Hilbert space & is coupled at
instant t =0 to the reservoir (measuring device) R
consisting of M independent Bose fields in the vacuum
state. The fields are described by vector operators
b(co)=[b~(co)] &, b (co)=[bt(co)]

&
acting in 9

=9;„(C X (R)), the symmetric Fock space over
CL' X (R). The components of b(co) and b (co) satisfy
the canonical commutation relations (CCR's)

[b (co), bk (co') ] =0. , [bi (co),bk(a)') ]=5. ,k 5(co co')—
(j,k =1, . . . , M) . (2.1)

Under the following assumptions:

Assumption 1: the coupling is linear in the field opera-
tors,

Assumption 2: the rotating-wave approximation is
made,
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Hs+z H +Hz +H (2.2)

the Hamiltonian Hz+~ of the compound system has the
form

& bI, (t) &. = & bk(t) &„=& bi', (t)bJ(s) &„=0,

&bI, (t)bt(s)&„=5„,5(t —s) .
(2.9)

(2.10)

Hg=A' g f defoe (a))bt(a))b (co},
j=1

Ht=, g f dtok (co)[L bt(co. ) LJ—bJ.(co)] .
(2m )'i

(2.3)

(2.4)

In the interaction Hamiltonian, L are system operators
and kJ(co} are the so-called coupling constants assumed
to be real.

In the sequel we shall need two more assumptions [13].

Assumption 3: The spectrum of the bath (measuring
device) is flat.

This means that, for each j in (2.3), eJ(co)=to. Such
reservoirs are called singular because their energy is un-
bounded from above and from below. Singular reservoirs
model external macroscopic devices driving open quan-
tum systems to asymptotic states far from equilibrium
[31—33].

Assumption 4: "Coupling constants" k (co) do not de-
pend on cu.

U(t)=Texp ——f (H+Ht(s))ds (2.5)

In this formula

M
Ht(t)=ih g [L bt(t) Lb (t)]— (2.6)

with

b (t)=, f dco. e '"'b (to) . .
(2n. )

'i (2.7)

Equation (2.7) combined with CCR's (2.1}yields the fol-
lowing CCR's for the time-dependent field operators

[bj (t), bk (s)]=0, [bJ (t), bk(s) ]=5Jk5(t —s)

(j,k = 1, . . . , M) . (2.8)

The reservoir is assumed to be initially prepared in the
vacuum state; therefore

Including a scalar factor that is responsible for the
strength of each coupling into systematic operators Lj,
we insert ki(co) = 1 for each j in (2.4).

As usual, we assume the unitary evolution of the com-
pound system S+A, generated by the Hamiltonian
Hz+z. By going to the interaction picture with respect
to the free dynamics of R [generated by H„given by (2.4)
modified with the help of assumption 3] one gets the uni-
tary evolution operator U(t) in the form of a chronologi-
cally ordered exponential function

t+dt
dBJ(t)=BJ(t+dt) —BJ(t)=f— bJ(s)ds,

dB, (t) =Bt(t +dt) B—,t(t) =f— b, (s)ds,

satisfy the multiplication rules

(2.13)

dB, (t)dBt(t) =5,„dt (2.14)

and all other products involving dB (t), dB (t), and dt
are equal to zero [12].

The Ito quantum-stochastic differential equation
(QS DE) with respect to the M-dimensional Wiener
diffusion process has the form [12,13]

M
dN(t)= g [P (t)dBJ (t)+R (t)dB (t)]+S(t)dt, (2.15)

j=1

where P, R., and S are adapted processes, i.e., they are
operators on &j8I 9; which depend on B(s) and B (s) only
for times s & t. Note that the adapted processes commute
with the stochastic differentials d8, dB- directed to the
future [Eq. (2.13)]. No further commutativity assump-
tion concerning processes appearing in the QSDE of the
type (2.15) is made.

The Hudson-Parthasarathy differentiation formula [12]
for the product M(t)N(t) of the adapted processes reads

d(M(t) N(t) }=dM(t)N(t)+M(t) dN(t)+dM(t) dN(t) .

(2.16)

With the interaction (2.6) the latter means that we have
arrived at the so-called singular-reservoir limit [31—33],
in which the decay time of the two-point time-correlation
functions of the reservoir is zero, ~z =0. The real and
imaginary parts of b(t) defined as Reb(t)=

—,'[b(t)+b (t)], Imb(t)=1/2i[b(t) —b (t}]do not com-
mute, but each of them has the statistical properties of
(classical) standard M-dimensional white noise. Similar-
ly, as in the classical case [54], the time evolution of the
system interacting with the reservoir can be described in
a mathematically rigorous way in terms of a stochastic
differential equation [12,13]. A quantum-stochastic cal-
culus (QSC} of the Ito type has been developed by Hud-
son and Parthasarathy [12]. Here we give the formal
rules of the QSC, which will be needed in our paper.

Let us define annihilation and creation processes,

BJ(t)=f bJ(s)ds, BJ(t)=f bJt(s)ds, (2.11)

which satisfy [due to (2.8)] the following commutation re-
lations:

[8 (t),Bk(s)]=0, [Bi(t),Bk(s)]=5 kmin(t, s)

(j,k = 1, . . . , M) . (2.12)

The pair B(t)=[8 (t)] „B(t)=[8.(t)], is the quan-
tum analog of the standard M-dimensional Wiener
diffusion process. The stochastic differentials of the pro-
cesses in (2.1 1),
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dU(t) = K—dt + g [L dB (t) L—, dB (t)] U(t),

where

U(0) =I (2.17)

The unitary (adapted) evolution operator U(t) in %s V
for the system 4 coupled to the Bose reservoir is assumed
to satisfy the Ito QSDE in the form [12,13]

2'(t), etc.
Equation (2.17) or (2.21) describes the distorted dynam-

ics (in the Hilbert space &9) of the initially closed
quantum system 4 under the stochastic interaction with
Bose fields. The fields, however, not only disturb the sys-
tern, they also give some possibility of a continuous (in
time) observation of S. Let us first pay attention to their
time development. In the Heisenberg picture, the pro-
cesses

K= H+——,
' gL)~L) .

J

(2.18)
B,(t)=U (t)B,(t)U(t)

remain unchanged for all times s ~ t [14,15], i.e.,

(2.22)

(2.23)BJ(t)=U (s)B (t)U(s), s ~t .

Obviously, the same holds for the creation process B (t).
The property (2.23) results, essentially, from two facts:
Eq. i(2. 17) is written in the interaction picture with
respect to the free dynamics of the fields and the coupling
between S and the fields is singular. The annihilation and

creation processes B(t) and B (t) are called input (annihi-
lation, creation) processes while B(t),B (t) are called out-
put processes [13). The input processes describe Bose
fields before their interaction with S, the output ones—
after the interaction. Note that due to (2.23) the output
processes satisfy the nondemolition conditions [20]U(t)=Texp ——I [Hds+iA'g [L~dB~(s)

J
[B(s),2(t)]=U (t)[B(s),Z]U(t}=0 V s&t

[B (s),2(t)]=U (t)[B (s),Z]U(t)=0 V s&t .
(2.24)

L, dB (s)])—

In these formulas H stands for the Hamiltonian of 4,
i fig~ [L~dB~ ( t ) LJ dB—

~
(t ) ) describes the interaction

between I and the fields (more precisely
ifig~[L dB (t) LJ dB—~(t)]Idt =iRQJ [Ljb~~(t) L~ b—~(t)]
is the interaction Hamiltonian, cf. (2.6) ), and ,'QJL—

~
L—~.

is the Ito correction term. (If one applied, instead of
(2.17), a QSDE based on the quantum Stratonovich in-

tegral [13],this terin would disappear. )

It is easy to check [14] that the solution U(t) of Eq.
(2.17) is unitary. It can be readily seen from the formal
solution of (2.17}:

(2. 19)

To verify the last statement one has to calculate
d U(t) = U(t +dt) U(t)—Equatio. n (2.19) yields

U(t +dt) =exp — Hdt+ g [L—~dB, (t)
J

Let us consider the continuous measurement of the
output vector "field coordinate" ("diffusion" ) process

Q(t)=B(t)+B (t)=U (t)Q(t)U(t), (2.25)

where Q(t)=B(t)+B (t) is the input Wiener process.
From (2.12) it follows that

(2.26)

Next, the result follows by expanding the exponential
function in the last formula and making use of the multi-

plication rules (2.14). The Ito correction term appearing
in (2.17}results from the second-order term of the expan-
sion.

With the help of (2.17) the Heisenberg equation of
motion for any observable of 4 can be easily obtained.
By applying to the product

Z(t)=U (t)ZU(t), (2.20)

(2.21)

where we have employed the simplified notation Z for

the quantum Ito formula (2.16), Eq. (2.17) and its adjoint
equation, one can check with the help of (2.14) and (2.18)
that the Heisenberg observable Z(t) satisfies the follow-

ing QSDE:

dZ+ k 2+& —gL ZL dt
J

= g([Z,LJ]dB, +[L, ,Z]dB ),
J

i.e., the output Hermitian process Q is self-
nondemolition. Due to (2.24) and (2.25) the measurement
of Q is a nondemolition one [19,20] with respect to the
time evolution of the system: for any Z,

[Q(s),2(t)]=0 V s & t . (2.27}

This means that the measurement of Q disturbs neither
the present nor the future state of the system S. Note
that due to its Hermiticity and self-commutativity the
output nondemolition process Q(t) can be treated (in the
representation in which it is diagonal) as a classical one.
Let us observe that Q(t) describes a continuous imperfect
measurement of the quantum observable 2ReL(t). The
latter can be easily seen from the QSDE for Q(t) [ob-
tained in a way quite analogous to Eq. (2.21)]

dQ(t)=[L(t)+L (t)]dt+dQ(t) . (2.28)

Equation (2.17) does not include any observation, it de-
scribes the perturbed dynamics of the unobserved system
4 (represented in %P). Following Refs. [19,20] we
shall call it the prior dynamics. Similarly, for any initial
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systematic observable Z, Eq. (2.21) is the equation for the
time development of the unobserved process 2(t}. But
for each Z we have the possibility of considering Eq.
(2.21) together with Eq. (2.28); consequently, for any ini-
tial Z, 2(t) becomes partially observed. As is proved in
Ref. [34], Eq. (2.27) gives the possibility of defining the
posterior (observed) mean values of 2(t) under the condi-
tion of observation of any nonanticipating function of Q
up to the moment t.

The reduced Schrodinger dynamics of S (the prior dy-
namics of I in &) is a Gaussian dynamical semigroup for
the density matrix p(t):

stricted to the space Q' of the trajectories that are
stopped at t: q'=[q(r)~r(t]. Consider the instrument
S' on the algebra of operators Z of the observed quantum
system S as a function of the observed event dq up to the
instant t. Then 2, by its definition, defines the time evo-
lution p ~p (d q) of an initial-state functional p:
Z~p[Z] of S to the state p'(dq)=p~2'(dq) normalized
to the probability p'(dq) =p[J'(dq) [I]].

Define the generating map of J' in the following way
(cf. also Refs. [15,16])

1 (l, t)[Z]=f exp f l(r)dq(r) S'(dq)[Z], (3.1)0' . 0

p(t) =Lp(t),

Lp= (pK —+Kp)+ QL~pLJ .
(2.29}

where 1(t)=[I~(t)] „with the components l~ being in-
tegrable c-valued functions. The generating map can also
be defined by the condition

Equation (2.29} is obtained in a standard way by averag-
ing both sides of Eq. (2.21) with the vacuum state for the
fields. That yields the semigroup (nonstochastic) evolu-
tion of 4 in the Heisenberg picture as the vacuum expec-
tation of the right-hand side of Eq. (2.21) is 0. Then by
going to the Schrodinger picture one finds I.. The master
equation (2.29} can be also obtained in the manner of the
stochastic averaging of selective evolutions corresponding
to the trajectories of the output observation process (cf.
Sec. III). Therefore Eq. (2.29) describes the nonselective
evolution [29,14—16,52,53] of 4 coupled to the measuring
device (when the results of the measurement are not read
out).

III. QUANTUM FILTERING EQUATION

In this section we shall derive the quantum filtering
equation —the QSDE that describes the time develop-
ment of the posterior state of the quantum system S un-
dergoing the M-dimensional diffusion observation of Q
[Eq. (2.25)]. It shall be done by solving the differential
equation for the generating map of the corresponding in-
strument [2,3]. For M =1 this approach was applied by
one of us (V.P.B.) in Ref. [36].

Let us denote by v=, v the standard product
Wiener probability measure on the space 0 of continuous
trajectories q= [q(t) ~t )0] of the observed process Q re-

&ylr(i, t)[Z]y) =& P(i, t)2(t)),
where

(3.2)

$'(I, t)=exp g f I (r)dQ (r)
i j=$

M= g exp f ll(r)dgj(r)
0

(3 3)

M
Y(l, t) =exp g f I.(r)dg (r)

0
(3.4)

Then from Ito's formula (2.16) applied to the product

The mean value on the right-hand side of (3.2) is taken
with respect to 1I~ with pE& being an (arbitrary) ini-
tial pure state of S and ~E 7 the vacuum-state vector for
the fields. Note that the M-exponential output process
$ (l, t) given by (3.3) is a nondemolition and a self-
nondemolition one.

Let us now find the differential equation for the gen-
erating map I (l, t) of the instrument S'. According to
(3.2) it can be done by finding the differential equation for
the mean value & f'(I, t)2(t) ). First we obtain the
stochastic differential equation for C(t)=k(t)P(t) Let.
us write G(t) in the form C(t)=U (t)G(t)U(t)= U (t) Y(t)ZU(t), where Y(t) is the input process cor-
responding to (3.3):

r

C=U GUwe get

dC=dUtGU+ UtdGU+ UtGdU+dUtdGU+dUtGdU+ U dGdU+dU dGdU

= U g( —,'I G+Li Gll+IJ. GL +L GL ) KtG. GK. Ud-t— —

+ U g [LtG+G(l~ L)]dB U+ U —g [GLJ+(I L)G]dB~ U, —
J J

(3.5)

dY(l, t)= g [I,(t)dQ, (t)+ ,'I,'(t)dt]Y(l, t), -
J

(3.6)

where we have used (2.17), multiplication rules (2.14), and
the stochastic differential of G, dG =d Y Z with

which can be obtained from (3.4) by the classical Ito for-
mula [54].

Equation (3.5) yields the following differential equation
for the mean value of C(t) = Y(1,t)Z(t):
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(dC }= (tt(t} Z[ l—',tG+I, IL G+.GL, }+L GL, ]
J

dV(t)= —KV(t)dt + gL V(t)dQJ(t), V(0)=I .
J

(3.11)

—((L G+GL} tt(t})dt, (3.7) Let us define the stochastic map 4(t) from the algebra of
observables of 4 into itself,

with rl(t)= U(t)rl, rt=g(8}c . Note that the mean values
of terms containing dB and dB in (3.5) do not appear in
(3.7); they are equal to zero, because for each j,

dB, (t) U(t)rl= U(t)dB, (t)rt=0 . (3.8)

From (3.2} and (3.7) one can easily get the forward
differential equation for the generating map I:

—r[Z]=r g [ ,'t,'Z+-1, {L,'Z+ZL, )+L,'ZL, ]
d
dt

@(t)[ Z] = V (t)ZV (t) . (3.12)

Then from Ito's formula (2.16) applied to the product ap-
pearing in (3.12) we get

d(4(t}[Z])= dV (t)ZV(t)+ V (t)ZdV(t)

+d V"(t)Zd V (t) .

By making use of (3.11) we obtain the recursive filtering
equation for the stochastic map C}(t)

—E~Z —Zk (3.9)
d(C(t)[Z])=4(t) gL ZL KZ —ZK d—t

J

with the initial condition I (1,0)[Z]=Z.
We shall prove that the solution of (3.9) has the form

I (l, t)[Z]=f Y(l, q')V (q')ZV(q')dv(q') (3.10)

with the stochastic propagator V(t) being the solution of
a QSDE in the form

+ +4(t)(L Z+ZLI )de(t),
J

4(0)[z]=z .

The stochastic map (3.12) defines for any trajectory
q the selective instrument 4(t)(q)[Z] =4(q')[Z]
= V (q')ZV(q'). Taking into account that

d( Y(l, t)4(t)[z]}=d Y(l, t)4(t) [Z]+Y(l, t)d C}(t)[Z]+dY(1,t)d C}(t)[Z]

= Y(l, t) g 0 (t)[l,(t)z+L tz+ZL, ]dQ,.(t)

+Y(l, t)4(t) g [—,'l (t)Z+I (t)(L Z+ZL )+L ZL ] KZ ZK —dt—

and averaging it with respect to the standard product
Wiener measure, one obtains (3.9) for the mean value
(3.10) of the product Y(l, q')4(q')[Z].

So, the wave function y(t) = V(t)g of the system (}' un-
der the continuous nondemolition difFusion observation Q
satisfies the stochastic dissipative differential equation

dy(t)+ H+ ,' g L, L,—y(t)-dt
J

= g L,j(t)dQJ(t), y(0) =g . (3.13)
J

Equation (3.13) plays an analogous role to the
Schrodinger equation for the unobserved quantum sys-
tem. [In (3.13) dQ can be replaced with dQ because in
the Schrodinger picture Q and Q coincide. ] As was men-
tioned earlier, the process Q can be diagonalized. Start-
ing from Eq. (3.13) Q is considered as the classical M-
dimensional diffusion process. The posterior wave func-
tion y(t } is normalized to the probability density

p(q') =
& V(q')[I{

~
V(q')g& —=P(t)(q) (3.14)

of the observed process Q with respect to the standard
product Wiener measure of the input process Q. It fol-

lows from the integral representation of (3.2) that

& Y(i, t)Z(t) &
= f Y(l, q')& V(q')Q~ZV(q')g&dv(q'}

=f Y(l,q')p(q')&Z&(q')dv(q'), (3.15)

giving for Z =I the mean value of the output process
(3.3) as the generating function of the output probability
measure

d[[t(q') =p(q')d v(q') . (3.16)

The formula (3.15) defines the posterior mean value
&Z&(q') as

& z &{q')= & P(q') lzg(q') &
=—z(t)(q) (3.17)

in terms of the normalized posterior wave function
f(t)(q) =g(q'), g(q') =g(q')/p(q')' '.

The normalized posterior wave function P(t) satisfies
the nonlinear stochastic wave equation

r

dg(t)+ H(t)+ ,' g L—, {t)L,{t)—f(t)dt
L

J

= g L, (t)dQ, (t)g(t), (3.1g}
J
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where l (t) is given by (3.17) with Z =LJ,

L (t) =L —Rely(t),

H(t) =H —

iris'

Rel~(t)lmLJ,
J

and

dQJ(t) =dQJ(t) —2Rel (t)dt

(3.19}

(3.20)

(3.21)

For y satisfying Eq. (3.13) one easily finds

d(X X)=2+X (ReL, )XdQ,

and by the classical Ito formula,

d((yy) ' ')=(y j) ' ' —QReIJ(t)dQJ

is the Ito differential of the observed commutative
Wiener innovating process.

Equation (3.18) can be obtained from Eq. (3.13) in the
followinq way. Writing P(t) in the form f(t)
=j(t)[j (t)j(t)] '~ weget

df=dX(XX) '"+Xd«XX) '")+did((i'B '").
(3.22}

+—,
' g [Relj(t)] dt . (3.23)

J

Finally, combining (3.22), (3.23), and (3.13) yields Eq.
(3.18).

If the initial state 0 (0)=p is a mixed one (density ma-

trix} then its linear posterior time development [which
does not preserve the normalization of 0(t)] is given by
the QSDE of the form

da(t)= ——[H, &(t)]+—,
' g [[L~8(t),Lt]+[L,&(t)LJ ]] dt+ g [LJ&(t)+d(t)LJ )dQJ(t) .

J J
(3.24)

The latter equation follows easily from (3.13). The normalized posterior density matrix p(t) satisfies the following
QSDE:

dp(t)= ——[H(t),p(t)]+ —,
' g [[LJ(t)p(t),L (t)]+[L (t),p(t)L (t)]} dt+ g [L (t)p(t)+p(t)L~(t)]dQ (t), (3.25)

J

which is derived from Eq. (3.24} in an analogous way to
Eq. (3.18) from (3.13). In the formulas defining the quan-
tities marked with tildes [(3.19)—(3.21)] l, (t) now stands
for the posterior mean value of E with respect to the
mixed posterior state p(t): I (t)=Tr[p(t)LJ ]. It can be
easily verified that all the tildes appearing in the term
against dt in (3.25) can be omitted.

The prior dynamics (2.29) of the system S can be also
obtained by performing the stochastic average of both
sides of Eq. (3.25). To show that let us first observe that
the mean value of the process dQ(t) conditioned by the
trajectory q' up to time t is given by

( d Q( t) )(q') =2 Rel( t)dt . (3.26)

The stochastic average of dQ(t) can be first obtained with
the help of (2.28) as a mean value of dQ(t) (the operator
in &9) in the mixed initial state p~~)(~~. Next,
similarly as before, this mean can be reexpressed as the
mean of the differential of the classical Wiener diffusion
process. By (3.15) specified for 1=0 and Z=2ReL and
(3.16) one gets

(dQ(t) )„=(dQ(t) ) =2(ReL(t) )dt

=2 dt I (ReL)(q')dp(q'), (3.27)

hence (3.26) holds. ( Here (( )) =Tr[( )(pe~a )(c ~)]. )
To perform the stochastic mean of Eq. (3.25) we first

take the mean of the only term directed to the future (the
last one}. According to (3.27) and (3.21) that mean van-

IV. WATCHDOG EFFECT

The Schrodinger equation for a free particle

~ iA
b,/=0

2m
(4.1)

describes the effect of the spreading out of the wave pack-
et. The probability of detection of the quantum particle
in any finite coordinate region tends to zero as time in-
creases.

Experimental data on observed quantum particles
show their well-localized paths (for instance, in bubble-
chamber experiments). This phenomenon does not agree
with predictions of Eq. (4.1), but it should not be surpris-
ing. The typical observations in quantum systems are in-
direct (in the bubble chainber the path of an ionizing par-
ticle is made by a string of vapor bubbles); moreover, one
has to consider the interaction with the measuring device,
hence the observed quantum object should be considered
as an open quantum system. The mentioned difhculty of
the orthodox quantum mechanics can be resolved in the
framework of the posterior quantum dynamics.

The aim of this section is to demonstrate the watchdog
effect that occurs for a free quantum particle coupled to
the three-dimensional Bose field in the vacuum state

ishes. The averaging of the remaining terms with respect
to the measure p(q') (up to t) yields (2.29) with

p(t) = (P(t) )„=f p(q')d p(q') .
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(measuring device), the position of which is continuously
observed. We shall consider an indirect measurement of
the particle position X=[Xi,X2,X3]; therefore we
choose the coupling operator L [cf. (2.17) and (2.28)] to
be proportional to X,

1/2

I,= —' (4.2)
2

X.

(Throughout this section we employ the notation
Xg„=xf„.) With such a choice of L we get the QSDE's
describing the perturbed dynamics of the particle in the
Heisenberg picture by putting for Z in Eq. (2.21) the posi-
tion and momentum components

d X(t)= P(—t)dt,

dP(t)=(2A, )'~ A'd(1mB (t)) . (4.3)

Equations (4.3) describe the motion of the particle upon
the stochastic (Langevin) force f (t) =(2A, )'/ iii'Imb (t)= —(2A, )' A'Imb(t) from the Bose reservoir.

The observed nondemolition field coordinate process
Q(t) [Eq. (2.25)] satisfies, due to (2.28) and (4.2),the
QSDE in the form

dQ(t)=(2A, )' X(t)dt+dQ(t) . (4.4)

Equation (4.4) describes the indirect (and imperfect) mea-
surement of the particle position. Note that in terms of
generalized derivatives of the processes Q and Q Eq. (4.4)
can be written as

Q(t) =(2A, )'~ X(t)+2 ReB(t)

=(2A. )'~'X(t)+2 Reb(t);

therefore the (generalized) stochastic process l$(t) de-
scribes the measurement of X(t) together with a random
error given by the standard vector white noise 2Reb(t).
From the last formula one can see that the positive con-
stant A, can be interpreted as the measurement accuracy
coefficient.

Let us denote by q(t) = [qi(t) ] i and p(t) = [p (t)]
the posterior mean values of position and momentum of
the observed particle. We have

q(t)= Jf'(t, x)xg(t, x)dx,

dg—
' 1/2

2m 4
hg ——(x—q) P dt =g

2
(x—q)dg,

Q(0}=g (4.6)

p(t)= Jg'(t, x}—Vg(t, x)dx .
1

According to (3.18) the posterior (normalized) wave func-
tion satisfies in the considered case the stochastic wave
equation, which in the coordinate representation has the
form

the form of the Gaussian wave packet,

g(x)=(2oqm. )
~ exp

1 2 i
(x—q) + —p.x

4g 2 A'

q

(4.7)

where p and q denote the initial mean values of position
and momentum of the particle and 0. stands for the ini-
tial dispersion of the wave packet. We shall prove that
the solution of Eq. (4.6) corresponding to the initial con-
dition (4.7) has the form of Gaussian packet

T

1((t,x)=c(t)exp —
—,'co(t)[x —q(t)] + —p(t) x (4.8)

(dit() = —(x—q)~ddt
2

we obtain Eq. (4.6) in terms of T. From this equation we

get the following equation for the complex osmotic veloc-
ity W(t, x) =(1/m)VT(t, x)=U(t, x)+iV(t, x)

dW+ (x —q) ——(VW +—b W) dt
i 2 fi

m 2 m
' 1/2 —dQ .

2 m
(4.9)

We shall look for the solution of Eq. (4.9) corresponding
to the initial condition

W(O, x)=—V in/(x) = (q —x)+—p .i
m 2m 0q m

in the linear form

(4.10}

W(t, x) =w(t) — co(t)x, —
m

where in accordance with (4.8),

(4.11)

w(t}=—m(t)q{t)+ —p(t) .
m m

{4.12)

By putting VW2= —(2%co/m)W, bW=O into (4.9) we

obtain the following system of equations for coefficients
w(t) and co(t):

with posterior mean values q(t), p(t), cf. (4.5), fulfilling
linear filtration equations and co(t) satisfying the Riccati
differential equation. In Eq. (4.8), c(t) =(2r~n ) up to

the unessential stochastic phase factor and r =q —
q is

the posterior position dispersion.
It is convenient to rewrite Eq. (4.6) in terms of the

complex osmotic velocity. By introducing

T(t, x) =R (t,x)+ iS(t, x) =A Ini}'j(t, x),
next by Ito's rule

dT(g) =T'(g)dP+ ,' T"(P)(d P—)

applied to the function T=filn and by taking into ac-
count that

with d Q(t) =d Q(t) —2q(t)dt.
Let us now discuss the time development of the poste-

rior wave function, assuming that the initial state g has

1/2

dw(t)+ co(t)w(t)dt= — —dQ(t),iA A,

m 2 m
(4.13)
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iw(0)=
2 q+ —p,

277l 0 m

d ~Aco(t)+ co{t) =iL, co(0}= 1

dt
q

(4.14)

which define the solution of Eq. (4.9) in the form {4.11).
From (4.12) we get q(t)=m Rew(t)/RReco(t), which is
the root of the equation VR(t, x)=mU(t, x)=0 for which
the maximum of the posterior density

~P(t, x)~ =exp —R(t, x)

is attained. The posterior mean value of momentum p(t)
coincides with m V(t, q(t) }=VS (t, x)

~ ~, ~
and by (4.12)

p(t) = Im[m w(t) —A'co(t }q(t)].
Equation (4.12) gives the time development of posterior

mean values of position and momentum; with the help of
(4.13) and (4.14) we obtain the Hamilton-Langevin equa-
tions

dq(t) — p(t)dt —= dQ(t), q(0) =q1 (A, /2)'i
m Reco(t}

&
(A, /2)' Imco(t)

dQ( ), (0)=
Reco(t)

(4.15}

with co(t) being the solution of Eq. (4.14). These formulas
yield the Heisenberg inequality r rz ~ R /4.

The general solution of Eq. (4.14) has the form

co(t)=a
co(0)+a tanh t—

a 1/2

co(0)tanh —t +aa

(1 i) . —

(4.17)

Obviously, lim, „co(t)=a, i.e., a is the asymptotic sta-
tionary solution of Eq. (4.14}. Consequently, the posteri-
or dispersions of position and momentum tend to finite
limits independent of its initial values

rq( ~ )=(fi/2Am )', v ( ~ )=A'(Am%'/2)' (4.18)

giving the localization of the observed quantum particle.
As follows from (4.18) the asymptotic localization of the
particle in the coordinate representation in inversely pro-
portional to its mass and the measurement accuracy .
This means that the particle of mass zero cannot be local-
ized by any measurement, and heavy particles (m ~ ao )
can be localized at a point. Note that according to the
dimension of A, , [A, ]=(m sec) ', the measurement accu-

They are classical stochastic equations describing con-
tinuously and indirectly observed position and momen-
tum of a free quantum particle disturbed by the measur-
ing device [in the mean p(t) and q(t) coincide with
q(t) =pt/m, p(t) =p].

One can check easily that for the posterior wave func-
tion in the form (4.8), posterior momentum and position
dispersions are given by the formulas

r (t)=1/2Reco(t}, r (t)=A ~co(t)~ l2Reco(t), (4.16)

racy coeScient can be interpreted as inversely propor-
tional to the scattering cross section and characteristic
time of the transition process in a bubble chamber. The
result of this section can be slightly strengthened by re-
laxing the assumption (4.7). It has been proved [55] that
the Gaussian wave packet with the dispersion r (ao)
given by (4.18) is the only (up to a stochastic phase factor)
asymptotic solution of Eq. (4.6) for any initial square-
integrable wave function. Some further results on the dy-
namics of the observed quantum particle in a quadratic
potential (including the case of a free particle) can be
found in Ref. [55]. In particular, it has been proved that
Eq. (3.18) for the quantum particle with continuously ob-
served (1) position, (2) momentum, and (3) position and
momentum is uniquely relaxing. Any initial state of the
particle given by a square-integrable function relaxes to
the unique (up to a stochastic phase factor) Gaussian
wave packet with a given dispersion (depending on the
case of observation}.

If the results of the measurement are not read out, i.e.,
they are averaged, the time development of the state
(density matrix) of the free particle is governed by Eq.
(2.29) with K=(i/A)H+ ,'L [—cf.(2.18)], L=(A, /2)'~ X,
K= —(R /2m)h:

p(t)= [A,p(t)] ——[X,[X,p(t)]] .
2m

' 4
(4.19)

The spreading out of the wave packet is even faster than
for the unobserved (isolated) particle: the dispersion of
the particle position spreads out no longer as t but as t .
This should not be surprising: if the results of the mea-
surement are not read out, the apparatus does not help
the pure initial state to survive (by supplying it with the
information contained in the measurement data). On the
contrary, it only disturbs the system. For more details
see Ref. [55].

The asymptotic localization of the free quantum parti-
cle (4.18) was also obtained by other authors. In the ap-
proach of Caves and Milburn this result was achieved
[53] in a continuous limit of the succeeding instantaneous
nonideal measurements of the particle position under the
assumption of the Gaussian character of the initial wave
function and the Gaussian character of the instrument
[29]. Di6si [48,49] obtained (4.18) in the context of his
phenomenological stochastic equation similar to Eq.
(3.18). We would like to emphasize the substantial
difference between his equation as well as other stochastic
equations of type (3.18) or (3.25) supporting "dynamical
theories of wave-function reduction" [37—49] and the
ones presented by us. The term dQ. =dg. —2 Rel dt in.
our equations is always replaced with the stochastic
differential of the standard %iener diffusion process. The
reason for that is very simple: the phenomenological
equations have to satisfy the only criterion —to yield
(after stochastic averaging) the master equation of type
(2.29). There is no reason to justify any other choice of
dQ than the simplest one.

ACKNOWLEDGMENT

This work was supported in part by the Polish Minis-
try of National Education, Project No. CPBP 01.01.



1356 V. P. BELAVKIN AND P. STASZEWSKI 45

[1]J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, 1955).

[2] E. B. Davies and J. T. Lewis, Commun. Math. Phys. 17,
239 (1970).

[3] E. B. Davies, Quantum Theory of Open Systems (Academ-
ic, London, 1976).

[4) M. Ozawa, J. Math. Phys. 25, 79 (1984).
[5] B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756

(1977).
[6] C. B. Chiu and E. C. G. Sudarshan, Phys. Rev. D 16, 520

(1977).
[7] A. Peres, Am. J. Phys. 48, 931 (1980).
[8] K. Kraus, Found. Phys. 11, 547 (1981).
[9] C. B. Chiu, B. Misra, and E. C. G. Sudarshan, Phys. Lett.

117B,34 (1982).
[10]E. Joos, Phys. Rev. D 29, 1626 (1984).
[11]D. Home and M. A. B. Whitaker, J. Phys. A 19, 1847

(1986);20, 3339 (1987).
[12]R. L. Hudson and K. R. Parthasarathy, Commun. Math.

Phys. 93, 301 (1984).
[13]C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761

(1985).
[14]A. Barchielli, in Quantum Probability with Applications

III, edited by L. Accardi and W. von Waldenfels

(Springer, Berlin, 1988), p. 37.
[15]A. Barchielli, Phys. Rev. A 34, 1642 (1986).
[16]A. Barchielli, Phys. Rev. D 32, 347 (1985).
[17]V. P. Belavkin, Radiotech. Elektron. 25, 1445 (1980).
[18]V. P. Belavkin, in Information Complexity and Control in

Quantum Physics, edited by A. Blaquiere, S. Diner, and G.
Lochak (Springer, Vienna, 1987), p. 311.

[19]V. P. Belavkin, in Stochastic Methods in Mathematics and
Physics, edited by R. Gielerak and W. Karwowski (World
Scientific, Singapore, 1989), p. 310.

[20] V. P. Belavkin, in Modeling and Control of Systems in En
gineering, Quantum Mechanics, Economics, and Biosci
ences, edited by A. Blaquiere (Springer, Berlin, 1989), p.
245.

[21]V. B. Braginsky, Y. I. Vorontzov, and F. J. Halili, Zh.
Eksp. Teor. Fiz. 73, 1340 (1977) [Sov. Phys. —JETP 46,
765 (1977)].

[22] K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmer-

mann, and V. D. Sandberg, Phys. Rev. Lett. 40, 667
(1978).

[23] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sand-

berg, and M. Zimmermann, Rev. Mod. Phys. 52, 341
(1980).

[24] V. V. Dodonov, V. I. Man'ko, and V. N. Rudenko, Zh.
Eksp. Teor. Fiz. 78, 881 (1980) [Sov. Phys. —JETP 57,
443 (1980)].

[25] A. O. Caldeira and A. J. Leggett, Physica A 121, 587
(1983).

[26] A. O. Caldeira and A. J. Leggett, Phys. Rev. A 31, 1059
(1985).

[27] W. G. Unruh and W. H. Zurek, Phys. Rev. D 40, 1071
(1989).

[28] V. Hakim and V. Ambegoakar, Phys. Rev. A 32, 423
(1985).

[29] A. Barchielli, L. Lanz, and G. M. Prosperi, Found. Phys.
13, 779 (1983).

[30] V. P. Belavkin and P. Staszewski, Phys. Lett. A 140, 359
{1989).

[31]V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E.
C. G. Sudarshan, Rep. Math. Phys. 13, 149 {1978).

[32] R. Alicki and K. Lendi, Quantum Dynamical Semigroups
and Apphcations, edited by H. Araki, J. Ehlers, K. Hepp,
R. Kippenhahn, H. A. Weidenmiiller, J. Wess, and J. Zit-

tartz, Lecture Notes in Physic Vol. 286 (Springer, Berlin,
1987).

[33] K. Hepp and E. Lieb, Helv. Phys. Acta 46, 573 (1973).
[34] V. P. Belavkin, Centro Matematico V. Volterra, Universi-

ta di Roma II, Report No. 6, 1989 (unpublished).

[35) V. P. Belavkin, Phys. Lett. A 140, 355 (1989).
[36] V. P. Belavkin, J. Math. Phys. 31, 2930 (1990).
[37]Ph. Pearle, Phys. Rev. D 13, 857 (1976).
[38]Ph. Pearle, Phys. Rev. Lett. 53, 1775 (1984).
[39]Ph. Pearle, Phys. Rev. D 33, 2240 (1986).
[40] Ph. Pearle, Phys. Rev. A 39, 2277 (1989).
[41] N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).
[42] N. Gisin, Phys. Rev. Lett. 53, 1776 (1984).
[43] N. Gisin, Helv. Phys. Acta 62, 363 (1989).
[44] G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D

34, 470 (1986).
[45] G. C. Ghirardi, Ph. Pearle, and A. Rinini, Phys. Rev. 42,

78 (1990).
[46] L. Diosi, J. Phys. A 21, 2885 (1988).
[47] L. Di6si, Phys. Lett. A 129, 419 (1988).
[48] L. Di6si, Phys. Lett. A 132, 233 (1988).

[49] L. Di6si, Phys. Rev. A 40, 1165 (1989).
[50] V. P. Belavkin, J. Phys. A 22, L1109 (1989).

[51]V. P. Belavkin and P. Staszewski, Rep. Math. Phys. 29,
213 (1991).

[52] V. P. Belavkin and A. Barchielli, Dipartimento di Fisica
dell'Universita di Milano Report No. 382/FT, 1990 (un-

published).
[53] C. M. Caves and G. J. Milburn, Phys. Rev. A 36, 5543

(1987).
[54] C. W. Gardiner, Handbook of Stochastic Methods

(Springer, Berlin, 1983).
[55] D. Chruscinski and P. Staszewski, Phys. Scr. 45, 1 (1992).


