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Energy functionals and the Thomas-Fermi model in momentum space
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Energy functionals of the momentum-space density are investigated. They are complementary supple-
ments to the standard functionals of the configuration-space density and provide a self-consistent ap-

proach to computing momentum-space densities and quantities derived from these. We introduce the

concept of an effective kinetic energy, analogous to the effective potential energy, and establish thereby
an independent-particle picture in momentum space. In the new independent-particle energy, every elec-

tron pair is counted —, times, not twice. The Thomas-Fermi functionals in momentum space are given

and shown to be perfectly equivalent to the configuration-space ones.

PACS number(s): 31.15.+q, 31.20.Sy, 31.20.Lr, 31.90.+s

I. INTRODUCTION

The 1964 paper by Hohenberg and Kohn [1] (HK) trig-
gered widespread interest in energy functionals of the
spatial density for many-electron systems. By now the
subject has been developed to the stage at which text-
books [2,3] are written. Indeed, computation schemes
based upon these functionals are regarded as the method
of choice whenever refined Hartree-Fock calculations are
too tedious and therefore too expensive. In addition, the
functional approach enables one to arrive at analytical
answers to some questions. Examples are the strikingly
simple, and highly precise, formula that gives the total
electronic binding energy of an atom as a function of the
number of electrons [4—6], and the simple rule according
to which subshells are filled as the Periodic Table is built
up [7].

Whereas the theory of energy functionals of the spatial
density has been dealt with in certainly hundreds, prob-
ably thousands of publications, the complementary ener-

gy functionals of the momental density —that is, the den-
sity in momentum space —have received perfunctory at-
tention. In 1981 Henderson [8] formulated the momental
analog of the spatial HK theorem [1]. A crude approxi-
mation [9] to the momental Thomas-Fermi (TF) function-
al was given in 1982 (and extended [10] in 1988). Also in

1982, Smith [11]reviewed the status of momentum space
considerations and added a programmatic outlook. To
our knowledge, nothing remarkable has happened since
then in this field. For instance, functionals of the mo-
mental density are not mentioned at all in the voluminous
proceedings [12] of a 1983 conference on density func-
tional methods, and in two recent textbooks [2,3] they are
discussed very briefly only.

Different physical systems —such as atoms, molecules,
or solids —are mainly characterized by the external elec-
trostatic potential to which the electrons are exposed.
The structure of the standard spatial energy functionals
does not depend upon this external potential. In con-
trast, as remarked by Henderson [8] already, the momen-
tal functionals do not possess this universality; they have
to be constructed with explicit reference to the physical
system under consideration. For example, momental

functionals valid for atoms must not be applied to mole-
cules. One might thus conclude —wrongly, in our
opinion —that the momental functionals are less useful
than the spatial ones. Could it be that this notion is re-
sponsible for the apparent lack of interest in functionals
of the momental density?

The need for theoretical predictions of momental den-
sities was, of course, always recognized. In fact, momen-
tal densities are more easily extracted [13] than spatial
ones from experimental data, such as Compton profiles or
angular positron-annihilation correlations [14]. Thus a
fair number of rules of thumb have been produced by
which one can infer momental from spatial densities [15].
The recent derivation [16] of the Scott correction to the
momental density of TF atoms is in this spirit.

Rather than rely upon such rules of limited applicabili-
ty one should aim at a self-consistent determination of
the momental density. To this end, energy functionals of
the momental density are required. It is the objective of
the present paper to take a first step in this direction. In
the next section, we first set the stage by reviewing the
essentials of spatial functionals, and then discuss momen-
tal functionals generally. In particular, the notion of an
effective kinetic energy will be introduced, which is the
momental analog of the spatial effective potential energy.
Section III, then, presents the momental TF approxima-
tion for atoms. Finally, in Sec. IV we shall consider
briefly scaling properties of the momental functionals,
and address the question of the multiple counting of elec-
tron pairs in independent-particle energies. The incor-
poration of the Scott correction into the momental TF
functional is the subject of the following paper [17].

In the Appendix we give a negative answer to the ques-
tion of whether Lowdin's "natural orbitals" [18]are iden-
tical with the single-electron states of the independent-
particle description.

II. ENERGY FUNCTIQNALS

We consider, quite generally, a system of many elec-
trons, X in number, with positions r, , . . . , r~ and mo-
menta p, , . . . , pz. Their dynamics is governed by the
many-particle Hamilton operator
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HMp =Hk;„+H,„,+H. . .
which consists of the kinetic energy

N

j=1

the external (electrostatic) potential energy

N

H,„,= g V,„,(r ),
j=l

(3)

and the electron-electron interaction energy H, , For a
nonrelativistic isolated atom with atomic number Z,
these are actually

N= f (dr')n(r') (12)

into the energy functional with the aid of a Lagrangian
multiplier g (equal to the negative of the chemical poten-
tial), so that

Eo =extr„&E [n,g],
E[n, g] =E [n ]

—
g N f—(dr')n (r') (13)

5—V(r')=, E„;„[n]+g,5n(r'
(14)

Upon introducing the eQectiue potential (energy) V(r') by
means of

and

Tk;„(p)= —,'p', V,„,(r) = —Z/lrl = —Z/r (4) one finds that the quantity

E, =E„;„[n]+f (dr') n(r')[V(r')+g]

H, , =-,' g Ir, —r„l
j, k

jAk

Here and throughout we use atomic units and employ the
notational conventions of Ref. [19]. The spin degrees of
freedom will be left implicit.

As expressed in

is a functional of the sum V(r')+g, because

5E, =f (dr')n(r')[5V(r')+5(] .

Consequently, we now have

Ep
=extr ~ „tE[ V, n, g]

(16)

(17)

Ep ™n&&f IHMp I g &
=

& &pl HMp I yp &

which implies

with

E [ V, n, g] =E, [ V+ (]—f (dr') [ V(r') —V,„,(r') ]n (r')

HMplgo& = lgo&Eo +E, , [n] gN . — (18)

the ground state of HMp is denoted by Igp) and the
ground-state energy by Eo.

Variations of V(r'), n(r'), and g supply three coupled
equations. For 5V,

A. Spatial energy functionals

The HK theorem [1] in its standard spatial version
states that the ground-state energy Eo of HMp is the
minimum of a functional of the spatial density n (r'),

n(r')=N f (drz) (dr&)l&r'", r2, . . . , rIvlgo)l, (8)

that is,

n(r')=, E, [V +g],5V r'

for 5n,

V(r') = V,„,(r')+, E, , [n ],
5n r'

and for 5g,

N= Ei [ V+(],8

(19a)

(19b)

(19c}

E,„,[n]= &y, lH, „,ly, )

dr' V,„, r' n r' (1 lb)

(1 lc)

All of this is based upon the central observation that both
V,„, and lgo) are, for given T„;„and H, „uniquely deter-
mined by n(r').

It is expedient to incorporate the constraint

Eo =min„E[n ],
where the spatial energy functional E[n] is the sum of
three terms corresponding to (1),

E[n ] =Ek;„[n ]+E,„,[n ]+E,, [n ],
with, of course,

(1 la}
V= V,„,+ V. . . (19b')

the effective potential is quite naturally equated to the
sum of the external and the interaction potential.

One can, of course, eliminate either V or n from the
description. If one solves (19a) for V+( in terms of n
and inserts it into (18), then one returns to E[n, g] of (13).
On the other hand, if (19b) is used to express n in terms
of V—V,„„then (18) is turned into yet another spatial en-
ergy functional, E[V, g], in which V(r') and g are the

of which the first repeats (16) in part, the second
expresses the stationary property of E[n, g] under varia-
tions of n if (14) is taken into account, and the third is
equivalent to the constraint (12) because E~ depends on
the sum V+(. As soon as one identifies the second term
on the right-hand side (rhs) of (19b) with an interaction
potential V, ,(r'),
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fundamental variables [20]. In principle, all these energy
functionals are equivalent. In practice, however, one
must resort to approximations since E„;„[n] and E, , [n ]
are not known. And the quality of an approximation
may very we11 depend on the choice of functional ~

We close this brief review of spatial energy functionals
by remarking that

(20)

Ep=min E[p], (27)

E p]=Ek;.[p]+E...[p]+E, , [p],
with

E„,„[p]=& y, ~H„,„~y, &

(28)

where the momental energy functional E[p] is the sum of
three terms corresponding to (1),

with the independent-particle Hamilton operator

H=T„;„(p)+V(r), (21)

= f (dp')Tk;„(p')p(p'),

E,„,[p] =
& O.IH.„IW.&,

E„[p]=&gplH„A& .

(29a)

(29b)

(29c)

from which we infer that E, can be written as the trace
of a function of H +g,

E(=trf(H+g) . (22}

(Here one might wonder, and indeed we did, whether
Lowdin's "natural orbitals" [18] are identical with the
eigenstates of H. The negative answer is given in the Ap-
pendix. ) This invites us to approximate E, , in the spirit
of the Kohn-Sham (KS) scheme [21], by its value for
noninteracting electrons, namely,

E, —= tr(H+ g)ri( H g), — —

where ri(x ) is the Heaviside unit step function

1 for x)0,
0 for x(0,

(23)

(24)

which approximation corresponds to f(x ) —=x ri( —x ) in

(22) and, incidentally, works very well. Since (23) would
be the actual answer if ~ltp) were to minimize the rhs of
(20), rather than HMP as in (6), the approximation (23) as-

signs a numerical value to E& that is somewhat less than
the actual one. When employed in (19), Eq. (23) has the
consequences

Ep=extr ~E[p, g],
E [p, g] =E [p ]

—
g N f (d p')p—(p' ) (31)

This time we introduce the e+ectiue kinetic energy T(p')
by means of

—T(p' }—= 5, E..t [p]+05p(p')

and the quantity

E, =E,„,[p]+f (dp')p(p')[T(p')+g]

turns out to be a functional of the sum T(p')+g,

5E, = f (dp')p(p')[5T(p')+5(] .

(32)

(33)

(34}

The central point here is that both Tk;„and ~Pp) are, for
given V,„, and H, „uniquely determined by p(p').

Again, it is expedient to incorporate the constraint

N= f (dp')p(p')

into the energy functional, whereby the Lagrangian mul-

tiplier g has the same significance as in the spatial func-
tionals. The analogs of (13) are

N -=trodi( H g), — —

n (r') =—2& r'~ri( —H —g) ~r'), (25)

So we have here

(35)

where the factor of 2 is the spin multiplicity left implicit
in the trace function.

Note that the effective potential V is not identical with
the KS potential. The KS formalism can be recovered by
writing equal signs in (23) and (25), along with adding a
so-called correlation energy E„„[n]to E[V,n, g] for
compensation. Then, the KS equations emerge when
eigenstates and eigenvalues of H are employed to evaluate
(23) and (25).

with

E[T,P, g] =Ei [T+g]—f (dp')[T(p') —Tk;„(p')]p(p')

+E, , [p] (N . — (36)

P(P),Ei[T+kl6
5T p'

for 5p,

(37a)

The stationary property supplies now for variations 5T,

B.Momental energy functionals

Henderson's [8] rnomental version of the HK theorem
states that the ground-state energy Eo of HMP is the
minimum of a functional of the mamental density p(p'),

p(p'}=N f (dp2)". (dp~)~&p' p~ . PN~Pp&~'

that is,

T(P')=Tk;. (P }+
5

E - [P]
6

=Tk (P )+T (P )

and for g',

N= E, [T+g] .

(37b)

(37c)
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Equation (37a) repeats (34) in part, (37b) expresses the
stationary property of E [p, g] under variations of p if (32)
is taken into account, and (37c) is equivalent to (30).
There is again the option of eliminating one of the fields,
either T or p, from the description.

In view of

(2m)

X g[ —
—,'p' —V(r') —g] (43}

&&I&+PI=(Po X WI~ P ~+PI
j=l

with the independent-particle Hamilton operator

H = T(p)+ V,„,(r),

(38)

(39)

(2m }'

X g —T(p')+ —,—g
Z
1

(44)

one again infers that El is the trace of a function of
H+g,

where the factors of 2 account for the spin multiplicity.
The step functions confine the range ofp' in (43) and r' in
(44) to

E, =trf(H+g) .

(Are the eigenstates of H the natural orbitals? No, as
shown in the Appendix). The approximation analogous
to (23) is

and

p' &
[
—2[ V(r')+g]] ' =P(r')—

r' ~Z[ T(p') +g] '=—R(p'},

(45)

(46)

E, —= tr(H+g)ri( H —g)—,
with the consequences

N —=try{ H —g),—

p(p') -=2& p'lr)( —H —g) lp'),

(41)

(42)

respectively (square roots of negative numbers are under-
stood to equal zero). In analogy to calling P'=P(r') the
Fermi momentum, we shall speak of the Fermi radius
R ' =R (p' }. Thus one finds the familiar expression for
ETF

to be compared with (25).
Here, too, one has the option of adopting the KS

scheme by regarding (41) and (42) as true equalities, along
with E„„[p]added to E [ T,p, g] for compensation. As
discussed in the Appendix, the two independent-particle
Hamilton operators H and H do not commute, and there-
fore the momental KS wave functions obtained here are
different from what one gets by Fourier transformation of
the standard spatial KS wave functions [22].

In summary, the momental energy functionals are
quite analogous to the spatial ones. The roles played by
position and momentum, V,„, and T„;„,n and p, V and T,

each other. Since the interaction H, , of (5) depends on
position only, and Tk;„and V,„, are very different func-
tions of their respective arguments, the functional depen-
dence of, say, E, [ V+(] and E, [ T+ g] will obviously be
totally different. Nevertheless, there is this clear
structural analogy and, therefore, momental functionals
must be considered just as useful as their spatial counter-
parts.

E,"[V+(]=f (dr') — P'
15m

E, [T+g]=f (dp') — R'

Z3=f (d p') —
2 [T(p')+ g]

' . (48)

Equations (19a) and (37a) appear here as

n(r')= {
—2[V(r')+g]] ~ = 2P'

3m,2 3~2
(49)

p(p')=
2

[T(p')+g] = R'~ .
Z
38.2 3772

(50)

=f (dr') —
[
—2[ V(r')+g]J' (47)

15m

and E,"turns out to be given by

III. THOMAS-FERMI FUNCTIONALS

The TF functionals represent a threefold approxima-
tion to the actual ones. First, one accepts (23) and (41);
second, the quantum-mechanical traces are replaced by
their semiclassical counterparts; third, only the classical
electrostatic contribution to the interaction energy func-
tionals E, , and E, , is taken into account (so that, in par-
ticular, the exchange energy is neglected).

For nonrelativistic atoms we get, with Tk;„and V,„,
from (4),

E„;"„[n]=f (dr') zP'

1=f (dr') [3m. n(r')]5~
10~

and the second one is found to be

(51)

These relations hold in the TF regime. We can now
make use of Eqs. {15)and (33) to obtain the TF versions
of E„;„andE,„,. The first one is again a familiar result,
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E,„",[p]=f (dp') — R' E,„,= f («') ——, n(r') .Z
T

(56)

=f (dp') Z
2

[3&p(p')] ~ (52)
Now we insert (55}into (53) twice, perform the spatial in-
tegrations and get

We note that this states that the coefficient CQ of Ref. [9]
equals —', (3m } ' =0.4849, about ten percent more than
the value 0.434 faund there by numerical data fitting.

To find the momental analog E, ,"[p] of the spatial

E "[n]=— (dr')(dr") (53)

n (r') ~ tr[5(r —r')g( —H —g) ]

~2|( g[ —T(p')+ZIr' g], —(dp')
(2ir)

(54)

where, ance more, a trace is evaluated semiclassically. In
terms of the Fermi radius, it reads

we need to express n(r') in the momental language. In
the TF regime, this is achieved by

E, ,=
4 f (dp')(dp")(R)R~( —

—,'R () (57)

E "[V,n, g]=f (dr')
15

[
—2[ V(r')+g]] 5~2

—f (dr') V(r'}+—, n(r'}
T

with R) (R ( ) being the larger (smaller) one of the two
Fermi radii R (p') and R (p"}. Then we employ Eq. (50)
to replace these Fermi radii by the corresponding mo-
mental densities and arrive at the final answer,

E, ,"[p]=-,'(3+) ' 'f (dp')(dp")(p', 'p ——'p' '), (58)

wherein the significance of p) and p( is immediately ob-
vious.

Here then are the TF functionals. The familiar spatial
one combines (18), (47), and (53) into

n(r'}=2f rl[R(p') —r'] .(dp')
(2n )~

(55}

J

+ l f (dr )(dr. )
n(

~r' r"~—
As evidence in favor af this relation we nate that it repro-
duces (52) when used in and in the new momental one,

(59}

J

+—,'(3H) ' f (dp')(dp")(p) p( ,'p( ) gN—, —— (60)

Eqs. (36), (48), and (58) are put together. On this TF level, the spatial and momental descriptions are perfectly
equivalent, as we shall now demonstrate.

For (59), Eq. (19a) is identical to (49). We use it to rewrite the TF version of (19b),

(61)

in the form

)+ Z 1
(d JJ) [ 2[V(r )+g]

r' 3~2 max(r', r )
(62)

where, in addition, the spherical symmetry af V, n, and P has been utilized. Then, Eq. (19c) supplements this integral
equation for V(r') with the constraint

r'V(r'}~ —(Z N) as r'~~ . —

Likewise for (60), Eq. (37a) repeats (50), which we employ to rewrite the TF version of (37b),

&(p')= ,'p' +(3+—) ' 'f (dp")[g(p' p")p' ' —'p" +g(p" —p')( —,'p" ' —
—,'p' ')]

with p'=p(p') and p" =p(p" },in the form

(63)

(64)

tt3

,
—

—,'p' —g= f (dp") g(R' —R"), +rl(R"—R'}(—,'R "i—
—,'R') (65)
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T(p'}—
—,'p' —ZZE'"[T p kl . (66)

Upon denoting the actual energy of the TF atom by
E (Z, N), so that g= —(8/BN)E "(Z,N), we thus find
that T(p') and R(p') are well approximated by

E'"(Z,N),

(67)

where preference is given to the Fermi radius as the fun-
damental function of p'. In the limit p'~~, when
p'~0, Eq. (64) [in conjunction with (50) and (60)] tells us
that, in view of the stationary property of E "[T,p, g],

In summary, the momental density p(p') and the
effective kinetic energy T(p') that obey (30), (50), and
(64), are given by

1,3, Z
p(p') =,r', T(p') = —,—g

3%2 T

with r' determined by

V(r')+ g= —
—,'p'

(74)

(75)

where V(r') is the corresponding effective TF potential.
As an illustration we remark that for neutral TF atoms
one has (=0, Ro= ~ as well as TO=0 and the large r'-
form of the effective potential is the well known

R (p') -=Z —,
'p'— + E "(ZN}

BZ V(r') = 9m
2 2 I2 (76)

if p' is large enough. On the other hand, for p'~0 we
have R(p'}~Ra &0, where the possibility Ro = ~ is ac-
tually realized in neutral atoms. Here we learn from (64)
that

implying

p(p ') =-9/(8~p ') '~',
' 1/2 (77}

TQ = T(p'=0) = N

0

and therefore

Z —N

Ro

(68)

(69)

T(p') =—Z p'2
9m.

Z —N 1 3~~
2 4

(Z —N)-'" (78)

for p'~0. These small-p' dependences are confirmed by
Fig. 1. In weakly ionized TF atoms (N & Z ) one gets

' 2/3

This identifies Ro as the spatial radius of the TF atom;
the TF potential of (62) obeys V(RO) = —g. And since

V(r')+ —,~— E (Z, N) for r'~0,Z 8 yF
T BZ

(70)

we recognize that the range of values occurring on the
left-hand side (lhs) of (65) is identical with the range
covered by the lhs of (62), provided that r' does not
exceed Ro. In this r' range, we can express Eq. (62} in
terms of the Fermi momentum,

with [23] A=32. 73, so that there

T(p'=0) -=2 A

3 A
PP 128 Z

' —2/3

N(Z —N)'
(79)

,'P' —g= ——(dr")Z, , 1 „P"
r' ' 3~2 max(rr )

(71)
1.6

1.4

30

Consequently, the lhs's of (65) and (71) are the same if the
functions P(r') and R (p') invert each other for r' ~ Ro,

P(R(p'))=p', R(P(r'})=r' . (72)

To show that the rhs's are also identical, we treat p" as a
function of R" in (65) and transform the (dp") integral
into one over (d R"). After a partial integration, and
with the understanding that p"=0 for R"&Ro, this
gives

1.2

1.0

0.8
D

0.6

0.4

25

20

1.5

1.0

Z, ,2 ~ 1 (dR„p" (73)
0.2

0.5

Indeed, Eqs. (72) establish perfect equivalence between
(71}and (73} and, therefore, between the spatial and the
momental TF functionals. As additional evidence we
mention that, when the same change of variables is per-
formed in Eq. (55), the result is (49).

0
0 0.1 0.25 0.5 1.0

p'I Z

1

2.0

FIG. 1. Radial momental density 4'' p(p') (curve a) and
effective kinetic energy T(p') (curve b) in the neutral TF atom,
as functions ofp'. The abscissa is linear in the square root ofp'.
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Of course, the TF approximation is not reliable for r'~0
and r'=—Ro, that is, for p'~oo and p'~0. Matters are
improved for p'~ ~ as soon as the Scott correction is in-
cluded into the description [16,17]. For a realistic treat-
ment of the small-p' range, one has to take the exchange
energy into account as well as quantum corrections to E&

[24], which represent a step beyond the semiclassical
phase-space integral of (44} and are thus essentially in the
spirit of the von Weizsacker correction to Ek;„. Work on
the latter subject is in progress and will be reported in
due course.

bE= f (dr')V, ,(r')n(r') —E, , [n] (87)

hE= p' T, , p'pp' —E, , p

respectively. In the TF approximation, one finds

(88)

can be regarded as sums of effective independent-particle
(IP) energies, once with an effective potential energy,
once with an effective kinetic energy.

To obtain the actual energy, one must subtract the
amounts

IV. MISCELLANEA

A. Scaling

As has been shown recently by Levy and Perdew [25],
the intuitive scaling laws

hE=—E, AE=——'E

with the consequences

(89)

(90)

Ek;„[n„]=pEk;„[n],

E, ,[n„]=pE,, [n]

with

(80)

n„(r')=p n(pr'), (81)

(where p) 0, of course} do not hold for Tz;„of (4) and

K, , of (5). Instead, one can derive

(p —1 }(E„,„[n„] p, 'E„;„[—n ] ) ~ 0,
(p, —1)(E,, [n„]—pE, , [n])~0,

(82)

where the equal signs apply only for @=1.
It is a simple matter to repeat the arguments of Ref.

[25] for the momental functionals E,„, and E, „and one

finds that, for H, , of (5) and V,„,= —Zlr, the momental

functionals do scale according to the intuitive laws

Ip kin + ext 3 Ee-e

[These are not statements about functionals but about
their numcerical values for the actual n(r'), p(p'}, . . . ].
Thus, the independent-particle energy E&p counts the
electron-electron energy & H, , ) (roughly) twice, whereas

Eip counts & K, , ) (roughly) —,'times. The suggestive in-

tuitive notion of "double" counting the electron pairs,
when employing effective independent-particle pictures,
does not apply to momentum space formulations. In
momentum space, new intuition needs to be built up.
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APPENDIX

E.,i [p„]=pE.,i [p]

E, , [p„]=pE„[p]
with

(83) If we denote the eigenstates of the independent-particle
Hamilton operator (21) by ~y, ) and the corresponding ei-
genvalues by 8„,

p(p ) p p(p ~p) (84)
H~q„) = ~y„&e„,

then Eqs. (19a) and (22) produce

(Al)

This statement is, unfortunately, no longer true when

V,„, differs from a pure Coulomb potential.
The intuitive scalings (80} and (83) can be expected to

be obeyed approximately to a high accuracy. For in-

stance, a glance at (51)—(53) and (58) suffices to see that
the TF functionals scale exactly in the intuitive way.

B. Multiple counting

The quantities

Bf(e„+g)
&r'~q7„&&lp„~r') . (A2)

This has the appearance of Lowdin's sum over natural or-
bitals [18]. So the question is raised whether the ~y„) are
identical with the natural orbitals. The answer is no.

To see this, first observe that (37a}and (40) imply, quite
analogously,

and

E~[ V+/] gN:(I/0 x (E& p,H) Q~):E~p (85)
Bf(Ã„+g)

P(p'}= y -"
& p'Iq „&& q.~p' &

Be„

with

(A3)

&if~+0l P' (00 XH~~, n, ~ 0o—) ~=ip (86)
Hip„) = iy„)g (A4}

Thus, if (A2) sums over natural orbitals then (A3) does
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the same. And because the natural orbitals are unique,
the set of states ~{p„) must be identical with the set ~y„).
In short, H and 0 have their eigenstates in common,
which is to say that they commute. Consequently,

(A5)

must be true. This, however, is only possible if V is a nu-
merical multiple of V,„, and Tk;„ is the same multiple of
T. Since V and V,„, as we11 as T and Tk;„are in fact very
different functions of r or p, respectively, Eq. (A5) does
not hold. So the ~(p„) and ~qr„) are not the same and nei-
ther set of states is identical with the natural orbitals.
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