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Light scattering near a double critical point: Evidence for crossover behavior
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%e report measurements of osmotic compressibility in a quasibinary liquid mixture of 3-
methylpyridine, water, and heavy water. The measurements probed the lower consolute point (TL) for
samples of varying loop sizes (hQ. An exact doubling of the critical exponent (y) was observed over the
entire experimental temperature range (TL —T) for a sample with hT as small as 250 mK. For inter-
mediate hT's (22) AT) 1 C), a smooth crossover from the double (2y) to the single exponent (y) was
noticed, as t [=~(Tt —T)/TL ~]~0. The universal value of y (=1.24) was recovered for experimen-
tal paths terminating in Tl for any 5T, provided the field variable used was t UL

[ = ~(TU —T)( TL —T)/TUTL
~ ] instead of t This. field variable (tot ) follows naturally from the geometri-

cal picture as well as the Landau-Ginzburg theory, as applied to the reentrant phase transitions.

PACS number(s): 64.60.Kw, 64.70.Ja

Among the diverse systems exhibiting the phenomenon
of reentrant phase transitions (RPT), the quasibinary
liquid mixtures are a prime example [1—5]. In these
liquid mixtures, reentrance is manifested by a closed-loop
miscibility curve with upper and lower consolute points
( TU and TL ), respectively. The two-phase region in these
systems is represented by the loop size (ET= TU —TL )

and the douhle critical point (DCP) is signified by the
limit 6T=0. When 6T is sufficiently large, three-
dimensional Ising-like behavior near a TU or TL is well
understood [6—8].

So far, the research efforts concerning RPT (in quasi-
binary liquid mixtures) were directed at observing an in-
crease [1—5] in the critical exponent (CE) from its Ising
value (near TU or TL ) as b, T was suppressed. In the vi-
cinity of the DCP (b, T~O), a near doubling of the
Ising-like CE's was noticed [1—3,5]. The doubling of the
CE's is the pivotal finding of the lattice-gas calculations
[9,10] (for reentrant miscibility) and the geometrical pic-
ture of phase transitions [2,11].

In this paper we not only intend to demonstrate an ex-
act doubling of the CE but also scrutinize the approach
to double criticality. An additional goal is to recover
the universal CE for any hT, by employing an alternate
field variable to the one commonly used i.e., t
[= (Tc—T)/Tc~], where Tc is TL or TU.

Light-scattering studies were performed [to deduce the
osmotic compressibility (XT)] in the quasibinary liquid
mixture: 3-methylpyridine (MP), water ( W), and heavy
water (HW). The samples were prepared using appropri-
ate quantities [12] of MP (99/o Aldrich), HW (isotopic
purity 99.6%, BARC, India) and triple distilled W
prepared in an all-quartz distiller. Determination of the
correct critical composition x, of MP (as guided by the
equal volume criteria) for any b, T is of vital consideration
in the preparation of these samples. For instance, x, (re-
ferred to TL ) increases from 0.29 (AT=77. 5'C) to 0.32
( b T =0.25 'C). The ratio of quantity of HW in
(HW+ W), defined as X, controls b, T. The coordinates
[12] of the DCP are XD =0.1715 and TD =76.65'C. In

the earlier investigations [1—5], the closeness to the DCP
was marked by samples of hT ) 1'C, which appeared to
be the asymptotic limit. The enormous difficulty in pre-
paring samples of hT & 1'C stems from (i) the parabolic
nature [2,12] of the reentrant critical line (X—T), (ii) in-
creasing difficulty in obtaining the correct x„(iii) the
temporal instability [12] of b T especially in the limit
AT~0. After exhaustive trials, we have succeeded in
securing a hT as small as 250 mK, which we believe to be
the physically realizable limit of the access to the DCP.

The light-scattering setup [13]comprises a He-Ne laser
(A, =6328 A), a photomultiplier tube (RCA 31034), a
photon counter and the associated electronics. The scat-
tered intensity (Iz) is collected at an angle (8) of 90'.
The sample cells were mounted in an air thermostat [13]
with a temperature stability of +3 mK over 6—8 h (in the
temperature range of 45 —80'C). The temperature is mea-
sured with an absolute accuracy of +60 mK employing a
ruggedized thermistor. The necessary precautions for
minimizing the local heating of the sample (from intense
laser beam), the nonlinearity of the detection system, the
mechanical instability of the optics, etc. were taken care
of [13].

The incident and transmitted power were monitored
(using power meters) at temperatures where IE was mea-
sured to account for the changes in the incident intensity
and attenuation of the beam due to increase in turbidity
{as T~TL ), respectively. A typical run encompassed the
temperature range l. 5 & ( TI —T ) -25'C and it lasted for
42 h yielding about 40—50 data points. At least two de-
tailed runs were done for b T's & 650 mK. All the data
were taken in one-phase region as TL was approached.
TI was determined before and after a given run by the
vanishing of the transmitted beam. Data acquisition for
(TL —T) & 1.5 C were avoided to minimize the possible
contributions to IE from multiple scattering. Further-
more, for the phenomenon being studied, the relative
weight of (Tl —T ) vs hT is more important than mere
approach to TI .

The IF after correcting for turbidity (Is) was given by
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TABLE I. Summary of the data reduction of the scattered intensity using Eq. (2). The uncertainties
in A, , A2, and go are (1%. Except for the two limiting cases (ET=77.5 and 0.25'C), the CE
yE( =1.24K, ) is an "effective" critical exponent, obtained by force fitting the power law to the entire ex-
perimental t range.

TL
(C)

38.38+0.01
65 ~ 36+0.01
69.64+0.01
72.55+0.01
74.59+0.01
76.00+0.02
76.35+0.02
76.53+0.05

hT
(C)

77.5+0.5
22.6+0.02

14.02+0.02
8.20+0.02
4. 10+0.02
1.30+0.04
0.65+0.04
0.25+0.10

(X10 )

11.721
15.143
10.312
4.604
7.083
2.027
3.019
0.997

A2

( X10-')

7.34
18.10
11.61
6.86
3.81
1.54
1.85
0.85

1.00
1.16
1.36
1.48
1.72
1.90
1.87
2.00

1.24
1.44
1.69
1.84
2.13
2.36
2.32
2.48

(0
A

4.43
6.97
5.58
4.30
3.12
2.04
2.23
1.52

2
Xv

1.34
1.93
1.32
0.93
4.42
3.90
1.63
2.15

—1.24K,
S +A3,

t
—1.26k )1

—q/2 (2)

the relation [8,14]

I, At +Iq,T ( I+ 2(2)1—g/2

where A is the critical amplitude, y is the CE that de-
scribes the divergence in y and its Ising value [7] is 1.241;
I~ is any remnant background intensity: g is the correla-
tion length (/=got '), the Ising values [7] of CE's v and

g being 0.63 and 0.03, respectively. The scattering wave
vector q is given by (4mn /k) sin(8/2), where n is the re-
fractive index of the mixture and A, is the wavelength of
the incident light in vacuum. n was computed at 20'C
using the Lorentz-Lorenz relation as applied to a three-
component mixture [15]. The temperature variation of n

was estimated assuming [1) a linear decrease of 0.02%
per 'C.

A nonlinear-least-squares fit program (CURFIT) [16]
was used to fit the data. The goodness-of-fit is guided
[16] by the minimum in y„and the random distribution
of residuals. The fit was performed using the following
expression:

Figure 2 illustrates the monotonically decreasing slope
(yE) for intermediate hT's. This crossover aspect, cou-
pled with some infirmities of the fit to Eq. (2), led us to
adopt a new field variable in lieu of t, the overriding con-
sideration being the recovery of the universal critical be-
havior in RPT. An alternate way [17,18] to analyze RPT
is to take into account the simultaneous approach to the
conjugate TU (or Tt ) as a given Tt (or TU) is probed.
This idea can be conveniently translated by using tUL

[=i(TU —T)(TL —T)/TUTt i]. The data were then
fitted to the following expression:

—1.24K, '

$ 1tUI.
(3)

( 1 + g & t
—l. 26M

)
1 —g/2

and the results are listed in Table II.
A striking feature of this method of analyzing the data

is the invariance of A,
' with hT. In other words, the

universal value of y ( =1.24) is restored (Fig. 3) even as
hT varies by 2 orders of magnitude (0.25 —22. 6'C).
Another appealing aspect of this analysis is that gn alters
randomly with hT and its total swing is confined to
+15%—in sharp contrast to the situation when t was
used (Table I). However, for the binary mixture the

where A1 —A 3 are the fitting parameters. The term A 3
was discarded, since its retention did not improve the fit
and it resulted in an unreasonably small value of A,. Simi-
larly, the need for the extended scaling [6,8] term (6) was
not found to be compelling. The value of A, correspond-
ing to the minimum in y was deduced by varying A, in
small steps (0.005) and Tc was held fixed at its experi-
mental value (slight variation from this value did not
alter the best fit A, considerably). Table I indicates the fit
parameters for samples of varying b, T's using Eq. (2). A
glaring discrepancy in the data reduction with Eq. (2) was
the unacceptably large variation (20—30%) of A, with the
t range used in the analysis. In addition, go deduced from
the fit shows unrealistic sensitivity to hT. The values of
A, listed in Table I pertain to the entire experimental t
range. Nonetheless, the fit was satisfactory for AT & 1 C
(A, =2) and for the binary mixture (MP+HW,
b, T=77.5'C, A, =l), as elucidated in Fig. 1. An exact
doubling of y is sustained throughout the experimental t
range for ET=250 mK.

6.0

5.0

4-0

o 3.0
C)

2.0
-2.8 -2.4 -2.0 -1.6 -1.2

FIG. 1. The normalized scattered intensity (I) vs reduced
temperature (t) for the two extreme cases (ET=77.5 and
0.25 'C).
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TABLE II. Results of the fitting of the scattered intensity to Eq. (3). The error bars in A '„A ~, and

$0 are 1%, whereas the uncertainty of ysi = 1.24K, ) is assigned by its sensitivity to the t range used in

the analysis. A slight lowering of the value of A,
' from 1 for some ET's could be ascribed to a small off-

loading of x, despite our efforts to correct for it.

TL

(C)

38.38+0.01
65.36+0.01
69.64+0.01
72.55+0.01
74.59+0.01
76.00+0.02
76.35+0.02
76.53+0.05

77.5+0.5
22.6+0.02

14.02+0.02
8.20+0.02
4. 10+0.02
1.30+0.04
0.65+0.04
0.25+0.10

Al
( X 10-')

2.247
1.676
1.861
0.929
3.361
1.506
2.597
0.940

A2
(X10 )

0.945
1.450
1.250
0.937
3.813
1.003
1.478
0.778

0.96+0.01
0.98+0.01
0.99+0.01
1.00+0.01
0.99+0.02
1.00+0.02
0.96%0.01
1.01+0.02

VE

1.19
1.22
1.23
1.24
1.23
1.24
1.19
1.25

(o
(A)

1.93
1.97
1.83
1.59
1.90
1.64
1.99
1.45

1.46
0.87
0.58
0.53
2.23
2.67
1.52
2.02

TL 2 bT
U L

(4)

It is clear from Eq. (4) that apart from the two limiting
cases (ST=0 and b, T »1'C), both the terms (t and t )

are important to varying degrees as the relative weights
of

~ Tc —T
~

and hT change. For a given b, T, the weight
of the first term (t ) recedes with respect to the second

5. 6

+ AT = 22.6'C

effectiveness of tUL is reduced by the fact that the x, for
TL differs from that of TU by about 6%. Thus the exper-
imental path that approached TL differed considerably
from the critical isopleth for TU. Its consequence was
seen in the smaller number (0.96) for A,

' (Table II), despite
the fact that the fit yielded A. = 1 (y=1.24) when ana-
lyzed in terms of t (Table I). As in the case of Eq. (2), the
fit did not support the inclusion of the extended scaling
term (5).

The crossover behavior, depicted in Fig. 2, can be ra-
tionalized by expanding tUL in terms of t. This provides
rich information concerning the approach to double criti-
cality. For instance, gT =y0t~z~ can be written as

term (t ) as TL is approached (t ~0). In a typical experi-
mental t range, a gradual decrease in the CE value to its
single limit when analyzed in terms of t is expected. Fig-
ure 2 emphasizes this behavior. Thus, for moderate hT 's

the phenomenon is essentially a crossover from the dou-
bled CE limit (t »hT) to a single CE limit (t ((hT).

While the choice of tUL to explain the RPT has been
vindicated by the retrieval of the universal CE (y = 1.24),
its genesis can be comprehended both in a fundamental
and phenomenological manner. Within the framework of
the Landau-Ginzburg theory [17] (as applied to the case
of RPT), coefficient a in the free-energy functional trans-
forms from a linear dependence in

~ Tc —T~ to a function
of ~(TU T)(TL —T—) ~. Moreover, the right-hand side of
Eq. (4) can be derived from the geometrical picture of
phase transitions [11]. At DCP (b, t =0), tUt becomes tD,
where tD = ~(TD —T)/TD ~. So, the doubled CE persists
over any t range [as is also obvious from Eq. (4)]—this
special path becomes tangential [2,11] to the parabolic
critical line at DCP.

Earlier endeavors [1,19] to recover universal CE's
in the RPT invoked the field variables tD and

~X—XD~. However, these variables differed from the
actual experimental paths tU[=~(TU —T)/TU ~] or tt

6.5

o 5T= 22. 6 C

c46 5. 5

C

CI

O

3.6

4. 5

- 3.5—Cl

O

2. 6
-3 0 -2.6 -2.2

log, t

-1.8 -1.4

FIG. 2. The crossover feature of critical exponent (y) for
two intermediate loop sizes is displayed. The change of slope of
the two curves as (t~0) is illustrated. The continuous curve is

generated by Eq. (3).

2.5
—4.8 -4.4 -4.0 —3.6 -3.2 -2.8 -2.4

I0gyp

FIG. 3. Double logarithmic plot of the normalized scattered
intensity vs t«, demonstrating the unique and universal critical
exponent (y = 1.24) for three representative loop sizes.
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[= ~(Tt —T)/TL ~ ] except at the DCP.
The possible breakdown of the quasibinary approxima-

tion for this system (MP+ W+HW) and the consequent
Fisher renormalization [20] of the CE was examined.
Based on the analysis of Fisher and Scesney, we estimated
[13] the maximum possible enhancement of y to be less
than 0.3% (at least for small t ranges).

To sum up, it is our thesis that the evolution of the
critical behavior in a reentrant system ought to be per-
ceived as a crossover from the doubled to single limit of
the CE as t —+0 for a finite hT.
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