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Reduced Schrodinger-Coulomb Green's function for excited states
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The momentum-space representation of the reduced Schrodinger-Coulomb Green s function is ob-
tained in closed form for all states n. Explicit forms are given for n = 1 and 2.
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I. INTRODUCTION

in Dirac notation. It satisfies the inhomogeneous time-
independent Schrodinger equation

(E H)G@=—1 . (2)

The Green's function contains complete information
about the energy levels and wave functions for the Hamil-
tonian H.

The reduced Green's function G„ is obtained from Gz
by subtracting out the E„pole term and taking the limit
E~E„.The reduced Green's function can be written as

/m &(m/

4„(E„E)— (3)

The formulas of bound-state perturbation theory can be
expressed in terms of 0„. For example, the energy-level
shift in the presence of a perturbing Hamiltonian H' is

SE =&n)H')n&+ y " " +O(H')
(E —E )

=(n~H'~n)+(n~H'C„H'~n)+O(H' ) . (4)

Of particular interest are the Green's function and re-
duced Green's function for a particle in the Coulomb po-
tential [2] V(r) = Za lr. The Schrodi—nger-Coulomb
Green's function was worked out by Hostler [3—5],
Schwinger [6], and others [7,8] in various forms. The re-
duced Schrodinger-Coulomb Green s function in the
coordinate representation has been considered by several
authors [9—13]. In the momentum representation,
Hostler [14] has given forms for the excited-state reduced
Green s functions in one-dimensional space along with a
prescription for obtaining the three-dimensional results,
and Douglas [15] has given forms containing one-
parameter integrals for the n = 1 and 2 reduced Green's

The Green's function for the Schrodinger equation is
an extremely useful object in quantum mechanics. The
Green's function can be written as a sum over states

)m &(m/
(E E)—

functions.
One important use for the reduced Schrodinger-

Coulomb Green's function is in bound-state QED
[15—19]. Modern bound-state formalisms for QED are
built around a soluble reference problem that describes
the Coulombic binding. The solution to the reference
problem is based on the known nonrelativistic solution
with the four-dimensional structure of relativity added
on. As an example, in positronium the n =2 energy split-
tings have been measured [20] with an accuracy of a few
megahertz. A theoretical calculation to that level of ac-
curacy will require corrections of order mu . These
corrections involve the reduced Green's function, which
will be needed for n =2. The bound-state perturbation
scheme is usually set up in the momentum representa-
tion, so we will be interested in the momentum-space rep-
resentation of the reduced Green's function C„(p,p')
= &pl6. Ip'&.

In this paper we develop a closed-form expression for
the reduced Schrodinger-Coulomb Green's function
C„(p,p') in three dimensions for all states n. We start
with Schwinger's one-parameter integral representation
of the full Green's function and perform the subtraction
and limit in a straightforward way. The form obtained
still contains a one-parameter integral that we evaluate in
terms of Gegenbauer and Chebyshev polynomials. The
reduced Green's functions for the most useful cases n =1
and 2 are written explicitly. In Appendix A we show
how the momentum-space Coulomb bound-state wave
functions can be obtained from the Green's function. In
Appendix B we show that the three-dimensional reduced
Green's function derived from Hostler's one-dimensional
form [14] is equivalent to our result.

II. DERIVATION OF THE REDUCED
GREEN'S FUNCTION

The Schrodinger-Coulomb Green's function has the
form [4,6,7]

(2n. ) 5(p —p') + 8m.y
E P'P =

D +D~D'

327TQ Po
DD' o H(p, p')

(5)
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where

y=mZa, po=v' 2—mE, k=y/po,

D =p'+po D'=p'+po

H =4xp oR +( 1 —x ) DD ' .

(6)

with the form

~ fnlm P Pnlm P

The reduced Green's function is

as E~E„.

It is the sum of a zero-potential (or free} term that is of
order a, a one-potential term that is of order a' and a

r po
many-potential term that, because of the y x, is a
sum of terms having order a and higher. The Green's
function has poles at the bound-state energies

Vn

2m n

!(.l (P)4:l (P'}
C„(p,p')= lim GE(p p )

where all states of energy En are subtracted out. The
bound-state poles are found in the x integral in the
many-potential term of GE(p, p'). The pole at energy
E =E„(which corresponds to g=n} can be isolated by
making subtractions on 1/H [21]

n —1 m

f dxx ~ =f dxx-& ——y
o H o H om! H

' (m)
n —1

+ gom! H

' (m)

f 'dx x-~+
0

n —1 &m= f dxx-~ ——y
0 H om! H

where we use the notation
'm

' (m) ' (m)

+ g mf H
1 1 1+—(+m+1 (n —1)! H

' (n —1)
1

g+n—

(10)

f lm) d f
x=0

The integrals are evaluated using the assumption that E)0 (so g is imaginary). Negative values of E (positive values of
g) can be obtained by analytic continuation. It is clear that the pole at (=n resides only in the last term, which can be
written as

' (n —1)
1 1

(n —1)! H
1

g+n—
po(po+r. )

n! H 2m

1

(E E„)— (12)

The pole can be isolated using

+B(E)= + A'(E„)+B(En )+O(E E„) . —~(E)
n n

(13)

The pole term contains the Coulomb wave functions as discussed in Appendix A. The remainder, after subtracting the
pole term and taking the E~E„ limit, is

C„(p,p') =(—2m )
(2n ) 5(p —p')

n

+ +I„(P,P')
D„RD„'

(14)

32mn y„j
I„(p,p')=, , (-,' —4B„}

(D„D„')

(n —1} 2(1 B„)—
A„n~

(n —1)

' (m)
1 1dx

o(m n+1)m! h — o x" h om!

(m)
1

h
(15)

where

Dn =p +y„,
D„D„'

4y„R

D.' =p'+ X'.

y„(D„+D„')B„=
DnD„'

(16}

I

and

H~E E—
1=1—2Px+x, P= 1—

2A„
(17)

The reduced Green's function can be expressed in
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closed form in terms of Gegenbauer and Chebyshev poly-
nomials. The polynomials are defined by the generating
functions

N„(x)=C„'(P)—C„',(P)x .

It follows that the integral in I„ is

(22)

1
QO

(1—2Px+x )
x C ( ), (18a) fldx

0 X" h om!

(m)
1

h
oo m—

—,
' ln(1 —2Px+x )= g T (P) .

m=1 m

It follows that [22]
' (n —1)

1 1 —( I

(n —1)! h
- (n —1)

(18b)

(19)

=f [C„'(p)—C„',(p)x ]

1
T„(p)arctan 1+P

(1—P )' '
—

—,'C„', (P)in[2(1 —P)),

' 1/2

(23)

N„(x)= h

X h om!

(m)
1

h

1 x —Q2
( 1)~ P n 2(P)

The integral in I„has integrand N„(x) jh where the
numerator

since
1/2

f a +bx (a+Pb) 1+Px „—,arctan

+—in[2(1 —P) ]
b

2

(where 1 —P ~ 0) and [23]

(24)

n —1

g x C'(P) —g x C'(P)
m=0 m=0

oo

g x C'(P)
m=n

(20)

is a power series with no negative powers of x. Written
as

n —1

N„(x)= 1 —h g x C'(P)
X m=0

(21)

it is clear that N„(x) has maximum power x '. Taking the
x term from (20) and the x ' term from (21), one has

C„'(P)—PC„', (P) = T„(P) . (25)

1+P
1— =(4A„—1)'", (26)

2(1—P) = 1

A„

Then a closed form for I„ is [21]

Qne can replace p in the result for the integral with A„
according to

(4A„—1)'~
p2)1/2

2A„
' 1/2

32mn'y'„1, 2 (1—&„)
I„(p,p')=, , (-,' —4&„)—C„' &(P) —— C„' &(P)+ g C'(P)+, T„(p)arctan[(4A„—1)' ]+—,'C„', (p)ln(A„)

(4A„—1)'" "

This, combined with (14), gives our closed form for the reduced Green's function C„.

(27)

III. EXPLICIT FORMS FOR n = 1 AND 2

Explicit forms for the reduced Green's function 0„ for any value of n can now be written. For the most useful cases
n = 1 and 2 we will need

Co~(p) = 1, C) (p) =2Ap, T, (p) =p, T2(p) =2p —1 .

arctan(+4A
&

—1)+—,'ln( A I )

and

Then the reduced Green's functions C, and Gz are given by (14) with

2AI —1
Il(p p')=, , ——4&1+

(D,D', )' 2 +4A, —1

(28)

(29)
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128~y2 3 9
(D D')' 2 4A,

2A2 4+
3B,—4B2+ +

+4A, —1

1

2 arctan(+43 —1)+ 1 — ln( A )
1

2 2A 2
(30)

This form for I, agrees with that obtained previously by
Caswell and I.epage [16]. As a check of these results we
verified that

(2m )3 J d p'C„(p, p')P„l~(p')=
& & tP,l~(p) (31)

(where the 5 function is one for nor and zero for n =r)
holds for r = 1,2 and all I, m.

IV. CONCLUSION

We have obtained a closed-form result for the
momentum-space representation of the reduced Coulomb
Green's function 6„(p,p') in three dimensions for all n

This expression should prove useful for calculations of
properties of Coulombic systems in atomic physics and
bound-state QED.
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The Coulomb wave functions p„l (p) can be obtained
from the Green's function Gz(p, p') by factoring the resi-
due of the pole at E=En into a term dependent on p and
a term dependent on p'. The pole of Gz is contained in

the x integral in the many-potential part of Gz. From
(10), (12), and (13) it is clear that the residue of the pole is

32my y„ 1 1 y„(2y„)
nt H g =g 2@i

( —2m)

64an y„
, , C„' llP) . (Al)

(D„D„')

The Gegenbauer polynomial C„',(P) can be expanded
with the help of the addition theorem for Gegenbauer po-
lynomials [24]

and Marshall College through the Hackman Scholars
Program.

APPENDIX A: DERIVATION OF THE COULOMB
WAVE FUNCTIONS FROM THE GREEN'S FUNCTION

'I '2 i 'I
CI+~

D„'p n —I —1 D„
I+A,

Cn —I —I

D„'

D„'
CA,

—1/2( )

where D„=p —y„, D„'=p' —y„, and u =p p'. In our
case A, = 1 and we use

This has the form

Cl' ( —u) =Pl( —u) =(—1)'Pl(u) (A3)
n —1 I

0 l (P)P I (P )
I =0m = —I

(A6)

and the addition theorem for spherical harmonics

I

&,(u)= "
X &, (P)r,'(P')

m= —I

to write the residue as

(A4)

where the wave functions are

I I+1 D(+Iel (P) 0 l" I l g
—l —I ~l (P) (A7)

64~n y„n —i

(DnD.')' i=on=-l
4'I (n —l)[I (I +1)] I (n +I +1) The constants in (A7) are the coordinate-space wave

functions at contact

&P Xn

D„
&P Xn

D„'

I
~I+1
~n —I —1 Dn

1/2
Yn =P„oo(x=0) (AS)

D '„

XC„'+l, , &l (P)I'l* (p') .
D„'

(A5)

and
' 1/2

N„, =2 '+ ~l! 4~n(n —I —1)!
(n + I)! (A9)
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The normalization condition is [25]

1 d'P tt.*i (P}tt'1
(27r)

(A 10)

These momentum-space Coulomb wave functions were
obtained previously by Podolsky and Pauling [25]
through Fourier transformation of the coordinate-space
results, by Fock [26], who solved the momentum-space
Schrodinger equation directly, and by Schwinger from
the momentum-space Green's function [6,8]. They are
discussed more thoroughly in the book by Bethe and Sal-
peter [27].

APPENDIX B: DERIVATION OF THE THREE-
DIMENSIONAL REDUCED GREEN'S FUNCTION

FROM HOSTLER'S ONE-DIMENSIONAL RESULT

In this Appendix we show that the three-dimensional
reduced Green's function derived from Hostler's one-
dimensional form is identical to our result. Hostler's nor-
malization differs from ours by a factor of 2m: he de6nes
the Green's function by —2m(H E)G—E=l [see Ref.
[14], Eq. (2)] while we use (E H)GF—=1. Hostler's one-
dimensional reduced Green's function [Ref. [14], Eq.
(71)], times —1, written in our notation (k, ~p, k2~p',
na, ~1/y„, r ~p, and with q =p' —p } is

2m Q(q) 2yn

D„D„D„'
4( 1 p2)1/2y

D„D„'
4r. n—T„(P)in[2(1—P)] .DD„'2

4y„nT&(P} 2(3 —4B„}y„16n(l B„)y—„q+, T„()— 1( )
o D„D„' (1 n)— D„D„' " (D„D„')

1/2

nC„, (P)arctan1 1+P
(B1)

Hostler showed that the operator

12rr-
q Bq

(B2)

(1—P2)'/2C„' 1(P)arctan

=
—,
' C„',(P)

1+P
1—

' 1/2

1/2

acts to increase by 2 the dimensionality d of Green's
functions and reduced Green's functions:

n
T„(P)arctan

( 1 p2)1/2

The identity

1+
1 —P

(B5d)

&j Kd(En }1 —Kd+2(E„) .

We will write Hostler's operator as

ap a 8~y! a
aq' aP D„D„' aP

(B3)

(B4)

T (P) 1
n

1=1

which can be proved by induction, will help in the reduc-
tion. We will identify

16mn y„1 S~y
(D„D„' ) (1 P) D„RD„'—

and apply it to K, (E„). Som—e useful derivative formu-
las are

as the one-potential term in (14). Also necessary is the
curious formula

a
T1(P ) =IC1', (P),

a 1(P)=2C„' 2(P),

(B5a)

(Bsb)

&[(2m) 5"(q)] =(2n. )"+ 5 + (q) (B8)

relating the d- and (d +2)-dimensional Dirac 5 functions.
It is now an easy exercise to show that the three-
dimensional expression K3(E„} obtain—ed from
Hostler's one-dimensional result —K1(E„)by action of
& agrees with our result [(14) and (27)] for the reduced
Green's function in three dimensions:

D„D„'

ap
(B5c) —K3(E„)=&[ K, (E„)]= —G„(p,p') .

( —2m
(B9)
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