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Intermittently chaotic oscillations for a differential-delay equation with Gaussian nonlinearity
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For a differential-delay equation the time dependence of the variable is a function of the variable at a
previous time. We consider a differential-delay equation with Gaussian nonlinearity that displays inter-

mittent chaos. Although not the first example of a difFerential-delay equation that displays such behav-

ior, for this example the intermittency is classified as type III, and the origin of the intermittent chaos

may be qualitatively understood from the limiting forms of the equation for large and small variable

magnitudes.

PACS number(s): 05.45.+b, 03.20.+i

Differential-delay equations [1] model the dynamics of
systems for which the time dependence of the variable is
a function of the variable at t —~, where ~ is the delay
time. D';fferential-delay equations have been used for sys-
tems in which the variable is coupled to other variables
for which the time dependence is unknown (because, for
example, these variables are transients). For these cases
there is therefore a loss of information, and only in favor-
able instances is it possible to determine the form of the
differential-delay equation.

Differential-delay equations are classified as linear or
nonlinear depending on the form of the function of t —~.
For linear differential-delay equations there may be
monotonic decay or periodic oscillations [1] and, for
some choices of parameter values, there are periodic os-
cillations superimposed on monotonic decay. In general,
monotonic decay and periodic oscillations superimposed
on monotonic decay correspond to fixed-point behavior,
while periodic oscillations correspond to limit-cycle be-
havior [2], and both types of regular dynamics are readily
observed. Linear differential-delay equations may be in-
tegrated analytically using a variety of techniques [3], al-
though these may be impractical for large ~. For non-
linear differential-delay equations there is, in general,
complicated behavior with irregular dynamics. Analyti-
cal integration is not feasible, but numerical integration is
efficient and accurate. Various nonlinear differential-
delay equations have been used to model a variety of ki-
netic phenomena [4] in areas ranging from biology [5] to
optics [6]. Of particular relevance here, LeBerre, Res-
sayre, and Tallet [7] recently considered a differential-
delay equation with exponential nonlinearity that
displays intermittent chaos [2,8]. Intermittent chaos,
which has been observed experimentally [9], is of interest
since it is one stage in a standard model for the transition
to turbulence [10]. For the differential-delay equation
considered here, the origin of the intermittent chaos may
be qualitatively understood from the limiting forms of the
equation for large and small variable magnitudes.

We consider a differential-delay equation that is linear
when the magnitude of the variable is far from zero but
nonlinear when the magnitude of the variable is close to
zero. This could model a system in which the dynamics

of the variable is affected by a local (attractive) force, the
position of which defines the zero of the variable.
Specifically, we consider a differential-delay equation
with Gaussian nonlinearity,

x'(t)= Px(t)—, t ~r
x'(t) = Px (t)——Qx (t —~)

(la)

x'(t) = Px (t) Qx—(t—r)/R, ix (—t —~) i
»0

x'(t)= Px(t) —Qx —(t r)/R, —ix (t —r)~ =0 .

(2a)

(2b)

Equation (2a) is a linear difFerential-delay equation and,
for some choices of parameter values, there are periodic
oscillations superimposed on monotonic decay. Howev-
er, Eq. (2b) is a nonlinear differential-delay equation and,
for small R, the coefficient of the term in x (t —r) is
large. Consequently, there is rapid change in x (t) when
x (t —r) passes through zero. Qualitatively, the coupling
of this rapid change to the periodic oscillations is the
mechanism that causes irregular dynamics when the
magnitude of the variable is small. In this respect, Eq. (1)
is analogous to the equation for the periodically kicked
pendulum [11],a well-studied system for which the dy-
namics is chaotic. Below, we perform a linear stability
analysis by considering the maximal Floquet multiplier
[8], which is calculated from the linearized form of Eq.
(1).

For type-I intermittency, destabilization occurs via a
saddle node (or reverse tangent) bifurcation at critical pa-
rameter values [8]. This destabilization process, for a
differential-delay equation with exponential nonlinearity,
is considered by LeBerre, Ressayre, and Tallet [7], but
the destabilization process for Eq. (1) is not considered
here. Rather, for Eq. (1), we consider intermediate pa-

X [1—exp[ —x(t r)/R] —]/R, t )r, (lb)

where P, Q, and R are positive and the value of R deter-
mines the nonlinearity. We consider high nonlinearity
(small R) only. For r=0 there is monotonic decay of
x (t), but for r )0 there is, in general, complicated behav-
ior. For Eq. (1) the limiting forms of x'(t) for
~x (t —~)

~

))0 and ~x (t —~)
~
=0 are easily seen to be
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(for example, from t=0 to 90) that are followed by chaot-
ic bursts (for example, from t= 90 to 120). The spikes in
Fig. 1(a) (indicated for arrows for t =60—90, as explained
below), which are evident before each chaotic burst when
x (t) reaches an extremum, are considered below in con-
junction with the phase-space structure of the trajectory.

For a differential-delay equation the number of degrees
of freedom is infinite, but, in practice (as indicated
above), the delay interval is discretized into a finite num-
ber of intervals. This results in a corresponding number
of Floquet multipliers and, in principle, all of these are
required for a stability analysis [7]. Here we simply con-
sider the maximal Floquet multiplier, A, (t), which is cal-
culated from the linearized form of Eq. (1), and which is
assumed to be much greater than the other Floquet mul-
tipliers. Figure 1(b) shows log, &A, (t) for t =0—500. It
may be seen that there are oscillatory decreases in

log, oA, (t) when there are periodic oscillations superim-
posed on monotonic decay in Fig. 1(a). However, there
are sharp increases in log, ok, (t) when there are chaotic
bursts in Fig. 1(a). The overall rate of increase of
log, cA, (t) [the limit as t tends to infinity of
(I/t)loginA, (t)] is directly proportional to the maximal
Floquet exponent [8]. From Fig. 1(b) it is clear that the
maximal Floquet exponent is a (finite) positive number, as
expected when the dynamics is chaotic.

%e now consider the phase-space structure of a seg-
ment of the above trajectory. Useful information may be
obtained from the x ( t) x( t ——r) and related phase plots,
and from the corresponding surfaces of section, but here
we siinply consider the x'(t) —x(t) phase plot. Figures
2(a) and 2(b) show the x'(t) x(t) ph—ase plot for
t =30—60 and 60—90 respectively. Points are plotted at a
time interval of 0.0075, and the phase-space structures
appear as solid lines only when the phase-space velocity
is sma11. It may be seen that the phase-space trajectory
spirals, with slow velocity, towards (x(t),x'(t))=(0,0),
although there are loops, with fast velocity, when x(t)
reaches an extremum. The loops in Fig. 2 [indicated by

arrows in Fig. 2(b)], which become more prominent as
the spiral approaches (x(t),x'(t))=(0,0), correspond to
the spikes in Fig. 1(a) [indicated by arrows for the time
interval of Fig. 2(b)]. When a loop has completed, the
phase-space trajectory has returned to the spiral at ap-
proximately the same phase-space point. Consequently, a
loop results in a phase-space delay of the trajectory and
manifests a period doubling of the variable, as there is
then a second frequency for the variable. Because of this
period doubling, and the fixed point-limit cycle behavior
for regular dynamics, the intermittency is classified as
type III.

Figure 2(c) shows the x '( t) x( t ) —phase plot for
t =90—120, and it may be seen that, as anticipated from
the limiting form of Eq. (1) for small variable magnitudes,
the phase-space structure is irregular. The phase-space
structure remains irregular while the trajectory remains
in the nonlinear regime, but towards the end of this time
interval there is a large (negative) fluctuation in x (t) that
"randomly" reinjects the variable into the linear regime.
Figure 2(d) shows the x'(t) x(t) p—hase plot for
t =120—150, and it may be seen that the phase-space
structure is regular and is similar to that for Fig. 2(a).
This sequence of phase-space structures is repeated for
subsequent segments of the above trajectory. Similar re-
sults are obtained for other choices of x(0), although
there is a long relaxation time if x(0) is large. For smaller
R values, the average time interval for which the phase-
space structure remains regular is longer primarily be-
cause the fluctuations in x (t) are larger and the variable
is "randomly" reinjected deeper into the linear regime.
Thus, for the differential-delay equation with Gaussian
nonlinearity, the limiting forms of the equation for large
and small variable magnitudes provide a qualitative un-
derstanding of the origin of the intermittent chaos.

I wish to thank NSERC (Canada) for partial funding of
this work and the University of Ottawa for a grant of
computer time.

[1]R. M. May, Science 186, 645 (1974); in Nonlinear Dynam
ics, edited by R. H. G. Helleman (New York Academy of
Sciences, New York, 1980), p. 267; in Theoretical Ecology:
Principles and Applications, edited by R. M. May
(Blackwell, Oxford, 1981),pp. 4 and 49.

[2] H. G. Schuster, Deterministic Chaos (VCH, Weinheim,
1988); J. M. T. Thompson and H. B. Stewart, Nonlinear
Dynamics and Chaos (Wiley, Chichester, 1986).

[3] R. Bellman and K. Cooke, Differential Difference Equa
tions (Academic, New York, 1963).

[4] M. Schell and J. Ross, J. Chem. Phys. 85, 6489 (1986); I.
R. Epstein, ibid. 92, 1702 (1990).

[5] M. C. Mackey and L. Glass, Science 197, 287 (1977); L.
Glass and M. C. Mackey, Ann. N.Y. Acad. Sci. 316, 214
(1979); M. C. Mackey and J. G. Milton, ibid. 504, 16
(1987); A. Longtin and J. G. Milton, Bull. Math. Biol ~ 51,
605 (1989).

[6] K. Ikeda, Opt. Commun. 30, 57 (1979); I. Ikeda, H. Daido,
and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980).

[7] M. LeBerre, E. Ressayre, and A. Tallet, J. Opt. Soc. Am.

8 5, 1051 (1988).
[8]J. Guckenheimer and P. Holmes, Nonlinear Oscillations,

Dynamical Systems, and Bifurcations of Vector Fields
(Springer-Verlag, New York, 1983); A. J. Lichtenberg and
M. A. Lieberman, Regular and Stochastic Motion
(Springer-Verlag, New York, 1983).

[9]A. Libchaber and J. Mauer, J. Phys. (Paris) Colloq. 41,
C3-51 (1980); J. C. Roux, A. Rossi, S. Bochelart, and C.
Vidal, Phys. Lett. 77A, 391 (1980);J. Perez and C. Jeffries,
ibid. 92A, 82 (1982); M. Dubois, M. A. Rabio, and P.
Berge, Phys. Rev. Lett. 51, 1446 (1983).

[10]P. Manneville and Y. Pomeau, Phys. Lett. 75A, 1 (1979);
Y. Pomeau and P. Manneville, Commun. Math. Phys. 74,
189 (1980).

[11]B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[12]C. W. Gear, Numerical Initial Value Problems in Ordinary

Differential Equations (Prentice-Hall, Englewood Clilfs,
NJ, 1971).

[13]Z. Cheng, I. P. Hamilton, and H. Teitelbaum, J. Phys.
Chem. 95, 6470 (1991).


