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For a free-electron laser (FEL) operating in the exponential regime before saturation, we present

an analytic description of the eHect on the gain of longitudinal velocity variations arising from wiggler

field errors. The average gain reduction and the width of the output power distribution are expressed

in terms of the mean-square average of the ponderomotive phase shift per gain length. A scheme

for correcting the electron trajectory using position monitors and dipole correctors is analyzed. Our

work is directly applicable to the design of FEL amplifiers, and the results are encouraging for their

feasibility.

PACS number(s): 41.60.Cr

I. INTRODUCTION

Understanding the effects of wiggler errors [1—8] is of
critical importance in the design of free-electron lasers.
There has been recent work aimed at determining the
tolerances which must be imposed on the allowable field
errors. Analytic results have been obtained for the effect
of wiggler errors on the electron trajectory [7], and for the
gain reduction in the low-gain regime [5, 6]. Computer
simulations have been carried out both in the low- [6, 8]
and high-gain [3, 4] regimes. In this paper, we consider
a free-electron laser (FEL) operating in the exponential
regime before saturation and use one-dimensional FEL
equations [9—11] to develop an analytic description of the
effect of wiggler errors on the gain.

The effects of wiggler errors can be divided into two
classes: (1) longitudinal velocity fluctuation and drift,
which moves the electron beam away from resonance;
and (2) transverse trajectory wander, which causes the
centroid of the electron beam to move away from the
radiation beam. In this paper we address the longitudi-
nal effects and leave detailed consideration of the mode
overlap problem to a planned future work based on a
full three-dimensional computer simulation. The deter-
mination of the effect of longitudinal velocity variations
is dominantly a one-dimensional problem for which we
present a detailed analysis.

We divide longitudinal velocity effects into two types.
The first type is magnetic-field amplitude errors, which
are correlated over only a few wiggler periods and have no
net field integral. The second type is cumulative steering
errors, which produce a drift of the electron trajectory
away from the wiggler axis.

For the case of amplitude errors, we find that the re-
quired tolerance on the magnetic-field fluctuation is re-
laxed, because it turns out that rather than having to sat-
isfy (AB/B)„, « p one needs only meet (b,B/B)„,«
p, where p is the Pierce parameter [9] typically of mag-
nitude 10

Without correcting the electron trajectory periodically

along the wiggler, achievable steering errors will cause a
cumulative angular deviation away from the wiggler axis,
moving the electron beam away from resonance and com-
pletely negating the gain. We have derived an expression
for the gain reduction when there is trajectory correc-
tion and we have found that by installing a sufficient
number of correction and monitoring stations along the
wiggler, the required tolerance on magnetic-field steering
errors can be relaxed to an achievable limit. The results
of our analysis on both types of longitudinal errors are
encouraging for the design of single-pass FEL amplifiers
utilizing long wiggler magnets.

For both types of longitudinal error we have found that
the criterion for small-gain reduction is determined by
keeping the ponderomotive phase shift due to wiggler er-
rors small in one gain length. The ponderomotive phase
shift is

1 ( db(T))
TI p dr (1 2)

where r = 2pk z is the scaled longitudinal coordinate [9]
which changes by 2/~3 in a gain length, and the average
is over an ensemble of wiggler errors. The power growth

1
b = k dz —[v~~(7p, z) —vp]

Vp

for a monoenergetic electron beam of energy yp, where
v, is the average longitudinal velocity in the ideal wiggler
and v~~(7p, z) is the longitudinal velocity in the presence
of wiggler errors.

The importance of the ponderomotive phase shift in
determining the gain reduction due to wiggler errors has
been discussed in Refs. [5] and [6] for the low-gain regime.
In this paper we consider the high-gain regime and ex-
plicitly express the gain reduction due to wiggler errors
in terms of S', the average value of the square of the
ponderomotive phase shift per gain length, defined by
[see Eq. (6.16)]
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of the radiation field is proportional to

l~3 —2W/9)7

For magnetic-field amplitude errors [see Eq. (6.31)]

s Ito (6B/B)„,
(I+»o/2)' (1 4)

where I~o is the magnetic-field strength parameter for
the ideal wiggler. It follows that the criterion for small
gain reduction is

2n I~(~) (AB/B) 2,
g,//3 (1+ I~ /2)'

I'mS ] (1.5)

There is a simple physical interpretation of Eq. (1.4).
The change b& in ponderomotive phase per wiggler period
due to magnetic-field amplitude errors is

2xKO AB
1+It'/2 B ' (1 6)

and the number of periods per gain length is approxi-
mately NG ——I/4s p, hence

W = NG(bp)„m„ (1 7)

in agreement with Eq. (1.4).
We have derived an expression for the gain reduction

due to steering errors assuming the trajectory is being
corrected. We assume position monitors and trims are
at the same locations spaced by Np periods along the
wiggler. The spacing is assumed to be shorter than a gain
length. Trim strength of a given corrector is adjusted to
center the beam at the following monitor. In this case
we have found that the average value of the square of the
ponderomotive phase shift per gain length is given by

S
(18)

with the rms phase shift per period b& in this case easily
seen to be given by

2

1+ Ic'/2 '

where the mean-square angular deviation z', , for the
trajectory corrected beam is

N~ = 100(p 0.8 x 10 ), the number of periods be-
tween correction stations is Xg ——50, and the num-
ber of steering error kicks between correction stations
is N~ ——100. We express the mean-square angular de-
flection per kick as

y 02 = 4I~O(d B/B)„
Taking the achievable tolerance (AB/B), , = 5 x 10
we find W = 0.37, resulting in a modest 5% reduction in
the growth rate.

We have also obtained an expression for the width of
the output power distribution; see Eqs. (6.21)-(6.25).
For a long wiggler containing many gain lengths, there
is a contribution to the width independent of the total
length, determined by the field errors at the beginning
and end of the wi ler. The magnitude of this width is
proportional to W, and hence for small errors (and/or
short wigglers) the spread in the output power is compa-
rable to or larger than the average reduction in power.

Our paper is organized in the following manner. In
Sec. II, we derive a third-order differential equation, Eq.
(2.27), determining the effect of wiggler errors on the
FEL gain. This equation is solved in Sec. III in a man-
ner directly yielding the average growth rate of the radi-
ation field. In Sec. III—V the contributions of errors at
the beginning and end of the wiggler are ignored. They
are considered in Sec. VI where they are shown to con-
tribute to the width of the output power distribution.
The case of an idealized permanent magnet wiggler with
infinitely wide blocks is considered in Sec. IV. In this two-
dimensional model, magnetization errors give rise to only
local longitudinal velocity modulation, with no net steer-
ing errors. In Sec. V, the gain reduction in this idealized
case is analyzed. Next, in Sec. VI, we present an alter-
nate solution of the differential equation, Eq. (2.27), by
reformulating it as an integral equation. For a stochas-
tic ensemble of wiggler field errors, we express the av-
erage gain reduction and the width of the output power
distribution in terms of the mean-square average of the
ponderomotive phase shift per gain length. In Sec. VII
we treat steering errors which have been ignored to this
point. A particular trajectory correction scheme is ana-
lyzed in detail, and an analytic expression is derived for
the resulting gain reduction. The results look encourag-
ing for the development of FEL amplifiers based on long
wiggler magnets.

(1.10)

Here, N~ is the number of steering errors between correc-
tion stations and 0~ is the mean-square angular deviation
introduced by a single error.

The result of Eq. (1.8) also has a simple physical in-
terpretation. One sees that Ngb„ is the ponderomotive
phase shift between two correction stations, because the
phase drift is coherent between correctors. Since phase
drifts for different sections are incoherent, the total phase
drift per gain length is equal to the square root of the
number of correction sections per gain length times Np'6p.

As an example, consider a wiggler with I~p = i/2.
We suppose the number of periods per gain length is

II. FEL GAIN EQUATIONS

We assume a two-dimensional (2D) planar wiggler with
magnetic field

B„= (2.1)

eA = It (z) cos[k z + n(z)].
rnc

(2.2)

Here 27r/k is the design wiggler period, and Iio is the
design value of the wiggler parameter I~. We will leave
until later the question of how to obtain the two functions
Ii (z) and o(z) unambiguously from the single field error
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function bA (z) or bB&(z). Constancy of the x compo-
nent of the canonical momentum leads to

z' = cos[k z+ n(z)],
I~ (z)

(2 3)
y

where we neglect the radiation field in calculating the
electron trajectory and where the prime stands for the
derivative with respect to z.

We now consider a plane-polarized radiation field

E,(z, t) = cBs(z, t) = -E(z)e'"~' "l+-E*(z)e '"&'
2

(2.4)

corresponding to a long radiation pulse. Energy is ex-
changed between the jth electron and the radiation field
such that

eE z I&(z
cos[k z + n(z)]e'" ' " l + c.c.

2fAc

(2 5)

(2.4)] is a slowly varying function whose second deriva-
tive can be neglected. We average the right-hand side of
Eq. (2.11) over a small volume, and change to z as the
independent variable. Defining n0 to be the number of
electrons per unit volume, we find [9—11]

e
—cy, (z)E' = npppec I&(z)e'"-' cos[k z+ n(z)]

7j

(2.12)

where & & denotes the average over the electron distri-
bution.

The ponderomotive phase Q&(z) was defined in Eq.
(2.7), and the FEL is described by the differential equa-
tions (2.5), {2.10), and (2.12). The dominant effect of the
wiggler errors comes from Eq. (2.10), which describes
the deviation from resonance. We have verified that, for
small errors in the wiggler field, it is a good approxima-
tion to neglect the error fields in Eq. (2.5) and (2.12),
i.e. , take It (z) = I(p and n(z) = 0. In this case

2y02k

1+ Its/2' (2 6)

with po being the design electron energy in units of mc .
Let us now define a phase angle for each electron as

The radiation wave number k is chosen to satisfy the
resonant condition for the ideal wiggler,

eKpE z7'=— e' 'cos k z e'~ +c.c.,2mc2$0

2k„(7, —yp)

QO

(I&2(z) cos [k„z y n(z)] —Kp/2}
1+ I&p2/2

(2.13)

(2.14)

Q~ = (k~+ k)z —kct~, (2 7)

where tz is the arrival time of the jth electron at longi-
tudinal position z. The rate of change of gz with respect
toz is

nopoec I~2

e cos k~z&e
$0

(2.15)

In order to extract the synchronous terms we express
the ponderomotive phase g& in the form

@'. =k„+k/1 ——.
[

=-k 1 — ', /1 —~
/

( c& 27p2 r' z )
zii . 1+~~p/2 4 c).

(2 8)

But

gi(z) = P, (z)+ b(z) —
s sin 2k„z,

where
(2.16)

zz vz z' 1+ Ii2(z) cos2[k z + n(z)]
c c 2 27'

I~s(z) cos2[k z+ n(z)] —I&p cos2 k„z
1+ Iiz/2

Assuming (7&
—7p)/7p is small, we find

(2.9) (2.17)
We then discard the nonsynchronous terms by using the
approximation [10]

2k„(7, —7p) (Ic (z) cos [k„z+ n(z)] —Ic'p2/2)

7p 1+ I&p2/2

(2.10)

The final equation governing the FEL gain in the ex-
ponential gain regime is the stimulation of radiation by
the electron motion in the wiggler. This is governed by
the wave equation

e'" ' cosk z e' "" " '
Jp(b) —Ji(b). (2.18)

k D2 (Ee"e'~' + c.c.),
QO

(2.19)

The difference of Bessel functions on the right-hand side
corresponds to the dc component, and the oscillating
components have been neglected. In this manner we de-
rive

2k„(7, —Pp)
j 70

(2.11)
k DgF = e &e

QO

B~E 1 B~E BJ= pp
——ikppec ) z', b(z z,(t))—

2
(2.20)

We use the paraxial approximation, assuming E(z) [Eq. (2.21)
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where

eI~O[J J]
2~~2'

n 0 IJ, p e c IY 0 [JJ]
) 2

k

f It 0 /4 |' I~ 0/4
q1+ I~,'/2 q1+ I&02/2 j

va . v&
in r, (r~), = 2pk in z.

2
(3.4)

We now consider A, B, and C to be slowly varying
functions of T. Because we have replaced one variable y
by three, we are free to set two additional constraints,
which we do by arranging that

We now proceed to derive the gain equation in the
approximation of terms linear in (7&

—yo)/po, p', and E.
It is useful to introduce the quantity

and

y = ice—Ae ' ' —iu Be ' ' —iCe (3.5)

y(z) = E(z)e*"' (2.22)
Expressing E in terms of y, we take two derivatives of
Eq. (2.21) with respect to z, and discard the quadratic
term in (P'. )2 to obtain —$4JT + B —Cta) T + Cr —tT

O (3.7)

y=-~Ae ' " —~' Be ' ' —Ce

The dot(s) indicate derivative(s) with respect to 7.. The
constraints leading to Eqs. (3.5) and (3.6) are

y"' —i(b' y)" = ( iP,
" e —'~' ) .

QO

From Eqs. (2.19) and ('2.20), it follows that

m
( ski + ~ i/i)-II 2k2 D2

7O

(2.23)

(2.24)

~Ae ' '+u'Be ' '+Ce "=0,
and Eq. (3.1) leads to

A2
2 g —l4JT i + f3 —Z4P T i ~ —t T+Ce:—'2

dT2

(3.8)

(3.9)

y"' —i(b' y)" = i(2pk ) y,

where the Pierce parameter p is defined by

(2.25)

Assuming the initial electron distribution is unbunched,( e '~& )= 0; hence
The solutions to Eqs. (3.7)—(3.9) are

iu7' d (fy)

= —i~[Au(r) + Bv(r)e'"" + Cw(r)e'""], (3.10)

(2 )s 2DgD2

7O
(2.26)

Changing from z to Bonifacio's [9] variable, r = 2pk z,
we write the linear gain equation in the form

. .., d'(fy)
dT

= —i~'[A (ru)e
'""+ Bv(r) + Cw(r)e'""], (3.11)

d3 y d2

2 [f(r)y] = '»

where

(2.27) ,...d'(fy)
dr2

= —i[Au(r)e '""+ Bv(r)e '""+ Cm(r)], (3.12)

db
f(r) =

dT
(2.28)

where we have used Eqs. (3.2), (3.5), and (3.6), and
where

Ag =~ —~') A2 =~ —1, A3 =~ —1) (3.13)

III. SOLUTION OF FEL GAIN EQUATIONS
WITH ERRORS

We now proceed to solve Eq. (2.27) in the approxima-
tion of small f(r) Specifically we ha. ve

~ ~

u(r)—:f —2i ~f —~' f,

v(r) = f —2i~*f —~f,

(3.14)

(3.15)

dsy . id2(fy)
dT3 dT2

—2y:

which has the unperturbed solution (f = 0)

(3 1)

y=Ae ' '+Be ' +Ce (3 2)

Here ~, ~', and 1 are the three cube roots of 1, with

.~34): ——+ 2
2 2

(3.3)

The exponential growth of the term proportional to A
corresponds to the growth rate

m(r) = f —2if —f (3.16)

We intend to include terms up to and including second
order in f

In the calculation that follows, we make the simplifying
assumption that the error function f and all its deriva-
tives vanish in a region of order a few gain lengths at
the beginning and end of the wiggler. The utility of this
approximation is that it allows us to directly determine
the reduction of the exponential growth rate due to wig-

gler errors. We suppose the error-free end regions to be
fixed in length, and consider increasing the length of the
wiggler. We determine the term in log y proportional to
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wiggler length. In this approximation A, B, and C are
constant in the initial and final regions, in which the A
term grows exponentially, while the B and C terms be-
come negligible. In Sec. VI, we present a more complete
calculation including the eH'ect of errors at the ends of the
wiggler. These errors are shown to give rise to a term in
log y independent of the wiggler length; see Eq. (6.21).

The right-hand side of Eq. (3.10) contains terms in

A, B, and C. The factors multiplying the terms in B
and C decrease exponentially with r. As a result, only
those parts of B and C which increase exponentially will

contribute to a modification of the growth rate. But the
terms which increase exponentially in Eqs. (3.11) and
(3.12) for B and C are those which arise from A on the
right-hand side of these equations. Since the result for
B and C will then be proportional to f, and since the
B and C terms on the right-hand side of Eq. (3.10) will

be multiplied by f, the contribution of these terms to A
will be quadratic in f Mo.reover, A can be considered
constant in these terms since A itself is first order in f
Thus we have

3B = —in*Ac '"' u(r), 3C = —iAe '"' u(r). (3.17)

The increment to the growth rate is related to the real
part of A/A averaged over the full wiggler. Thus we

calculate A/A from Eq. (3.10):

The average of A/A over the full wiggler is therefore

where

=-—&u)—
A 3 9 9

(3.20)

1Ii„„=— dr e'""v(r) dr'e '""u(r'),
0 0

(3.21)

I2 „=— d7. e'""u)(r) dr'e '""u(7')
0 0

(3.22)

Here T = (2p)2n 1Vp, where 1Vp is the number of wiggler
periods, and where the symbol () stands for the average
over the interval 0 & 7 ( T.

All terms in Eqs. (3.21) and (3.22) are of the form

J d ger d
d I —gAr d (3 23)

and

for I = 0, 1,2 and n = 0, 1, 2. Integrating by parts and
discarding terms at the end points 7 = 0, T, we find

Jo~ Jii J~o
Jpl — Jlo = . = —. = . ——& f &+i&~00

iA iA iA

(3.24)

A iuu icuv B;&„ iuu) C;&„s —e' '".
A 3 3 A 3 A

(3.18)
J12 = —J21 = —. ——& J ' & +&' & f' & +»' Jpp.

iA.
According to Eq. (3.17), B/A and C/A can be written

B i~'
dre u(r)

A 3 0

Vfe then obtain

Ii„„—i(~ —~') & f & +Joo(& = &1),

(3.25)

(3.26)

7'

dr'e '""u(r').
A 3 0

(3.19) ~I2„„—i(~' —~) & f & +Jpp()( = )(2),

leading finally to

(3.27)

~ ~1 T T

(f) d d If( )f( I)( g((ll (d )(r-r') + g((L)-1)(r-r'))
A 3 9T 0 0

(3.28)

f(r) = ) c,g(r —r, ),

where the error is centered at 7 = ~& and where the
function g(u) has an appreciable value only for

~
u

~

less
than one or two wiggler periods. Specifically, we assume

g(u) is negligibly small for
~

u
~
of order 1 (a gain length).

The double integral in Eq. (3.28) is therefore made up
of terms which take the form

(3.30)

) ) e eg J dp f dv 'g(r —r )g(r' —rg)e' ( ')

k

(3.31)

where f(r), defined in Eq. (2.28), is

&(r) = —.db
(3.29)

8T
We now assume that f(r) arises from individual block

errors ~~ in a form

I

If the errors t.'z are uncorrelated over distances much
larger than a wiggler period, only values of

~
r&

—r(,
~

of order one wiggler period or less will contribute in Eq.
(3.31). Since the function g(u) has an appreciable value

only for ( u
~

less than one or two wiggler periods, the
only significant contributions to the double integral over
r and r' will occur for

~
r —r'

~
less than a few wiggler pe-

riods. But for this range of (r r') the exponenti—al factor
in Eq. (3.31) can be replaced by unity, since [Im(A)]
is of order a gain length, which is much larger than a
wiggler period. Thus we finally obtain for the change in
the average growth rate

(gag)=Re( —)
T 1 ( T

= Re dr f(r) — dr f(r)3T 0 9T(0
(3.32)
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This result is valid even if j=O j=2

dr f(r) (3.33)
D y

is large, as long as G/T is small. An alternate derivation,
involving the assumption that, G is'small leads to exactly
the same result. Finally, we note that the form in Eq.
(3.32) is valid only if we neglect long-range error correla-
tions. If we wish to include the eA'ects of long-range error
correlations, we must use Eq. (3.28).

We now assume that T corresponds to many gain
lengths. We further assume that the error function van-
ishes for 7 ( 0 and r & T, so that the limits of integra-
tion in Eq. (3.33) can be extended to —oo ( r ( oo,
thereby obtaining

(u)G= dz
]

—).
i, dz) (3.34)

The (real) detuning parameter b(oo) —b( —oo) contributes
to the change in gain and we have, from Eq. (2.17),

G = — ".
2 dz( I~"(z)cos [k z+n(z)]

—Iip cos k„z). (3.35)

Thus the first-order term is imaginary, and only the
second-order term contributes, giving

(Eral) =-Q2
(3.36)

for the growth rate, where rz —y 3/2 is the growth rate
without magnet errors.

Finally, we return to Eq. (2.2) and write

I&eeping only linear terms in bA (z) and then averaging
over the rapid wiggler oscillations, we obtain [12]

eA eIi(z) cos[k z+ n(z)] = = Ixpcosk z+ bA (z).
rnc inc

(3.37)

D

j=O I ~w I

I ND I

FIG. 1. Idealized wiggler (one half wiggler period for
N~ = 8).

(3.39)
2k„I~O2 1

dz cos k z bA~ (z),

Errors in the wiggler field can occur because of errors
in block magnetization magnitude and direction, as well
as errors in block size, shape, position, and orientation.
Since geometrical parameters can usually be held to much
tighter tolerances than magnetization errors, we assume
only magnetization errors (magnitude and direction) in
the present calculation. We further assume that we have
only a two-dimensional problem, that is, that the blocks
are uniform and infinite in the z direction.

In this error calculation, we assume that the wiggler
without errors is a periodic array of line dipoles, as shown
in Fig. 1, located in two rows at

y~ = +D, zj = gA /ND, (4.1)

where there are ND dipoles per wiggler period in each
row. The components of magnetization are

where bA& (z) is error in the vector potential per unit er-
ror in the jth magnet block. Equations (3.38) and (3.39)
are now free from any ambiguity with regard to separat-
ing wiggler errors into phase and amplitude components.
They can be used directly with specific wiggler errors to
determine their eA'ect on the FEI gain.

IV. WIGGLER FIELD ERRORS

2I- I~ O2 1

1 + I& 2/2 Amax dz cos k z bA (z), (3.38)
yj ——D, Mz~ ——Mp sin 2irj /ND, M, = Mp cos 27rj /ND—,

(4.2)

where A " = mc Ihip/e is the maximum wiggler vector
potential magnitude without wiggler errors. An alter-
nate form that shows the explicit dependence of 0 on
individual magnet block errors ez is

yz
—— D, M&~

——Mp sin 2rrj /ND—, M~ = Mp cos 2''/ND,

(4 3)

and the vector potential at y = 0 is

Mp
~

D cos(2x j/ND) —(z —
z& ) sin(2z j/ND)

(z z. )2 + D2 (4.4)

It is clear that A (z) is a periodic function of z with period A . Its Fourier coefficients are defined by
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) g —2inwz/i
(4 5)

where

Mp - 2;„,/& D cos(2qrj /ND) —(z —zj) sin(2qrj /ND)SAKS

-A. - . "
2

(z —z )2+ D2
2

(4 6)

If we let

z = zj+s,
we can write

A~-j A~/N~
0 ) 2inj w/NDe

xA tU ~ -jA /N~

D cos(2qrj /ND) —s sin(2qrj /ND)d s2+ D2

(4.7)

(4 8)

We now replace the single sum over j by the double sum over p, q where

j=pND+q, —~ & p ( ~, 1(q(ND.
This leads to

&D 00 A -pA -qA /N~

) 2inqw/ND

2xA tU —p A —q A /1Vz)

2wi q/N~ 2wi q/N-~ )2lnww/A~

( D —is D+is j (4.10)

The sum over p now permits us to extend the integral over s from —oo to oo, and we find

N~ oo 2wiq/N~ 2wiq/No i-
q/ND -' 2' /&e

2vrA„ i, D —is D+is jq=l
(4.11)

It is clear that the only surviving harmonics are the ones where n = +1,+1 6 ND, +1 6 2ND, . . .. We will only
evaluate the n = +1 coefficients, which are

MOND dse ' ' " Mo&D 2gD(A+1-
2xA D +is e (4.12)

The main wiggler potential (first harmonic) is therefore

A('l(z) = e /" cos(2z.z/A ).
2M0 ND (4.13)

lf we have a block (line dipole) with magnetization error components SM& and SM&, according to Eq. (4.4) it will
contribute an error in the vector potential which is

1 [+DSMJ +(z —z;)SM~]
bA'&z& = ——

27r (z —z, )2+ D2

where the 6 depends on whether the block is located at y = kD. Thus the parameter G in Eq. (3.38) is

(4.14)

qr(1+ I~2/2) 2M0ND

+DSMJ + (z —z, )SM~j )
(z —z, )'+ D2

(+DWq + sbMj) i
ak~z~ dse"-' y

MpND(1 + I&02/2) D2+ s

m. Ii02 . ( SM~
(4.15)
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where the components of M~ are given in Eqs. (4.2) and
(4.3) and where the sum over j extends over both rows
of blocks (dipoles).

It is clear from the last form for G in Eq. (4.15) that
only the component of bM in the direction of magnetiza-
tion contributes to the reduction in gain. This is not sur-
prising since Eq. (3.38) suggests that only the in-phase
component of bA enters. Errors in direction of magneti-
zation therefore only change the out-of-phase component
of bA, which does not change the gain in lowest order.

For a wiggler consisting of identically shaped blocks of
finite size, the first-harmonic amplitude in Eq. (4.12) is

replaced by

V. REDUCTION IN GAIN

The reduction in gain in Eq. (3.36) can now be evalu-
ated for a collection of magnetization strength errors

bM& - M&
Eg

Mp
(5.1)

f(r) =).~jg(r —rj) g(r —r, )dr, (5 2)

Note that only the component of e& parallel to the mag-
netization axis enters.

We return to Eqs. (3.30), (3.33), (3.39), and (4.15) to
write

(4.16)

where M is the magnetization per unit area. The integral
extends over the entire cross section of a block, where the
origin of the (, g coordinate system is at the centroid of
the block.

A similar averaging is needed in the calculation of
the integral over bA (z) in Eq. (3.38), since the fac-
tor cos k z in the integrand extracts only the first
harmonic of the error. Thus both the numerator

f dz cos k zbA (z) and the denominator A " con-
tain the form factor

and

xK(~)

ND(1+ I~ z/2)

2I~ p~ 1

(5.3)

(5 4)

1
(4.17)

A g
which cancels in calculating G and the growth rate. As a
consequence, the final result for the change in the growth
rate due to errors in the strength and direction of the
magnetization is independent of the shape of the (two-
dimensional) block. This exact result is only an approx-
imate result for errors in block position since the form
factor for such errors corresponds to a somewhat differ-
ent weighting in Eq. (4.17).

f(r) = ) ejg(r —rq) = ) ejHb(r —rj) (5.5)

We therefore obtain from Eq. (3.28)

Because bA& is appreciable only near r = r&, with r =
2pk z, we can approximate g(r —rj) by a 6 function in
evaluating any integrals like those in Eq. (3.28) in which
the factors in the parentheses vary appreciably only over
a gain length. Thus we write

(» ) = — ) E + ) ) 6'6 Re(e~ l~ "~+e'~" '&"' '"
)

H'(
g 9Z g g k

j&k

(5.6)

2x.EjEk: E()6jk (5.7)

we find for the change in gain for a statistical ensemble

H
E)~

2ND Nz 7I Itp 2ND Np E))

9T 9TN (1 + Iio2/2)

where we have separated out the diagonal term and taken
only half of it in order to properly take into account the
requirement that r ) vz in the region of integration.

For an uncorrelated set of errors whose rms value is

If the blocks within a distance small compared to a
gain length but comparable with a wiggler wave length
are correlated to reduce wiggler error, this correlation
should be used in evaluating the double sum in Eq. (5.6).
Clearly this has the potential to lower any reduction in
gain.

It is also possible to calculate the width of the distri-
bution in gain reduction. Specifically we calculate

where N~ is the number of wiggler periods in the FEL,
with 2ND magnets per wiggler period. Since T
2p2vrN~, we finally have

+) ) .~j~t ) .).~r~~QjtQr~,
e&m

2
I~o

9ND (1+ IUD/2)z 2p
(5.9

where

(5.10)
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g R (
i(~ ~iX7, —r„) + i(ur —1)(r,—7.„)) (5 11)

For uncorrelated errors we have, with 2NDN~ &) 1,

60—

50—

) e2 ) e2 ~ 4N2 N2 (e2)2 (5.12)

and

) ) k).) eie Q, ~Qe =(e)()').).Q,'&.

e&m

(5.13)

c 40—

Q

30—
E

20—

In

Converting the sum over j and k in Eq. (5.13) to an
integral, we eventually obtain 0 ~

I

-7x10

, sad
ml

I

-6 -5 -4
&&r &T

R ~

I I

-I 0

((Ai ) —(hi ))z 17'/3

((&~.))' 24T
49

144T2 (5.14)

Thus the relative width of the distribution in growth-rate
reduction is of the order of 1 over t;he square root of the
number of gain lengths in the FEL.

At this point we wish to emphasize that we have calcu-
lated that portion of the gain reduction and distribution
width which is proportional to T. This is the case be-
cause the integrals over the error function f(r) have been
extended from —oo to oo where appropriate, consistent
with our assumption following Eq. (3.16). This model
will be reexamined in Sec. VI.

We have checked the results for (Arz) given in Eq.
(5.9) by direct numerical integration of Eq. (3.1) us-

ing f(7) as obtained from Eqs. (5.2), (5.4), and (4.14)
with 4000 different sets of random errors and obtain close
agreement. Specifically, with 4000 different sets of ran-
dom errors, we find the following: (i) (6r&) is approxi-
mately the same for 25 magnet block errors and for 250
magnet block errors. Except as noted, all simulations
have been made with approximately 25 magnet block er-
rors to save computer time. (ii) (b, r&) agrees with Eq.
(5.9) to 7%. (iii) (b, rz) is proportional to

e[~
to better

than 2%. (iv) (b, rs) is independent of e~& (for 250 mag-

net block errors). (v) (b, rz) is independent of Ir, D to

better than 10%. (vi) (b, rs) is inversely proportional to

2pND. (vii) (hrz) is proportional to

FIG. 2. Distribution in the reduction in gain for a typ-
ical simulation with 4000 random error seeds in e~ for 25

II

magnet blocks. The curve is a fit to a Gaussian. The
average value of (Ars)T is —2.72 x 10 and the width

= T((&r ) —(Dr ) )' is 9.30 x 10

by the differential equation

d'y, ,d'(f y) (6 1)

We consider f(7) to have the form given in Eq. (3.30),

NT'

f(~) = ) .e~g(~ —~~) (6.2)

and we assume that g(u) has appreciable value only for

~u~ less than a few wiggler periods, a distance short com-
pared to a gain length. This local nature of g(u) corre-
sponds to neglecting the effect of steering errors, which
are treated in Sec. VII.

Denoting the unperturbed solution (that for f = 0) by

ys(r), we recast Eq. (6.1) as the integral equation,
T

y(~) = y (~) + — «'~(~ ~')f(~')y(~') — (6 3)
3 p

where the Green function 4(r) is

( I~z

&(I+ &&'/2) &

e(7) = e ' 'e(r), C'(7) = 1+e' '+e'
(6 4)

to better than 1%. (viii) A sample distribution in the
reduction in growth rate is shown in Fig. 2. The ratio of
width to average value agrees with Eq. (5.14) to about
10 0.

VI. SOLUTION BASED
ON INTEGRAL EQUATION

We solve Eq. (6.3) to second order in f by iterating
the kernel (in scattering theory this is called the Born
approximation). We wish to study the reduction of the
growth rate of the exponentially growing mode. Assum-
ing no initial energy or spatial modulation of the elec-
tron beam and normalization yo(0) = 1, we can take
yo(7) = exp( —iver)4(r)/3, and write

Some additional insight can be gained by reformulating
Eq. (3.1) as an integral equation. We shall consider the
iterative solution of this integral equation and compare
the results to a computer simulation. Recall that the
effect of wiggler field errors on the FEL gain is described

—ivr j 1
y(7 ) =

~
4 (r) + —F&(7 ) ——F2(7 ) ~,

3 9

where we have defined

(6.5)
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(6.6)
9 9 27

(6.17)

lyl' = e
11+ -(Fg —F;) ——(Fg + Fg )3 ' 9

x f(r')f(r")~(r").
At the end of the wiggler (r = T = 4xpNr, NJ is number
of wiggler periods), we shall calculate

4W
iyi4 = 1 — T+ W

81 ( 9 27 )
'

(~lu~l') = IIv~1' —lul' I"=
3

(I+i —+i'I')

e~» t'~3
9 9

(6.18)

(6.19)

1
(P&F ) (6 8) In this manner we arrive at the estimate

iyi' = e' '
i

1+—(Fi —Fi') —-(F~ + F~ )3
' ' 9

9 9 27 9

(6.20)4, 1
+ (F& F')———(F'+ F')

g 1 g 1 1 (6 g) Let us suppose that iyi2 can be expressed in the form

where the average is over a stochastic ensemble of wiggler
errors. We assume the correlation functions

1
iyi~ = —exp([+3+ 26rz 6 2b(hrz)]T+ c 6 bc).

9

(6.21)

f(r) = o (6.10) By taking the logarithm of Eq. (6.20) and keeping terms
to second order in f, we find

f(rq) f(rg) = m(r~ —rq), (6.11)

where w(v) = m( —v) is nonvanishing only over a distance
short compared to a gain length. We then obtain

2W~3
27

(6.22)

Fg ——0,

Fg —2(T+ 2i~ ) W,

(6.12)

(6.13)

(W&SI '
(6.23)

(6.24)

Fz (T + —',~*)W

FgF; = (T+ s'~3)W,

with W defined by

dv u)(v)

(6.14)

(6.15)

The efI'ect of wiggler errors on the coefFicient of the
exponential growth factor is given by exp(c k bc). Note
that for small W, the width be is large compared to the
average value e. The development of the theory given in
Secs. III—V purposefully ignored the r-independent term
e+ be, which arises from integrals dominated by the two
ends of the wiggler which contribute equally. On the
other hand, the treatment given here based on iterating
the integral equation does not yield the spread b(b, r&)
in the growth rate. To determine the width it would
be necessary to keep terms up to fourth order in f when
iterating the integral equation. From Eq. (5.14) we know
that

dr f(r) (6.16)

Recalling from Eq. (2.28) that f = db/dr, we see that W
is the mean-square average of the ponderomotive phase
shift per gain length as given in Eq. (1.2) of the Intro-
duction. Employing Eqs. (6.7), (6.8), and (6.10), we
determine

4g
&"'

144T2 )
(6.25)

We consider f(r) to have the form given in Eq. (6.2),
T

and employ ezcy = e2bzy and H = f drg(r —rz) in Eq.
(6.16) to derive
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H-
W = ~2NT.

T (6.26)
108—

I'04 ~ll

ND (1+ I&o2/2)~ 2p
(6.27)

The average reduction of gain Ar& given in Eq. (6.24) is
seen to agree with Eq. (5.9).

We also consider a model consisting of magnetic ampli-
tude errors correlated within each period to yield zero net
deflection, with errors in different periods being indepen-
dent of each other. Although this model is not strictly
physically realizable, it is convenient for numerical simu-
lation. The model is specified by the error in the vector
potential

For the permanent magnet wiggler considered in Secs.
IV and V, the total number of blocks NT ——2ND',
where 2ND is the number of blocks per period and N~
the number of periods. In this case, H = z.It /[ND(1+
Ito2/2)] and

106—

c 104—
LL

102

10

WIGGLER ERRORS

I

2.5
I

5.0
I

7.5
I

10.0
I

12.5

z = 2pk~z

FIG. 3. The ratio P&&„i/P, „ofthe output to input power is
shown as a function of the scaled axial coordinate r = 2pk z,
for 16 sets of random wiggler errors.

bA (z) = ) (1 —cos k z),
.bB, (z)

j=1 k

bB ( )
b, B~, jA (z((j+1)A
0 otherwise .

Here ABz are random variables with

b, B)ABI, = b~I, (b.B)„,

(6.28)

(6.29)

(6.30)

tion in gain 2Am& agrees with the numerical results to a
few percent. As mentioned earlier, the spread in the ex-

ponent consists of two contributions. One is the spread in

the constant +be and the other is the spread in the slope

+2b(Ars). The simulation is consistent with the width

being dominated by the spread in the constant +be as
predicted by the analytical theory taking into account
the statistics of a limited number (16) of samples.

In this case, NT = Np and H = 2s Ii&~/(1+ Iio2/2), and
we find

XItn (AB/Bmax), uis

(1+ ~&o/2)'
(6.31)

where Bm~„ is the peak value of the ideal wiggler field.
We have carried out a computer simulation of the

model of wiggler errors given in Eqs. (6.28)—(6.30) using
the computer program TDA [4, 13]. The transverse elec-
tron beam size is taken to be large enough so that the
radiation field on axis evolves as in the one-dimensional
limit. In particular, we considered the parameters p =
1.29 x 10,Iio ——1.95, and (b,B/Bma„)rm, = 2%. From
Eq. (6.31) it follows that W = 1.67 and hence the results
of our analytic calculation [Eqs. (6.22)—(6.25)] are

2Ars ——0.37, 2(bb, rs) = 0 41/vT.
c = 0.11, be = 0.40.

Iyl' c+bc f~3+2&r~+2b(&r ~)]v (6.32)
lyol'

In particular the analytic estimate of the average reduc-

The computer simulation results are presented in Fig. 3.
The ratio of the output to input power Iyl~/lysi is shown
as a function of distance for 16 sets of random wiggler
errors, and good agreement is found with the analytic
estimate:

VII. EFFECT OF STEERING ERRORS

In Sec. IV we used a 2D wiggler model to calculate the
error in the vector potential. According to Eq. (4.14),
each block magnetization error makes a contribution to
bA~(z) which is localized around the axial location of
the block. Since conservation of the z component of the
canonical momentum leads to

eA (z) (7.1)

our 2D model leads to no net change in z' as the beam
passes by the block with the error. As a consequence, we

are led to the result in Eq. (3.32) for the growth-rate re-

duction because of the absence of long-range correlations
in the terms which make up f(r) and f(r') in Eq. (3.28).

The situation in three dimensions is fundamentally dif-
ferent. Each magnet block is capable of deflecting the
beam through a nonvanishing angle. As a result, the an-
gle of the beam undergoes a random-walk process and
there is now long-range correlation between f(r) and

f(r') which cannot be neglected.
We shall first estimate the reduction in growth rate

that occurs due to these uncorrelated angular deflections
by assuming that z'(z) changes abruptly by 8& as the
beam passes the jth magnet error. We then explore the
result of introducing a correction scheme to control the
buildup of the transverse angle and displacement.

Using Eqs. (3.29), (2.17), and (3.37), we can write



1174 YU, KRINSKY, GLUCKSTERN, AND van ZEIJTS

2p f(r) = — .z ([gz'(z)] + 27z'(z)Ko cos l;„z),1+ Itoz 2

(7.2)

where v- = 2pk z. The rapidly oscillating factor makes
the long-range correlation in the second term in the curly
brackets unimportant. Assuming steps of g& in z'(z) as
we pass each magnet error, we have

and

r„= 2pk z„= nT/NT, NT ——2ND Np

2p(1+ Ii", /2)
'

(7.4)

(7 5)

f(r„) = n[z'(z)] = n ) g,
1

(7.3)
We now evaluate the double integral in Eq. (3.28).

Specifically

dr f(r)
T To/If( I) xA(T —T ) d ) g ) g

0 j=1 k=1
(7.6)

where A = AT/NT, and where we treat n and n' as con-
tinuous variables where appropriate. The most impor-
tant contributions to the ensemble average are obtained
by neglecting the j = k = 8 = m terms and writing

1Vc

z(I) = z'OL+ ) (L —zi)gi, (7.11)

leading to

=—g' (b, &be + b~eba +b, 4e), (7.7)
&c

z'(L) = zo + ) g, . (7.12)

TA —22 XT

NT2 0

'A( — ')( + 2 )

(7.8)

We now arrange for a transverse impulse correction Az'
at z = 0 chosen to make z(L) = 0. In this case the
corrected values are

Nc

For —Re(iANT) = —Re(iAT) )) 1, the main contribution
to the double integral comes from n' = n, and we find

z(L) = (z', + Az')L+ ) (L —z, )g, = 0, (7.13)

NT TQ, 202 ~2 ~2g2
(7.9)—iA

The reduction in average growth rate corresponding to
Eq. (7.9) with A = ~ —~*, and ~ —1 in Eq. (3.28) for
this quadratic term in bA (z) is

18 &2,(I+ i'-, /2))

Notice that since ( Av~ ) is now quadratic in T, the
integration of Eq (3.28) with respect to T gives an av-

erage power growth which is proportional to exp(~3+
2h, rz/3)r instead of exp(+3+ 26rz)r, as given by Eq
(6.32).

If we now assume a correction scheme which returns
z(z) to zero in a distance short compared to the gain
length, we can show that z'(z) in each correction region
is uncorrelated with z'(z) in a different correction region.
Assuming no focusing, the transverse displacement and
angle at the end of an as yet uncorrected region having
Nc magnets are given by

zo+ 6z' = —) gi,
j=l

(7.14)

and

z'(z„) = z', + b,z'+ ) g, =
n Nc

) g, —) 'g,

&c).g, ;(-), (7.15)

where

~
N
j~

C

N
~CC

~j
~

I

~
~

~ ~ I

for1& j(n
p, (n) =

for n ( j ( N~.
(7.16)

Thus the angle in each correction region depends only on
the errors in that region, which is assumed to be short
compared with the gain length.

In the calculation of Jz in Eq. (7.6) we must now
obtain the value of

f(r„)f(r„') = n z'„zz'„, = n' ) ) ) .) .gi6geg~pz(n)px(n)pe(n')p (n')
j Q g m

(7.17)

using Eq. (7.15). The b~i„.be,„ term in Eq. (7.7) corresponds to multiplying z'„2 by z'„z, . The additional terms from
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birbt and b&,„bye (which are equal) exist only when there are correlations between the errors for n and n', that is,
only in the same correction region where we can set exp[iA(n —n')] = 1. Thus we have

,—,z (
f(r„)f(r„') = n xg z'„~, + 2n 82

~ 5 p, (n)p~(n')
~

(7.18)

where z12—:[i(n)]'- is obtained from Eq. (7.15) as

3N2

I, 3Nc j
(7.19)

The function q(n) then has the shape shown in Fig. 4 and J& becomes

2TN~
Jg —— n 8

A 2N Nc A z

dn dn'e'"(" ")q(n)q(n')+ s dn dn'~ ) pz(n)p&(n') ~

0 C 0 p
(7.20)

where the region of integration for the second term is restricted to a single correction region.
/1)

In order to evaluate the first term J& in J~, we expand q(n) in a Fourier series

) —2miralNc (7.21)

with

1 1
ap ——, ar =, , (Eg 0).

2x 8

Setting n —n' = n", we find

(7.22)

But

A
iAn" —2&&En/Xc+27fi f~"/Nc

N2

N2T Q

( )
-2~irn/No ~ c 2gg )—(iA + 2xiE/Nc) p NT r

—(iA + 27ri8/Nc)

I

ognizing that ~Ar,
~

&& 1, we find for the real part

(7.23)

ANc —Ar„T/NT = r, /Nc, (7.24)

where r, (( 1 is the interval in r corresponding to a
correction region. Thus

Re Jq ——Ncn 02 apRe
~

—~—
OO

) —Re(iA)
1=1

{7.26)

(7.25)

Combining the terms for —E with those for +Z, and rec-

11k

3

We now use A = u —~*, ~ —1, and Qi E = z /945
and obtain

2=(i) ~3 & Ncp~o~

108 2p(1+ Itp/2) i, 70

(7.27)

q (n)

1
12
0

Nc 2Nc Nc

The second term in J~ can be evaluated directly us-

ing the form for pi(n) in Eq. (7.16). After considerable
algebra, the result is

FIG. 4. The function q{n).

2=(2) 2r, ( Nc 7"-02
Re Jg

105 I 2p(1 + It p2/2)
(7.28)
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Combining Eqs. (7.26) and (7.28), we find for the change
in growth rate

wiggler periods between correction stations, and defining
NG = I/4xp, the number of periods in a gain length, we
find

2P(I+ I~,'/2) i 972 l, 70'
- 2

2 2vrp282
W NGNsNc (7.32)

2r.
945

(7.29)

A comparison of Eqs. (7.29) and (7.10) indicates
that our correction procedure has reduced the change in
growth rate by a factor

(brsq ) 1 (N~i' 1

(~rq) 54 (N7) 54 T (7.30)

It is now a simple matter to explore the consequences
of detuning the FEL so as to remove the average detuning
corresponding to Fig. 4. In this case the function q(n) is
replaced by q(n) —q, corresponding to dropping the term
in ao. As shown in Eq. (7.29) this reduces the change in

growth rate by an additional factor 72r, /35+3
After correcting the average detuning, the third term

in Eq. (7.29) proportional to 2r, /945 dominates. This
dominant term comes from the second term of Eq. (7.18)
and corresponds to correlation within one correction re-
gion. If the distance between correctors is smaller than
the gain length, then the correlation length is shorter
than the gain length, and the analysis of Sec. VI can be
applied. In this case, the gain reduction is expressed in
terms of the mean-square ponderomotive phase shift per
gain length W as Ar s

———W/9, with

N, 7'e~

i 2p(1+ Iio~/2) ) 105
(7.31)

Noting thai 7; = 4xpNg, where Ng is the number of

in agreement with Eq. (1.8) presented in the Introduc-
tion.

As a final point, we estimate the angular deflection
caused by a magnet block of finite length L in the z
direction symmetrically placed around the beam. This
is compared with t.'i~ and ci for the 2D blocks, where

c~~
and t. & are, respectively, the fractional errors in the

magnetization of the jth block parallel and perpendicular
to the magnetization axis.

The result for 0"- is given by

81' 2D2

L2+D~ y2D2i jl » (7.33)

For completeness we include the relation between rms
field error and e2. Specifically it is

(ba&'
i+ (7.34)
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