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Harmonic oscillator with time-dependent mass and frequency and a perturbative potential
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A general treatment of the quantized harmonic oscillator with time-dependent mass and frequency is

presented. The treatment is also applied to the time-dependent oscillator under the action of a time-

dependent perturbative potential. The treatment is based on the use of some time-dependent transfor-

mations and in the method of invariants of Lewis and Riesenfeld [J.Math. Phys. 1Q, 1458 (1969)]. Exact
coherent states for such systems are also constructed.

PACS number(s): 03.20.+i, 03.65.Ca, 42.50.Dv

I. INTRODUCTION

II. TIME-DEPENDENT HARMONIC OSCILLATOR

Consider the time-dependent harmonic-oscillator
Hamiltonian

2

H(t)= + ,'M(t)co (t)q—
2M(r)

(2.1)

The study of problems involving harmonic oscillators
with time-dependent frequencies or with time-dependent
masses (or both simultaneously) or with a time-dependent
perturbative potential has attracted considerable interest
in the past few years [1—17,23,27,28]. Apart from its in-
trinsic mathematical interest, these problems have in-
voked much attention because of their connections with
many other problems belonging to di8'erent areas of phys-
ics, such as plasma physics, gravitation, quantum optics,
etc. For example, Colegrave and Abdalla [18]studied the
harmonic oscillator with a constant frequency and a
time-dependent mass in order to describe the electromag-
netic field intensities in a Fabry-Perot cavity. Lemos and
Natividade [19] studied a harmonic oscillator with a
time-dependent frequency and a constant mass in an ex-
panding universe. Also, Khandekar and Lawande [27]
have solved the harmonic oscillator under the action of a
particular time-dependent perturbative potential.

In this paper, we present an alternative treatment of
the quantal harmonic oscillator with time-dependent
mass and frequency. The treatment is also applied to the
time-dependent oscillator under the action of a general
perturbative potential. The treatment is based on the use
of some time-dependent transformations and in the
method of invariants of Lewis and Riesenfeld [20]. Exact
coherent states for such systems are also constructed.
This paper is organized in the following manner. In Secs.
II—IV we outline our treatment by considering the har-
monic oscillator with time-dependent mass and frequen-
cy. In Sec. V we construct exact coherent states and cal-
culate the uncertainty relations. In Sec. VI we apply the
treatment for constructing coherent states for the oscilla-
tor acted on by a general time-dependent perturbative
force. Finally, some concluding remarks are added in
Sec. VII.

where q and p are canonically conjugate with [q,p]=i%
and M(t) and co(t) are, respectively, the mass and fre-

quency associated with the oscillator, and which are arbi-
trary real functions of time. From (2.1) we obtain the
equation of motion

q+y(t)q+co (t)q =0,
where

(2.2)

(2.3)

In Ref. [21], it was shown that the Hamiltonian (2.1) can
be transformed to H&(t),

P mQ (t) g2
2m 2

where

(2.5)

by means of the new canonical variables
1 /2

M(t)
' 1/2

q, (2.6a)

M(r)
p+[mM(t)]' q,it 2 y(t)

2
(2.6b)

that can be achieved by the following generating func-

tion:

F(q, P, t) = ,'(qP+Pq)—
M r

' —1/2
M(&)y(r)

(2.7)

where m is a constant mass. Note that [Q,P]=[q,p],
which implies that the commutation relations remain the
same in both coordinates. Also, observe that the Hamil-
tonian (2.4) is of the form of that considered by Lewis

and Riesenfeld [20]. Here, let us recall that these authors
L „8,1,A, 1 t,,t 1' tttt t ttM-

~/ x v

dependent invariants for quantum systems characterized

by explicitly time-dependent Hamiltonians. They have
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derived a simple relation between eigenstates of such an
invariant and solutions of the corresponding Schrodinger
equation. In the next section we briefly review the theory
of Lewis and Riesenfeld for the system characterized by
the transformed Hamiltonian (2.4).

IV. SOLUTION OF THE SCHRODINGER EQUATION

In this section we are interested in solving the
Schrodinger equation (3.7). To this end, we follow the
procedure developed in Refs. [23] and [24]. Consider the
unitary transformation

—impQ /(2') (4.1)
III. TIME-DEPENDENT INVARIANTS AND

THE SCHRODINGER EQUATION Under this unitary transformation the eigenvalue equa-
tion (3.5) becomes

It is well known that an exact invariant for (2.4) is
given by [1,21] I'P'„(o ) =A,„P'„(o), (4.2)

I(t)= [m Q p +(Pp mpQ—) ],1

2m

where Q (t) satisfies the equation

(3.1)
with

2 2 2I'= UIUt= —~ 8 + mo.
2m Qg 2

(4.3)

Q+ fI'(t)Q =0, (3.2) and

p+0 (t)p= lip
The invariant I (t) satisfies the equation [20,22]

(3.3)

+ . [I,H, ]=0, I =I .
dt Bt iA

(3.4)

and p(t) is a c-number quantity satisfying the auxiliary
equation

p UP» o Qlp (4.4)

P'„(Q, t) =

' 1/2

Now (4.2) is an ordinary one-dimensional Schrodinger
equation whose solution is given by

' 1/2m'"
~1/2/1/2n ~2n

In order to make I (t) Hermitian, we choose only the real
solutions of (3.3). Further, the eigenfunctions P„(Q,t) of
I(t) are assumed to form a complete orthonormal set cor-
responding to the time-independent eigenvalue A,„.Thus

Xe
—m/2A(Q/P) H

where

A, » =R(n +—')

(4.5)

(4.6)
IP„(t)=A,„P„(Q,t), (3.5)

and H„ is the usual Hermitian polynomial of order n.
Thus, by using (3.9), (4. 1},(4.4), and (4.5) we find that the
solution of the transformed Schrodinger equation (3.7) is
given by

(3 6)(4' 4.)=fi'. ~

1/2 1/2
m

7T' fl' n 12"
f„(Q,t)=e

(3.7)iA =H, (t)g,a
Bt

Now consider the time-dependent Schrodinger equa-
tion

with

fi 8 mQ (t)
2m QQ 2

(3.8)

P

Xexp ++—Q2 H„
2A p p2

' 1/2

p

(4.7)

where P = —iA'8/BQ has been used. The solutions
f„(Q,t) of the Schrodinger equation (3.7) are related to
P„(Q,t) by the relation [20]

where the phase functions a„(t) are given by [20,24]

a„(t) = (n + ,' )f-—dt'
0 p'(t') (4.8)

P„(Q,t)=e " P„(Q,t),
where the phase functions a„(t) satisfy the equation

(3.9)

da„(t)
iA H(t) P— —

dt " at
(3.10)

Then, since each P„satisfies the Schrodinger equation,
the general solution of (3.7) may be written as

1/2
M(t)pt =

m
x (t), (4.9)

Here it is interesting to observe that the solutions (4.7) for
Eq. (3.7} have also been obtained by Khandekar and
Lawande [25] by using Feynman path integrals.

Let us now introduce the time-dependent transforma-
tion [21]

P(Q, t) = gc„e " P„(Q,t),

where the c„are time-independent coefficients.

(3.11)
where x (t) is a real function of time that is to be deter-
mined. Then using (2.5), (2.6), and (4.9), the equation of
motion (3.2) is converted into the original equation (2.2)
and auxiliary equation (3.3) in the equation
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x+y(t)x+co (t)x = m

M(t)
X

The exact invariant (3.1) is transformed to the form

I(t)= [mq x +(px —Mxq) ] .
1

2m

(4.10)

(4.11)
(Q t) ——I/2eimPQ /i2AP)y& (a t) (5.4)

correct coherent states for the usual time-independent
harmonic oscillator.

The coherent states for the time-dependent oscillator
(3.8) are obtained by the inverse transformation on
P' (cr, t). They are given by

Also, in terms of the original variables, the eigenfunc-
tions P„(q, t) ofI(t) are given by

which, in terms of the original variables, can be rewritten
as

P„(q, t)=
' 1/2 1/2

1 m

2"n if) / ~M(t)»

iM(t) x y(t) im
Xexp —+ +

2 qM(t)x'

P (q, t}=
M t

1/2 —1/2

X

r

Xexp —iM(t) x+ xy(t)
2

2

(2fix)
P'(o, t),

XH„
m

fix

' 1/2

(4.12)

a„(t)= —(n+ ,' )f —zdt' .
o M(t')x'(t')

(4.13)

Note that for M(t) =mer' the above solution reduces to
that obtained by Khandekar and Lawande [26]. Now the
solutions g„(q, t) of the Schrodinger equation for the
original system may be written as g„(q, t)
=exp[ia„(t)]P„(q,t) where the phase functions a„(t}are
now given by

(5.5)

aP (q, t)=a(t)P (q, t),
with

1/2

(5.6)

a = U~AU= 1

2mB
+i (xp —Mxq )

where cr=q/x. The states (5.5) are coherent states for
the time-dependent system described by the Hamiltonian
(2.1). These states satisfy the eigenvalue equation

Note that when M(t)~m, to(t)~coo, and x(t)~xo
=const=l/coo [which is a particular solution of the
auxiliary equation (4.10)], the solution (4.12) becomes the
solution of the Schrodinger equation for the time-
independent harmonic oscillator of mass m and frequen-

cy coo.

and

2iao(t)a(t)=ae

m dt'
ao(t) = —

—,
'

0 M(t')x (t')

(5.7)

(5.8)

(5.9)

V. COHERENT STATES
AND UNCERTAINTY RELATIONS

To obtain coherent states for harmonic oscillator with
time-dependent mass and frequency we proceed as fol-
lows. Consider the operators A and A ~ given by

1/2

Note that, when M(t)=m =cte, the states reduce to the
coherent states of the time-dependent harmonic oscillator
where only the frequency is allowed to change with time
[27].

In what follows we wish to calculate the uncertainty
relation. After some calculation we find that the uncer-
tainties in q and p in the state P (q, t) are

1

2mB

1

2mB

1/2

m —+ipP
p

m ——ipP
P

(5.la)

(5.1b)

(bq) = x2 & 2

2m

(&p)'=
2

1 M
m

X X

1/2

(5.10a}

(5.10b)

I'=A'(A tA+'} . (5.2)

where [ A, A ]= 1. In terms of A and A the invariant I'
[see (4.3)] can be written as

Thus the uncertainty product is expressed as
1/2

(b,q )(hp ) =—1+ x ~xM'(t)
(5.11)

Now, Hartley and Ray [27] have shown that coherent
states for I' have the form

—a /2
n

P'(o, t)=e ~ / g e " P'„(o),(I ~

( ~)]/2 Il (5.3}

where a„(t) is given by (4.7) and a is an arbitrary com-
plex number. Note that when co(t)—+coo and

p(t)~po=1/coo, the coherent states iI}' become the

and, in general, does not attain its minimum value. How-

ever, for a time-dependent oscillator, we cannot expect to
find strictly coherent states, i.e., (bq)(bp)=A'/2 for all

time t. On the other hand, we have already shown

[28,29] that the states P (q, t) are equivalent to well-

known squeezed states whose characteristic feature is the
squeezing. Now for M (t)=m =cte, the uncertainty
product (5.11) reduces to that obtained in Ref. [27].
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Also, when M(t)=m and x(t)~xo=l/coo/ the uncer-
tainty relation (5.11) attains its minimum value. In this
case, the operators a and a given in (5.7) reduce, respec-
tively, to the usual annihilation and creation operators
and the states P (q, t) become the correct coherent states
for the time-independent harmonic oscillator.

independent Schrodinger equation for an arbitrary poten-
tial. Thus, we can use the invariant I' to construct
coherent states P (a, t) following Refs. [24] and [30]. For
this purpose we define classical variables X,(o) and
P, (cr) associated with the classical motion of a Hamil-
tonian with "Hamiltonian" I'. Then, we have that
[24,30]

VI. COHERENT STATES FOR THE OSCILLATOR
WITH A PERTURBATIVE POTENTIAL

Consider the system described by the Hamiltonian

dx, (cr )
X,'(cr ) = =co,

P, (o )=mx, =p X,',

m /2( /I 2 X2)1/2

I' V(o—)
(6.7a)

(6.7b)
2 mH(t)= + ,'M(t—)aP(t)q + g(q/x),2M r M(t)x

where co, and A are constants and p =d . So, the
Nieto-Simmons operators X and P are given by

which possesses an invariant given by [21]

I(t)= [(px —Mxq) +m q x +2m g(q/x)],
1

2m

X(o ):X,(c—r ),

P:—. —X'(o )+X'(o )
a

21 BO' BCT

(6.8a)

(6.8b)

(6.2)

where x(t) satisfies (4.10). Note that the Schrodinger
equation for (6.1) does not depend on the auxiliary vari-
able x when (i) g =0, the Lewis-Riesenfeld [20] problem,
and (ii) g=M(t)x /m q, the problem treated by
Khandekar and Lawande [25,26]. In all other cases the
auxiliary function x appears in the potential energy of the
Schrodinger equation associated with (6.1). It is then to
be interpreted [23] as an external field whose time depen-
dence is to be determined from the auxiliary equation
(4.10). In the uncoupled systems g =0 and
M(t)x /m q, x is just an auxiliary variable whose par-
ticular form drops out of any calculation of transition
matrix elements [20,23]. However, in the coupled case, x
is a physical field whose form determines the interaction
of the system with the field through the interaction po-
tential m g(q/x)/Mx .

Now, following the same steps of the precedent sec-
tions, we convert the Hamiltonian (6.1) in the form

(6.3)
p'

where Q(t) is given by (2.5) and p(t) satisfies Eq. (3.3).
The invariant (6.2) is converted into the form

(6.10)

The coherent states P' (cr ) have the form

P'(a) =pc„P„'(a), (6.11)

where c„are constants and P'„(o ) are eigenstates of I .
Next consider the unitary operator [24]

.I' dt'
V=exp —i-

p2

Then, the coherent states gati' (cr, t) are now given by

(6.12)

P'(cr, t }=exp i f ——iI'i'(o )
.I' dt'

p'(i')

with [X,P]=i%(x,') . Now, we use these operators to
construct coherent states P'(o). Following Refs. [24]
and [30] we obtain

+i P'(o )=aiI}'(cr),1 X . P
(6.9)

where b,M =( & M ) —
& M ) )'/~ for any quantity M and

&x) . &p)
2 hX hP

I(t)= [(Pp mpQ) +m Q
—
p +2m g(Q/p)] .1

2m

= gc„e " iI}'„(o), (6.13)

(6.4)

mI'= UIUT=- + +mg(o ) .
2m Qg2 2

(6.5}

Now, following the same steps as those of Sec. IV, we
have, in this case, I' given by

and the new operators X and P by

x=vxv', p=vpv'. (6.14)

Note that the operator V introduces the time-dependent
phase factor exp[ia„(t)] into (6.13). For more details see
Ref. [24]. Then, by using (4.1}we find the coherent states
for the Hamiltonian (6.3)

Then, the eigenvalue equation (4.2}becoines

mg2+ +mg(o ) P'„=A,„P'„.
2m Qg 2

(6.6)

(Q i)
—1/2 imPQ /(2')y& (

The new operators X' and P' are also given by

(6.15)

So, the solution to the Schrodinger equation for (6.3) in-
volves solving Eq. (6.6). Note that (6.6) is the time-

x'= vtxv, P = v'P v . (6.16)

These states, in terms of the original variables, are
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coherent states for the time-dependent system described
by the Hamiltonian (6.1).

VII. CONCLUDING REMARKS

In this paper we have presented an alternative treat-
ment for the quantal harmonic oscillator with time-
dependent mass and frequency and for the problem of the
time-dependent oscillator under the action of a perturba-
tive potential. The present treatment is based on the use
of a time-dependent canonical transformation, two uni-
tary transformations, an auxiliary time-dependent trans-
formation, and on the method of invariants of Lewis and
Riesenfeld. We also have used the procedures developed
in Refs. [24], [27], and [30], to construct coherent states
for two such systems. These coherent states have been
expressed in terms of the eigenstates of the invariants I
and are more general than those obtained in Refs. [24]
and [27]. The physical interpretation of these states is
discussed in Refs. [24] and [27]. For the time-dependent
harmonic oscillator, they are states that are associated

with the exact classical motion [24]. They should be use-
ful in describing the radiation field of a single-mode laser
as the laser is tuned. If the Nieto-Simmons coherent
states have practical applications for molecule-laser in-
teractions, then the time-dependent coherent states de-
rived here should have similar applications involving
such time-dependent systems.

Finally, we remark that Janussis and Bartzis [31]have
also constructed coherent states for the harmonic oscilla-
tor with time-dependent mass and frequency. However,
the approach used by these authors is considerably
different from that presented in this paper. We also men-
tion that it may be interesting to compare our treatment
with those developed by Leach [9], Abdalla [13], and
Colegrave and Abdalla [8].
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