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Long- and ultimate-time tails in two-dimensional fluids
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In a recent comment [J.A. Leegwater and G. Szamel, Phys. Rev. Lett. 67, 408 (1991)]we showed that
the (t&lnt )

' decay of the velocity-autocorrelation function in a two-dimensional lattice gas should be
attained in times accessible in simulations. Here we study in greater detail the properties of solutions to
the self-consistent mode-coupling equations on which this result was based. We propose a scenario for
the decay of the velocity autocorrelation function of a two-dimensional lattice-gas cellular automaton.

PACS number(s): 61.20.Lc, 05.20.Dd, 05.40.+j, 05.60.+w

I. INTRODUCTION

It has been known for more than 20 years that the
velocity-autocorrelation function (VACF) of a fiuid does
not decay exponentially, as was expected on the basis of
the Boltzmann equation, but rather algebraically at
long times. Mode-mode-coupling theory gives that in d
dimensions the decay is proportional to P(t)
=aD[(D+v)t] " ', where D is the self-diffusion
coefficient, v the shear viscosity, and aD a prefactor [1].
As the self-diffusion coefficient is equal to the time in-
tegral of the VACF, in two dimensions D diverges and a
more refined treatment is needed. The self-consistent
(SC) equations, such as those written down below, predict
that for long times the VACF is proportional to
t '(lnt) ', as was first established by Wainwright,
Alder, and Gass [2] and Kawasaki [3]. Recently, van der
Hoef and Frenkel [4] found evidence for a faster-than-t
decay of the VACF in a two-dimensional (2D) lattice-gas
cellular automaton (LGCA). They showed that this de-
cay is compatible with the onset of self-consistent effects
in the long-time tails [5]. The model they used was the
so-called FHP-III (third version of the Frisch-
Hasslacher-Pomeau model); for a detailed description of
this model, and LGCA in general, we refer to the litera-
ture [6]. Naitoh, Ernst, and Dufty [7] recently derived
the self-consistent equations for the FHP-III model, with
coefficients, using mode-mode-coupling theory. Naitoh,
Ernst, and Dufty, as well as van der Hoef and Frenkel,
estimated the time after which self-consistent effects are
large, to be of the order of 10 lattice times. Times ac-
cessible in simulations are of the order of 10 and loga-
rithmic corrections for these times are of the order of
15%.

On the basis of the time estimate mentioned it was as-
sumed that it would be impossible to observe the self-
consistent tail in simulations. However, we pointed out
the following in a recent comment [g].

(i) The solution to the self-consistent equations pro-
duces a VACF that is approximated to within l%%uo by

p(i) = A

r [ In(rr„/r&)]'i'

for an extremely long-time period and lattice fillings

f 0.5. The relation to the previous estimate is that t„ is

very large, at least of the order of 10 mean free times, so
the value of the logarithm changes only slightly for times
accessible in simulations. In Eq. (1) tf is the mean free
time, which is of the order of 1 in lattice units.

(ii) The coefficient A appearing in (1) is not equal to the
value ultimately obtained. The times for which (1) is still
accurate is extremely long though, at least of the order of
10' . We could not establish an accurate value for the
time at which the ultimate-time tail expression is the one
to use, as the computer on which the calculations were
done cannot treat numbers larger than 10

In this article we present a more detailed analysis. The
results mentioned were established assuming that the
self-consistent mode-mode-coupling theory is correct,
and that the coefficients as calculated by Naitoh, Ernst,
and Dufty are accurate. A major part of the results of
this article will also be valid for other 2D Auids for which
similar self-consistent equations hold; we illustrate this
for a hard-disk Quid.

II. HALF-FILLED LATTICE

Consider the mode-mode-coupling theory prediction
for the long-time tail of the VACF P which is assumed to
hold after some time to:

P(r) =
(D+v)t

D(r)= f dr, p(r, ),
0

D(r)= —f dr, D(t, ),r

(2)

(3)

(4)

where D is the self-diffusion coefficient, and v the kine-
matic shear viscosity. In this section we study the half-
filled lattice, for which the shear viscosity is predicted to
be finite by Naitoh, Ernst, and Dufty. In this case the set
of equations (2)—(4) is closed. The expressions for the
"bare, " or short-time transport coefficients that are used
here are taken from the literature [9,10]. The time-scale
estimate mentioned is arrived at as follows. For SC
effects to be large the contribution from the tail in Eq. (3)
must be comparable to that of the short-time regime. So
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to get a rough estimate of the self-consistent time scale t„
we take the time at which

S QD

&0
' (Do+vo)ti

1.5

1.2

0.9

t, = exp
Do(Do+ vo)

t0 —10 t0
2QD

[the factor —,
' is motivated by Eq. (8) below] or

(6)

C)
0.6

0.3—
where the numerical value applies at lattice filling

f =0.5. The time to is the time scale after which Eq. (2)
is expected to hold, and is somewhere in between 1 and
100 mean free times (see Sec. IV). The order of magni-
tude of the time t„ in Eq. (1) is similar to that of t, .

A solution of the self-consistent equations can be ob-
tained in closed form as follows. Define a new variable
a = t(D+ v). The SC equations transfer into

a(t)=
dt

of which the solution is

—a =(2aD lna+b)'d
dt

(7)

2QD
t =t, + 4(Q infold),

4o

where t, and Po are determined by the initial values, and

z, 2 . V7r4(z)= I e' dt= i —erf(iz) .
0 2

(10)

More insight into the solution can be obtained by rewrit-
ing the SC equations in terms of new variables

x =[tp(t)] '

and

with b an integration constant. Equation (8) can be re-
garded as an explicit differential equation for t in terms of
a. The resulting integral can be performed yielding
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FIG. 1. The function x =(tP) ' calculated using the self-

consistent equations at half-filled lattice. Solid line, numerical
solution; dotted line, linear interpolation with the long-time
coefficient. Already for a surprisingly short time, the long-time
behavior is reached.

straight line with a coefficient that corresponds to the
ultimate-time tail. Only for relatively short times there
are notable deviations; after 10 lattice times we are in
the ultimate-time regime.

III. COUPLED SELF-CONSISTENT EQUATIONS

Only at half-filled lattice the shear viscosity is finite,
and for other densities we need to solve the full set of
self-consistent equations, as they are given in [7]. The
numerical solution has been presented in Ref. [8]; it
turned out that the (t&lnt )

' tail is accurate much
longer than could naively be expected. However, its
magnitude is different from the value ultimately obtained,
as calculated by Naitoh, Ernst, and Dufty. We found
that the transition to the ultimate-time tail is extremely
slow. Here we study a simplified model in order to try to
understand this finding. Assume that for the shear
viscosity the SC equations of the form (2)—(4) hold with a
coefficient Q, so that after a transient we have

t(D+v)P
y =QDx

QD

In logarithmic time 7= lnt we find

dx 2
d7 QD

(12)

(13)

v(t) =(vo+2a„lnt )' (15)

where v0 is the short-time, or Boltzmann, viscosity, and
a„ the coefficient to the long-time tail. Regarding Eq. (2)
we approximate v in this model, rather than the time-
dependent viscosity v. Then Eq. (13) is not changed, and
(14) has to be replaced by

d
7 QDX

(14)
a„v x2

d7 QDX y
(16)

Now the initial values for x and y are such that the last
term in (14) is small (0.01 at lattice filling f =0.7), hence

y tends to unity exponentially on a logarithmic time
scale. This peculiarity of the self-consistent equations
causes the long-time regime to be reached much earlier
than the previous estimate. The resulting VACF at half-
filled lattice is given as the solid line in Fig. 1. The func-
tion x is defined such that on this plot a straight line cor-
responds to a (t&lnt )

' tail. The dotted line is a
y =1+a

V0+2Q 7
(17)

Some analytical asymptotic results can still be established
for these equations. Notice that for long times y will tend
to a constant and the term proportional to y becomes
negligible. Up to small corrections y is given by the value
obtained by setting dy/dt =0, which is a quasistationary
approximation for y. So take

' 1/2
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which in Fig. 2 is shown to yield a very accurate approxi-
mation to the solution of the full equation (15). Redefine
~ so that the vp cancels. The SC equations in the quasis-
tationary approximation in terms of a new time
s =2rlaD+ vo/az&a are transformed into

dx =1+A,&x/s
ds

(18)

with A, =+a,/aD. The solution of (18) follows, after
some algebra, as

[ ]+g2/4)1/2
s A

&x /s —
A, , &x /s —

A, z
Sp

where A, , &=A, /2+(1+A, /4)', and so is an integration
constant. For s~ 00 the left-hand side will tend to zero.
As A, 2 is negative, and the square root is positive, for long
times &x /s will tend to A, It can be established that for
long times

V22 ~2 p

cxD 2(x~

A, /2f(1+A, /4) —A. /212
vp+C z+

2a
+ 0 ~ ~ (20)
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FIG. 2. The function x =(tP} i resulting from the model

Eq. (15). In this figure the following values were used (in lattice
units): v0=0. 1, DO=0. 25, aD=10 ', and a =5X10 . These
are realistic values which are roughly appropriate for lattice
filling f =0.7. The numerical solution to the SC equations (2)
and (16) is the solid line, the quasistationary approximation Eq.
(17) yields the dashed line, which is only distinguishable from
the solid line for small lnt. Also plotted are the linear term of
(20) (dash-dotted) and the full expression where C was fitted
such that x is reproduced at ~=8 (dotted). Notice that the
solid, dashed, and dotted lines are barely distinguishable, and
that the second term of (20) is quite large, at least on these time
scales. For the parameters used the nonuniversal exponent is
0.25.
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FIG. 3. The function x as a function of time divided by the
mean free time t f, obtained by numerically solving the full set
of self-consistent equations for a hard-disk fluid at density
n~ =0.1 using Boltzmann transport coefBcients. Solid line,
solution to self-consistent equations; dashed line, a straight line
indicating the asymptotic solution.
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the ultimate-time tail. We believe that this is the generic
behavior for coupled self-consistent equations.

IV. FINAL REMARKS

ACKNOW'LEDGMENTS

The full set of self-consistent equations as they apply to
a lattice gas are a complicated set of five coupled equa-
tions. The numerical solution is this set of equations can
be found in Ref. [8]. To show that the phenomena dis-
cussed there are not peculiarities of lattice gases we have
numerically calculated the long-time tail for a hard-disk
Quid in the low-density limit, using the self-consistent
modification of the expressions given in Ref. [11].The re-
sult is shown in Fig. 3. For hard disks the "short" long-
time tail is already the asymptotic tail, reminiscent of the
half-filled lattice.

Based mainly on the work described in [8] and Fig. 2,
we arrive at the following scenario for the VACF of a 2D
LGCA. There are four time scales: (i) The short-time re-
girne, where the Boltzmann theory is accurate. For a lat-
tice gas at reasonably high lattice filling this is of the or-
der of two lattice times. (ii) A transition regiine, for
which all kinds of effects have to be included, such as
sound modes and extended mode-mode coupling effects.
Recently this time regime was studied by Naitoh et al.
[12]. The results of van der Hoef and Frenkel [4] as well
as the present calculations suggest that also the onset of
self-consistent effects has to be taken into account. (iii) A
time regime where Eq. (1} is accurate. This time regime
can be estimated to range from 100 to at least 10' lattice
times. (iv) An ultimate-time regime, for which Eq. (1}
should hold with the coefficients as calculated by Naitoh
et al. In this paper we could not resolve the question of
when or how this regime is attained.

Notice that the second term has a nonuniversal exponent.
A typical plot is presented in Fig. 2. The second term in
Eq. (20) is large on physical time scales, but decays ex-
tremely slowly, partly explaining the slow transition to
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