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Kink decay in a parametrically driven P chain
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We consider the parametrically driven discrete P model with loss. Using an analytical approach
and direct numerical simulations, which turn out to be in excellent agreement, we demonstrate that
there is a range of driving parameters such that kinks cannot exist in the system. This efFect may
be understood with the help of an averaged external potential energy of the system, which has no
double-well structure in this region.

PACS number(s): 03.40.Kf, 42.25.—p

I. INTRODUCTION

The P4 model has become an important subject be-
cause of its numerous applications in condensed-matter
physics. It describes, for example, structural phase
transitions in ferroelectric and ferromagnetic materials
[1]—[5], topological excitations in quasi-one-dimensional
systems like biological macromolecules and hydrogen-
bonded chains [6, 7], or polymers [8]—[10], etc. Its sim-
plest localized solutions are the so-called kinks, which
are related to the motion of the aforementioned topo-
logical excitations, e.g. , domain walls in second-order
phase transitions [1, 2] or polymerization mismatches
[8]. A more realistic modeling of physical situations in
condensed-matter physics often requires the inclusion of
perturbations of different types, like thermal noise [4] and
time [11—13] or spatial [14] -dependent potential fluc-
tuations. These perturbations lead to a modification
of the system parameters, and, in particular, most of
them change the shape of the double-well potential of
the model (see, e.g. , Ref. [13]for a detailed description).

Considering fluctuations as a superposition of differ-
e»t harmonics with random amplitudes, it is natural to
analyze the structural stability of kinks in such a period-
ically varying, double-well potential. The purpose of this
paper is to demonstrate that there is a range of values
of the parameters of a parametrically driven P4 model
in which kinks cannot exist. This assertion means that
the averaged dynamics of the wave field is described by
a single-well potential instead of a double-well one. We
predict kink anihilation analytically by means of an ap-
proach that is similar to the well-known method of av-
eraging for a pendulum motion under a high-frequency
parametric force [15] (see also Ref. [16]). Using numer-
ical simulations of the so perturbed P» model, we show
that the kink decay due to the parametrical driving may
be actually observed, and that there is an extremely good
agreement between our analytical predictions and numer-
ical results.

The paper is organized as follows. Section II contains
analytical results obtained by averaging the fast oscilla-
tions in the perturbed P4 model. Section III presents
results of direct numerical simulations. Section IV con-
cludes the paper.

II. ANALYTICAL APPROACH

= a G(P„) cos ~t —p ", (1)
dP„

dh
'

where a and ~ are the amplitude and frequency of the
periodic force and 7 is a damping coefficient. On the
other hand, the parameter It accounts for the coupling
between particles, while V(P„) is the external (substrate)
potential and G(P„) characterizes the coupling between
the wave field and the force. For the sake of definiteness,
we will subsequently take

and with respect to the coupling, we will let

G(4)—:4

In the absence of perturbation, Eq. (1) with the choice in
Eq. (2) is nothing but a chain of particles with nearest-
neighbor interactions, each one of them on an on-site,
double-well potential. Substituting the ansatz P„=61+
Pp exp(iqnb —iQt) for the solution of Eq. (1), having in
mind (2), letting a = 7 = 0, and expanding in small
&Pp, we find that small-amplitude excitations around the
two minima P„=+I are described by waves with wave
number q and frequency 0, obeying a dispersion law of
the form

n =2+4''»n ~ (qbl
(4)

which amounts to saying that eigenfrequencies lie in a
bounded region, Qm;„0 Qm~„, where 0;„=2,0' =—2+ 4K.

In the continuum limit, when qb « 1, Eq. (4) yields
the dispersion law 0 = 2+ Ii q2b~, and Eqs. (1) and (2)

We consider a discrete nonlinear chain under the in-
Quence of a parametric force and damping, whose corre-
sponding evolution equation is

dzP„. dV(P„)„," —It (0 +i —20 +4 -i)+
dg2 A
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where the variable z = nb is considered to be continuous.
As is well known (see, e.g. , Ref. [2]), Eq. (5) has an
exact kink solution that connects two parts of the chain
at different minima of the potential (2), i.e. , at P„=+l.
The static form of the kink is given by

y = y tanh
~

(b 2I~
(6)

where the signs + or —stand for the kink and antikink,
respectively. In the discrete chain, the kink (6) may be
considered as an approximate solution, which is stable
due to topological properties; in such a case, the discret;e
value nb describes the positions of the particles.

We will consider now the general expression, Eq. (1),
without specifying any particular choice for V and G, so
as to lose no generality at all. We will study this per-
turbed system assuming that the driving frequency ~ is

with a = p = 0 are transformed into the well known P
model,

0« —~&b'4'~* —4'+ 4' = o,

larger than the limit frequency Om». To describe the
corresponding nonlinear dynamics under the influence
of such a parametric force, we will apply an averaging
method analogous to the well-known one for the Kapitza
problem, i.e., for the dynamics of a pendulum hanging
from an oscillating suspension point (see Ref. [15]). In
order to derive an averaged equation of motion in our
case, we will decompose the wave field P„ into a sum of
slow and fast varying parts, that is to say,

&-(t) = +-(t)+(-(t), (7)
where the functions C„(t) and („(t) describe the slow
and fast evolutions, respectively. The function („(t)
stands for small oscillations around the slowly varying
field C„(t), and the mean value of („(t) during the pe-
riod 2n/u is assumed to be zero, i.e. , (P„(t)) = 4„(t),
the brackets standing for time average. Our goal is to
derive an eff'ective equation for the function 4„(t) that
describes the slow ("averaged") wave field. To this end,
we substitute Eq. (7) into Eq. (1), and expanding in („,
which we assume to be small enough for such a purpose,
we obtain the equation

4„+(„ I~ (4'„p, —24„+4„,) I~ ((„+, 2(„+(„,) + V'(4„) + („V"(4„)+ -(„V"'(4„)

= a G(4„) cosset+ a G'(4„) („cosset —yC'„—p(„, (8)

where we have neglected higher-order term contributions.
The periodic driving a G(P) cosset looks like a para-

metric force term. However, in the asymptotic parts of
the kink (or kink tails), i.e. , n values such that P = +I,
it simply acts as an external periodic force. According
to Eq. (4), this assertion means that if the frequency lies

outside the eigenfrequency band (0;„,Qm „)(this must

be compared with the requirement 0;„(0/2 ( 0
for a parametric force), the periodic forcing cannot excite
linear waves in the system. Then, it is natural to assume

that the function („(t) is a slow function of n and write

~ (t)=~+ (t).
Let us go on taking a careful look at Eq. (8). It is clear

that it has terms of a very different nature, slow and fast
varying ones. Hence, these different terms must verify

the equality in Eq. (8) separately, giving rise to their
own particular equations. In order to satisfy the rapidly
oscillating part of Eq. (8), it is necessary to take into

account all terms which are proportional to the rapidly
varying function („(t) plus the term a cosset, which is

also fast ~ As a result, the following equation must hold

(recall again that we assume („yi = („; equivalently,
there is no excitation of linear waves by the oscillating
force)

~ is not very large, we will keep this term. Besides, we

may also think of including in Eq. (9) higher-order terms,
i.e. , g„and

a(„cosset,

but these terms have an ad-
ditional small multiplier („ in comparison with those ap-
pearing in Eq. (9). Moreover, they are more important
in the equation for the slowly varying field 4„(t), where
they contribute because ((„) and ((„cosset) are nonzero.
Finally, as may be also seen from Eq. (9), there is no lim-
itation for the dissipative coefFicient p, which may also
be not, so small.

Now, as C„evolves much slower than („,we can con-
sider all functions of C„as constants in time, and subse-
quently write the forced solution of Eq. (9) in the form

(„(t)= "
cos(ut + b),

a G(4„)
(~2 ~2)2 + ~2~2

where

(~' —~o)cosh =—
+(~2 ~2) + ~2~2

and

(„+g„V"(4„)= a G(4„) c snoot —p(„. ufo = V"(4'„). (12)

In principle, the second term in the left-hand side (lhs) of
Eq. (9) is smaller than the first one, because („is propor-
tional to the large value u . However, assuming that the
theory may apply to the case when u"" & 0 „but when

The next stage is to input Eqs. (10) and (ll) into
Eq. (8) and to average over the fast oscillations. By
so doing we derive the equation for the slowly varying
function 4„(t), which turns out to be



45 KINK DECAY IN A PARAMETRICALLY DRIVEN 44 CHAIN 1209

a~G2(Ci„)V"'(4„)
+7@ —I'(C + —2@ +@ — )+ V

4)(~2 ~o2) ~ +
a'(~' —~o)G'(~ )G(C' )

2 [(io2 io 2
)2 + 72io 2]

with u02 defined as in Eq. (12); on the other hand, we
have used the results

a'G'(4„)
( n, ( )):

2[( g 2)2 z 2]&
(14)

I„—I~ (I„+i —24„+4„ i ) +
dC„

(16)

a~G(4„) cosh

2/(~2 ~z)2 + 72~2

a'G(c' )(~' —~o)
2[(~z ~&)2 + ~2~2]

'

In the case when u )) uo, i.e., in fact, in the region
uz )) Az „, the first term in the right-hand side (rhs) of
Eq. (13) can be omitted, yielding

2

2
(22)

In the general case, when u ~o, the first and second
terms in the rhs of Eq. (13) are of the same order, and
we cannot neglect any of them; subsequently, we cannot
compute the effective potential either. Nevertheless, in
the particular problem of the P4 model, V(4) and G(Ci)
are given by simple expressions and we can write the
effective force explicitly as follows:

If the condition (20) no longer holds, and a & 2(io +
y2), the effective potential (18) does not have a double-
well structure and kinks cannot exist. The condition (20)
may be transformed in another one for the frequency ~
of the parametric force, assuming also that ~ is larger
than the maximum eigenfrequency of the system Q~»,

where we have defined

a2G2(@)
V,tr(C') = V(4) +

44J +f (17)

F.ir(@) = V'n(@)

= —4+4 +4
a'(~'+ 1) 4

2[(io2 3@2 + 1)2 + 72~2]
' (23)

Let us now particularize our results for the P4 model,
recalling Eq. (2) with the parametric force given by
Eq. (3) to get the corresponding effective potential,

V,rr(4) = —(1 —24;„C' + 4 ),1

Equating Eq. (23) to zero, we may find the extrema of
the effective potential Veer(4). Thus 4 = 0 is always an
extremum, and other extrema, +4, ;„, are given by the
equation

4 =l- a(~ +1)
llllll

2[( 2 3@Q + 1)z + Q g)
'

( a2
@min —= (19)

These two additional extrema exist when 4z;„& 0.
Hence, the critical condition corresponds to 4;„=0,
which means that the extrema exist, provided

Consequently, the potential (18) will have a double-well
shape, provided that

a (2(~ +y); (2o)

under this condition, the perturbed system can support
kink excitations of the averaged field, whose expression,
in the continuum limit and in their own rest reference
frame, is [cf. Eq. (5)]

4(z, t) = k4;„ tanh
~

(c;„~&
&b 2I~ P

(21)

According to Eqs. (19) and (21), the kink amplitude
24~;„ is a function of the force parameters, so that it
may be changed by the force. If4;„~0, the kink width
goes to infinity and the kink itself disappears. Comparing
Eq. (21) and Eq. (6), one might initially expect that the
modified kink (21) corresponds to an infinite energy situ-
ation because the asymptotes are not +1 as before. This
can be understood by recalling that the periodic force
must be applied to all of the particles in the chain, and,
therefore, the parametrically driven model makes sense
only for finite system lengths I; having this in mind, the
approach we use in this paper is valid, provided the kink
width ( b~I&/4;„) is much less than L

2[(~2 + 1)z + ~2~2]

(~ +1) (25)

It can be easily shown that if u2 )) 1 the previous con-
dition (20) is recovered from Eq. (25).

To conclude this section, we would like to make some
comments related to the possibility of chaotic regimes
happening in the chain. Equation (9) describes, in fact,
the chain behavior far from the kink; however, as is
well known, such a homogeneous oscillatory dynamics
may show chaotic evolution when the amplitude is large
enough, which implies tha, t nonlinear terms must be
taken into account. This means that the above-presented
analytical approach is valid only outside this chaotic re-
gion. To estimate the range of the system parameters
where chaos can be observed, we will use some consid-
erations based on the Melnikov function [17]. According
to Eq. (1), the homogeneous oscillations of the P4 chain
under the parametric perturbation are described by the
equation

= a( cos(~t) —y(. (26)

Equation (26) is similar to the one considered in Ref. [18],
where the parametric modulation affected only the cubic
term. Calculation of the Melnikov function A(to) for our
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problem, Eq. (26), yields (see details of similar computa-
tions in, e.g. , Ref. [18] and references therein)

I I i I I I I I i I I I I I I i I I I 1.2

ira(~' —1)
A(I0) = . sin(~to) + —.

smh rru 2 3
(27)

C)

II

X

—0.4

—04
If the parameters are such that the function A(Iu) de-

fined in Eq. (27) changes sign, then homoclinic intersec-
tions are present, and hence chaotic solutions of Eq. (26)
exist. Nevertheless, A(to) will not change sign (which
prevents the onset of chaos), provided the inequality

37ra (~~ —1)
4 sinh (n~/2)

(28)

holds. As can be seen from this equation, large frequen-
cies (like the ones we are concerned with) easily fulfill this
requirement, provided there is some dissipation acting in
the system, as indeed it does.

III. NUMERICAL RESULTS

In order to get a deeper insight into the system (1)
and check our analytical approach validity, we have per-
formed a number of direct numerical simulations of the
system for the P4 case, i.e. , Eq. (2) and driving as in

Eq. (3). The basis of our numerical procedure is the
Strauss-Vazquez finite-difference scheme [19]. The ad-
vantages of this method are that it has been proved to
be stable and convergent [20] and to be free of numeri-
cal blow ups [21] in the unperturbed case. Moreover, it
has been used to study many perturbed nonlinear Klein-
Gordon problems (see, e.g. , Refs. [12]—[14]), with very
good results.

The scheme has been thoroughly described elsewhere
(cf. references in the previous paragraph) and we are not
going to repeat it here; however, it is worth explaining
some points on this specific case. First, of all, the size of
the lattice parameter Az must be chosen to be neither
too large as to induce discreteness effects that disturb
kink propagation nor too small as to transform the model
into a quasicontinuum one, with the subsequent widen-

ing of the eigenfrequency spectrum [Qm;„, O~ „] (notice
that 0 „goes to infinity when b, z goes to zero). We
have accomplished this requirement by letting Az = 0.1,
which in turn implies Oz „=402 (A~» ~ 20). Sec-
ondly, the choice for the lattice spacing poses a constraint
on our time step to integrate Eq. (1) because the sta-
bility of the Strauss-Vazquez scheme is guaranteed only
if At ( Az. Furthermore, to reproduce faithfully the
parametric driving for high frequencies ~ it is necessary
to have At « ~ '. We have then chosen At = 0.01 for
almost all the simulations (for frequencies near u = 50 it
was necessary to take At = 0.005 or even b, t = 0.0025)
and we have checked that the results did not change upon
the decreasing of this time step; in this way we have been
able to ensure that the outcome of our numerical com-
putations makes physical sense.

Our simulations have been carried out on a system of
N = 401 particles with the initial condition given by a

kink centered at n = 201, Eq. (4), with tails of value

1 I I j I I I I I I I I I I I I

-20 -'1 0 10 20

FIG. l. Kink structure in the parametrically driven P
chain when a = 25, u = 25, and p = 10. The initial state is
an unperturbed kink at rest (large-dashed line). Other shown

profiles correspond to instants t = 10 (small-dashed line) and
t=10, 0 (solid line); this last one is in the asymptotic state.
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FIG. 2. Time dependence of the kink amplitude for the
same set of parameters of Fig. 1. The plot shows P(s = 10, t)
vs time.

P = +I. To allow its evolution and subsequent decay, if
any, we have imposed antiperiodic boundary conditions
at the edges of the system, i.e. , Plv+i ———Pi, Po ———P~.
Finally, we have introduced a somewhat large dissipation
value, p = 10, to avoid great amplitudes of the wave field
and fast oscillations that can lead to chaotic regimes, as
we have explained above [see Eq. (28)].

The results of our simulations are plotted in Figs. 1—
6. As a first example, Figs. 1 and 2 show the eA'ect of
a parametric driving with a = 25, ~ = 25 on the ini-
tial kink. Recalling (20) and substituting for ~ and 7 we
find that the approximate threshold above which the kink
does not exist, anymore is a ) +1500 38. Accordingly,
from the plots it appears distinctly that the kink still ex-
ists, though its amplitude has diminished from 4;„=1

at t = 0 [see Eq. (21)] to 4;„0.315. This evolution
is fast at early stages and slow as time becomes large,
reaching an asymptotic state in which the kink oscillates
around the bottom of the wells of the renormalized po-
tential [see Fig. 2; we represent 4~;„at the tails by the
value of C'(n = 301) or, in other words, 4(z = 10)]. If
we increase the driving-force amplitude above the thresh-
old, letting a = 38, Figs. 3 and 4, we appreciate that the
kink actually decays for these parameters, again rapidly
at first and asymptotically for large times.

The whole of our results is summarized in Figs. 5 and
6. Figure 5 is a plot of the asymptotic mean value 4
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FIG. 3. Same as in Fig. 1 but with a = 50. A kink cannot
exist under a driving with these parameters.

as obtained from simulations compared to the theoretical
prediction Eq. (19) for u = 25 fixed. 4m;n is computed as
explained above and we plot its value at time t = 100, in
the asymptotic regime. As can be seen from Fig. 5, our
analytical approach is actually excellent, although some
small discrepancy can be noticed at the large-amplitude
part of the plot. This is related to the fact that we have
observed that the time needed to reach an asymptotic
state, at least as clearly as in Fig. 2, grows with increas-
ing a. Thus, the points for a around 40 or above in Fig. 5
could be closer to the theoretical line, because at t = 100
when they were computed, the asymptotic state had not
been entered. Much longer runs would be needed, but we
have not proceeded with them because they would con-
sume a lot of CPU time, and we feel that the fair agree-
ment between theory and simulations has been already
well established. This agreement is further supported by
Fig. 6, in which we plot the asymptotic mean value, as
well as our theoretical prediction, for a = 25 fixed. The
accord of theory and simulations is again very good.

IV. CONCLUSIONS

In conclusion, we have analytically and numerically
studied the structural stability of kinks in the discrete P~

model under the action of a periodic parametric driving.
By averaging over the fast oscillations, we have shown
that in a certain region of the external frequencies it is
possible to observe decay of kinks, which would corre-
spond to the case when the averaged, effective potential
of the model is transformed from a double-well shape to
a single-well one. This prediction has been confirmed

FIG. 5. Kink amplitude Ci'~;„vs amplitude of the para-
metrically driving force, a. The plotted numerical values of
@m;„(dots) correspond to P(x = 10, t = 100). The solid curve
is the analytical prediction.

by direct numerical simulations, not only qualitatively
but also quantitatively, of the parametrically driven P4

chain with loss, which allow one to settle on a firm ba-
sis the phenomenon of kink decay due to this periodic
forcing. The obtained results will be useful for analyz-
ing the kink dynamics in the presence of random para-
metric fluctuations, i.e. , multiplicative noises (see, e.g. ,

Ref. [12]),which can be considered as a set of parametric
forces with random amplitudes and diH'erent frequencies.
As has been shown in the present paper, such a para-
metric force can lead to the disappearance of kinks, so
that kink dynamics under the infiuence of multiplicative
noises must exhibit a lot of peculiarities when the noise
amplitude is large.

In conclusion, we would like to point out here that the
method that we have used in this work may be applied
to other parametrically driven nonlinear models like the
sine-Gordon one [22]. In this latter case, for instance, a
high-frequency parametric force may support the stable
propagation of s kinks [16].
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FIG. 4. Same as in Fig. 2 but with a = 50. The kink
decay is clearly appreciated.
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FIG. 6. Kink amplitude 4~;„vs frequency of the para-
metrically driving force, u. The plotted numerical values of

(dots) correspond to P(s = 10, t = 100). The solid
curve is the analytical prediction.
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