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Monte Carlo simulation study of crystallization in rapidly supercooled one-component plasmas
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Development of solidification processes in rapidly supercooled one-component plasmas is studied by a
Monte Carlo (MC) simulation method with a number of particles 1458. Evolutions of interparticle
correlations and of local and extended bond-orientational orders are investigated microscopically. Lay-
ered structures emerge at prenucleation stages in the system and expedite a subsequent evolution into
metastable states. The metastable states are bcc monocrystalline states with an admixture of a few de-

fects in the form of intralayer interstitials, which differ significantly from the glassy states obtained in the
previous simulations with a smaller number of particles. The role of MC periodic boundary conditions
in the freezing transitions is discussed in conjunction with the number of MC particles.

PACS number(s): 52.65.+z, 64.60.Cn, 61.20.Ja, 64.60.Qb

I. INTRODUCTION

Solidification such as crystallization and glass transi-
tion is one of the most interesting events in the thermal
evolution of a many-body system. Accumulation of the
effort by many investigators notwithstanding, microscop-
ic understanding of such a transition has remained an
outstanding problem. Theoretical treatment is diScult
since the transition occurs catastrophically as a result of
many-body correlations; it is also not easy to trace the
dynamic evolutions of the microscopic structures in a
laboratory experiment.

Computer-simulation study of a simple system [1],
where particles interact via binary and spherically sym-
metric potentials, has a long history. More than three
decades ago, Monte Carlo [2] (MC) and molecular-
dynamics [3] (MD) simulation methods were first applied
to the hard-core systems [4]. Later these methods were
extended to other cases of the potentials, such as soft core
[1]and Lennard-Jones [1]. The available size of the simu-
lations has rapidly increased as the computer capabilities
developed. Simulation studies of crystallization and glass
transition for these systems have contributed much to the
explanation for physical properties of the solids.

The classical one-component plasma [5,6] (OCP), one
of the most fundamental in simple systems, is a statistical
system where N particles of a single species with charge
Ze interact via Coulomb potentials in a volume V with
uniform neutralizing charges. Since the Coulomb poten-
tial has no characteristic length, thermodynamic proper-
ties of the OCP with number density n =IV/V depend
only on the Coulomb coupling parameter

simple systems in at least two respects. First, the
Coulomb potential is 1ong-ranged; hence it is necessary to
assess the effects of the boundary conditions carefully.
Second, no volume fluctuations exist in the OCP at a
fixed value of N since the background charges are in-
compressible; the OCP keeps its volume constant through
the process of solidification.

The OCP has been treated not only as a basic model in
the statistical mechanics but as a realistic model for the
dense matter in the outer crust of a neutron star [7]. The
main constituent of the outer crust is iron in the density-
temperature regime, p = 10 —10 g cm and
T=10 -10 K; hence I =100—1000. Electrons in the
crusts are relativistically degenerate and may be regarded
as forming a uniform charge background for the iron
ions. Physical properties of the outer crust, such as con-
ductivities [8] and viscoelasticity [9], are essential in-
gredients in the analyses of the internal structure and the
evolution of the star.

The equation of state for the OCP has been investigat-
ed accurately in the fluid [10—13] and in the bcc [10—12].
and fcc [14] crystalline phases mainly by the MC simula-
tion method, including dependence on the particle num-
ber ¹ Comparing the Helmholtz free energies between
the fluid and crystalline phases, it has been found [12,13]
that the fluid OCP freezes (Wigner transition) into the
bcc crystals at I = 178-180.

It is not clear, ho~ever, what the final state of a OCP is
when a rapid quench is applied to I & I . It is instruc-
tive in these connections to compare the Madelung ener-
gies [10]of the OCP between the crystalline structures,

where

(Ze )

ak~T '

—0.895 929I (bee)

Xk~ T
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—0.895 838I (hcp) .
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is the ion-sphere radius. The OCP is distinct frown other

We thus find (Et„Eb„)/%=0.010kt—t T
(Eh, Eb„)/N=0.016k&—T at I =180; the diff'erences

are only 1 —2% of the thermal energy.
The MC simulations for rapidly quenched OCP's with
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N=432 were performed and reported earlier in Ref. [15]
(referred to as paper I). The resultant final states corre-
sponded to glasses characterized by random polycrystal-
line mixtures of fcc, hcp, and bcc crystalline structures.
In those glasses, we found the development of layered
structures [16] over the MC cell. Emerging out of those
simulations are the problems: Do the layered structures
have any relation with the periodic boundary conditions?
How and in what stage are the layered structures formed?
Is it possible to obtain a monocrystalline state, rather
than a polycrystalline state, by the MC simulation
method?

To answer these problems and to apply the quenched
states to the investigation of the physical properties of
the neutron-star crusts, we have performed new MC
simulations for rapidly supercooled OCP's with a
significantly increased value of N. The periodic boundary
conditions depending on N may have two kinds of effects
on the solidification. Under the periodic boundary condi-
tions, any particle must move collectively with all of its
images which form a simple cubic lattice with the lattice
constant L o- N' . For a smaller N, the boundary condi-
tions may hinder the motion of particles and the resultant
ordering of particles. However, if N takes on a value
specific to the lattice structures, such as a bcc number 2I
or a fcc number 4I (I is an integer), the boundary condi-
tions may assist in transforming the system into the
respective lattice structure; such an effect may be more
efficient for a smaller N. We remark that N=432 in pa-
per I is one of the bcc numbers. To examine those two
effects separately, we have chosen N=1458, another bcc
number; this number is more than three times as large as
that in paper I. The resulting side length of the MC cell
is L =18.3a.

In the present paper we report detailed analyses on the
results of these newly performed simulations. We find a
formation of particle layers in the prenucleation stages.
Internal energies at the metastable states are very close to
the bcc crystalline value. Unlike the glass structures ob-
tained in the former simulations, we find bcc monocrys-
talline structures in the resultant metastable states. Pre-
liminary results have been reported in Refs. [17]and [18].

The organization of this paper is the following: In Sec.
II quenching processes are described. In Sec. III we in-
troduce bond-orientational order parameters to monitor
the development of nucleation. In Sec. IV the main re-
sults are presented. Section V is devoted to a description
of a separate simulation, where a supercooled fluid state
is obtained. Discussion and concluding remarks are
given in Sec. VI.
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the MC simulations; the number of configurations so gen-
erated is denoted by c.

For the probability density of particle displacements,
we have adopted a form the same as that in paper I,
which is

'2
r rP(r) =&21 /n. I — exp (4)
a 2 a

with the normalization f P(r)dr= l. If the concept of
. 0"MC elapsed time" applies, we may estimate the elapsed

time via the relation [20]

co~t =0.12c/N . (5)

The quenching processes are schematically depicted in
Fig. 1. Starting with a fluid equilibrium state at I =160,
we apply stepwise quenches by EI =50 at every
c/N X 10 = l. 25, excepting for b,I =40 at c=0, until I
reaches 300 [Fig. 1 (top)] and 400 [Fig. 1 (bottom)].
Phase evolution is monitored until c/N X 10 =25.0 in
both cases. Stepwise quench to I =800 is applied subse-
quently to the final state obtained at the quench to
I =400; simulation has been continued until
c/N X 10 4=35.0. If we assume the relation Eq. (5) for
the estimation of the elapsed time, the rates of quenches
to I =300 and 400 should be the same as those in the
cases of "gradual quench" in paper I.

III. BOND-ORIENTATIONAL ORDER PARAMETERS

l1/800
0 5 10 15 20 25 30 35

104 c/N

FIG. 1. Variation of 1/I in the MC simulation runs: (upper)
is the quench to I =300; (lower) is the quench to I =400 and
subsequently to I =800.

II. QUENCHING PROCESSES

We perform MC simulations with the usual Metropolis
algorithm [19]. First a randomly selected particle is dis-
placed tentatively by Ar with probability P(

~
b r

~ ); the
new configuration is accepted with the probability
exp( bU/ks T), where b,—U is an increment of the inter-
nal energy between the new and the original
configurations (all the cases with b, U(0 are accepted).
The procedure just described constitutes a single step in

Orders in the particle configurations are described in
terms of the orientational correlations between "bonds, "
which are connecting lines between a particle and its
"neighboring particles. " We define the neighboring par-
ticles as particles inside a sphere of radius r/a=2. 3
around a given particle; particle positions are averaged
over a sequence of Ac/NX10 =0.069 to reduce the
thermal fluctuations. The radius r/a=2. 3 corresponds
approximately to the first bottom of the radial distribu-
tion functions g (r) both in the fluid phase near the freez-
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ing condition shown in Fig. 2 (left) and in the bcc crystal-
line phase shown in Fig. 2 (right). The number N, of
neighboring particles, which we shall call the "coordina-
tion number, " is 14 for the bcc cluster and 12 for the fcc,
hcp, and icosahedral clusters. In the fluid simulation at
I =160, N, =12—14 for almost all the particles. In the
bcc crystalline simulation at I =400, N, =14 for all the
particles. We associate a set of quantities IQ& (r)] to
each bond in terms of the spherical harmonics:

Q& (r)= Yl [8(r),$(r)], r is the central position of a
bond, 8(r) and P(r) are its polar angles.

The local bond-orientational order parameters [21],
which are rotationally invariant combinations in the
second and the third order, are introduced via

1/2

(Q,.(.)) 1'
fm[ &1

l I l
I m m mm+m +m =0

1 2 3

QI, (r)QI, (r)Qi, (r)
X

~Q (r)~ 3/2

Jmf &I

(6)

(7)

The coefficients in Eq. (7) are the Wigner 3j symbols [22].
The average QI (r) in Eq. (7) is carried out with regard
to all the bonds around a given particle; ( ) in Eq. (6)
means an analogous average with respect to such bonds
over all the MC particles. Quantities Q& and 8'& play the
key part in the cluster "shape spectroscopy" in fluids and
solids [21]. Since Q~ assumes a first nonvanishing value
(other than Qo) in samples with cubic symmetry, and Q6
in icosahedral systems, we take l=4 and 6 in the present
analyses.

The quantities (Q&, Q6) take on values (0.1909,0.5745)
for the fcc, (0.0972,0.4848) for the hcp, (0,0.6633) for the
icosahedral, and (0.0364, 0.5107) for the bcc clusters. We
observe that Q4 differs significantly from each other for
the four types of clusters, while Q6 remain almost the
same. It is ascertained that (Q4, Q6) take on much small-
er values (0.01, 0.03), in the fluid simulation at I =160
than the bcc crystalline simulation values (0.04, 0.5).

The quantities W4 and W6 assume significantly
different values between the clusters: ( W&, W6 )
= ( —0. 1593,—0.0132) for the fcc, (0.1341,—0.0124) for
the hcp, (0,—0.1698) for the icosahedral, (0.1593,0.0132)
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FIG. 3. Two-dimensional ( W4, W6) maps in the fluid OCP at
I =160: {left) is the particles with N, =12 shown by open cir-
cles; (right) is the particles with N, = 14 shown by closed circles.
Diamond markers correspond to ( W4, W6) values for the fcc,
hcp, icosahedral, and bcc clusters; for the icosahedron, we set
W4 =0 here.

for the bcc clusters. We remark that 8'4 is not a mell-

defined quantity for the icosahedron since Q4=0. The
magnitude of 8'6 is substantially larger for the icosahed-
ron than for the other three types of clusters. We find
that the local bond-orientational symmetries around a
particle can be discerned through its location on the
two-dimensional ( W4, W6) map. Figure 3 depicts such a
map for clusters with N, =12 (left) and 14 (right) at the
fluid phase, and Fig. 4, for clusters with N, =14 at the
bcc crystalline phase. In the fluid phase, locations of
( W4, W6) for clusters with N, =12 and 14 scatter rather
uniformly in the region

~ W4~ ~0. 15 and
~ W6~ ~0.16. In

the bcc crystalline phase, all the clusters assume X, =14.
In Fig. 4 we observe that for a substantial fraction of
clusters the bond-orientational parameters deviate from
the bcc values, especially for the 8'4 parameter owing to
thermal fluctuations.

Extended bond-orientational symmetries [21] are stud-
ied in terms of the correlation functions

~ ~

g(") 2

1-
g(r) 2

0 2 4 6 8 10
r/a

2 4 6 8 10
r/a

FIG. 2. Radial distribution functions in the fluid and bcc
crystalline OCP's: (left) is the fluid simulation at I =160; (right)
is the bcc crystalline simulation at I =400.

FIG. 4. Two-dimensional ( W4, W6) map in the bcc crystal-
line OCP at I =400 for the particles with %, =14. The dia-
mond marker corresponds to the (W4, W6) value for the bcc
cluster.
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FIG. 5. Bond-orientational correlation function G6(r): (left)
is the fluid simulation at I =160; (right) is the bcc crystalline
simulation at I =400.

N
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IBPOj =1
(10)

is shown in Fig. 6 for the quench to I =300 and in Fig. 7
for the quench to I =400.

In each figure dashed lines imply the extrapolation
values of the fiuid internal energy formula,

u = —0.897 744I +0.95043I' +0.189 56I

—0.814 87

(8)

IV. DEVELOPMENT OF CRYSTALLIZATION

A. Excess internal energies

Excess internal energy [6] is a primary quantity in
characterizing the states of OCP since its volume is fixed.
Evolution of the excess internal energy per particles,
averaged over a sequence of b,c/N X10 "=0007, .

u= -- = dr g r —1 (9)

where {m is an integer vector)

—266.0

where Go(r)=4m(Qoo(r)goo(0)). G&(r} take on first
nonvanishing values at l=6 for the bcc structure. We
find in Fig. 5 (left) that G6(r) =0 in the fluid simulation at
I =160, indicating absence of an extended order. In the
bcc crystalline phase at I'=400, Gs(r) =0.3 as shown in

Fig. 5 (right), confirming the existence of a long-range ex-
tended order.

—0.860 97 (12)

due to Ogata and Ichimaru [13] for the lower. The
dotted-dashed line means the bcc crystalline value, ac-
cording to the formula [12]

u = —0.895 929I +1.5+322 5I (13)

We note that the fcc crystalline value [14] of u are higher
than the bcc one only by 0.01-0.02 for I =300-400.

In the case of the quench to I =300, u stays around
the fluid extrapolation value for c/NX10 =2.5 —6.0.
It gradually decreases as c increases for
c /N X 10 =6.0—8.0, and decreases abruptly at
c /N X 10 =8.0—9.0 and at 11.0—12.0; after
c/N X 10 =12.0, it is metastable though jitters are ob-
served. The evolution of u for the quench to I =400 is
similar to that for the case with I =300; u stays around
the fluid extrapolation for c /N X 10 =5.0—7.5. It
gradually decreases as c increases for c/N X 10
=7.5-15.0, and decreases abruptly at
c/NX10 =15.0—17.0; after c/NX10 =17.0, it is
metastable. The deviations of u at the metastable states
from the bcc crystalline phase are 0.08 (I'=300) and 0.21
(I'=400}. Those are far smaller than the values 0.25
(I =300) and 0.4 (I'=400) for the glassy states in paper
I.

due to Slattery, Doolen, and DeWitt [12] for the upper
line, and

u = —0.898 004I +0.967 86I' +0.220 703I

U
NkBT

-266.5 - &

(a
(e)

Five stages for the quench to I =300 are defined in
Fig. 6: (a) at c/N X 10 =4.6, (b) 7.0, (c) 8.6, (d) 9.5, (e)
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FIG. 6. Evolution of the normalized excess internal energy
for the quench to I =300. Stages are specified at (a) 4.6, (b) 7.0,
(c) 8.6, (d) 9.5, and (e) 24.9. The dashed lines indicate the levels
predicted from the extensions of the fluid internal-energy for-
mulas [upper: Eq. (11);lower: Eq. (12)]; the dotted-dashed line,
the bcc crystalline level via Eq. (13).
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FIG. 7. Same as Fig. 6, but for the quench to I =400. Stages
are specified at (a) 7.3, (P) 12.1, (y) 15.8, and (8) 19.5.
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24.9. For the quench to I =400, four stages are also
defined in Fig. 7: (a) 7.3, (P} 12.1, (y} 15.8, (5) 19.5.
Stages (c) and (y) correspond to a midst of the abrupt de-
creases in u for the quenches to I =300 and 400, respec-
tively.

B. Radial distribution functions

Evolution of g (r) = (g(r}) averaged over
b,c/N X10 =0.21 is displayed in Fig. 8 for the quench
to I =300, and in Fig. 9 for the quench to I =400. For
the quenches to I'=300 and 400, g (r) exhibits a smooth
feature analogous to that in a fiuid simulation [see Fig. 2
(left)] at the stages before the abrupt decreases in u [(a),
(b), (a), and (P)]. For the quench to I'=300, the second
and third peaks of g(r) have shoulders at radii corre-
sponding to the bcc peaks at stage (c). The system seems
to have acquired a substantial degree of the bcc local

g(r) 2

structures at stage (c). We find no substantial change in

g (r) from stage (c) to (d). At stage (e), g (r) is quite simi-
lar to the one in the bcc crystalline simulation [see Fig. 2
(right)]. Though positions and heights of the peaks in
g(r) at stage (e) resemble those in the bcc crystalline
simulation, we find a clear difference at the first bottom of
g (r); finiteness of g (r) at the first bottom indicates a devi-
ation from the bcc crystalline structures [see Fig. 2
(right)]. For the quench to I'=400, g (r) retains a smooth
feature at the stage (y), though u decreases abruptly at
this stage. Stage (y) may be considered as an initial stage
for the transition to the local bcc structures. Some de-
grees of deviation from the bcc crystalline structures still
exist at the stage (5) since the first bottom of g(r) takes
on a nonvanishing value.

Features of g(r) for the metastable states in both
quenches are quite different from those for the simula-
tions with N=432. We found no peaks corresponding to
the bcc structures in all the cases of the quench with
N=432. In one case, a few peaks appeared at the radii
corresponding to the fcc-hcp structures. In other cases,
however, we found several little peaks at those radii
which have no correspondence to the fcc-hcp and bcc
structures.

(c)-

g(r)

0
J ) ) ) a

2 4 6 8 10
r a

0 2 4 6 8 10

FIG. 8. Evolution of the radial distribution function for the
quench to I =300. FIG. 9. Same as Fig. 8, but for the quench to I =400.
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FIG. 10. Evolution af the bandwrientational parameters Q4
and Q~ for the quench to I'=300. Open circles correspond to

Q4 values; closed circles, Q6 values.

FIG. 12. Evolution of the fractional numbers of particles
with various N, for the quench to I =300: open circles, those
with N, =12; crosses, those with N, =13; and closed circles,
those with N, = 14.

C. Local bondwrientational orders

Evolutions of the local bond-orientational order pa-
rameters {Q4,Q&) are depicted in Fig. 10 for the quench
to I =300 and in Fig. 11 for the quench to 1 =400. For
the quench to I =300, the rate of increase in Q& steepens
at c/N X 10 =6.0-7.0, followed by the first abrupt de-
crease in u at c/NX10 =8.0-9.0. At the second
abrupt decrease in u around c/N X10 =11.0-12.0, Qs
increases stepwise to Q&-—0.41. In regard to Q4, we find
its increase at one time, c/NX10 =8.0-9.0, corre-
sponding to the first decrease in u; thereafter, Q4-0.035.
Far the quench to I =400, both Q4 and Q& increase con-
currently with the decrease in u. Q& reaches 0.45 after its
abrupt increase at about c/NX10 4=15.0-17.0. Also
far the quantity Q4, it jumps up to 0.039 at
c /N X 10 4= 15.0-16.0. Final values of {Q&, Q & ) in both
quenches are approximately the bcc values (see Sec. III}.
The aforementioned difference in the evolutional process-
es of Q& between the two quenches indicates that the lo-
cal orders in the two quenches develop in different ways.

We have thus found that the metastable states have a
long-ranged bond-orientational order extending over the
entire MC cell at the same level as that in a bcc crystal-
line state. Comparing the evalution of Q4 with that of
Q& in both quenches, we might remark that Q4 is a pa-
rameter insensitive to the freezing in OCP's; this may be
connected with the fact that Q4=0 for icosahedron, one
of the close-packing structures.

Since the values of N, differ between clusters, it would
be instructive to look into. the evolutions in the fractional

numbers of the particles with N, =12, 13, and 14 in Fig.
12 for the quench to I =300 and in Fig. 13 for the
quench to I'=400. For the fiuid state at 1 =160, the
fractional numbers are 0.30, 0.45, 0.20 for N, =12,13,14,
respectively. For both cases of quenches, the fractional
number with N, =14 increases at the stages where u de-
crease abruptly. Finally, about 95% of clusters in the
metastable state have N, =14 for the quench to I =300;
and abaut 83% for the quench to I'=400. These frac-
tional numbers for N, =14 in both quenches are much
larger than the values 10-50% in the cases with N=432.

Evolutions of the two-dimensional ( W4, W6} maps for
clusters with N, =12 and 14 are plotted in Fig. 14 for the
quench to I =300 and in Fig. 15 for the quench to
I'=400. In the figures, the ( W4, W6 } values for the refer-
ence clusters are likewise displayed by the diamond
markers.

For the quench to I'=300, (W4, Ws ) values are distri-
buted almost uniformly in the region ~W4( ~0.15 and

~ W& (
& 0.16 at stages (a) and (b); this is a typical behavior

in a fiuid (see Fig. 3}. We find that substantial propartion
of clusters with N, =14 has local bcc symmetry at stage
(c); distribution of these clusters resembles that of the bcc
crystalline simulation (see Fig. 4). We may interpret
several subpeaks of g (r) at radii corresponding to the bcc
peak positions at stage (c); a certain degree of local bcc
symmetry is manifested. At stage (d}, distributian of
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FIG. 11. Same as Fig. 10, but for the quench to I =400. FIG. 13. Same as Fig. 12, but for the quench to I =400.
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clusters with N, =14 is centered at around 8'6=0.013,
the bcc value, concurrent with the decrease in number of
clusters with N, =12. At a subsequent stage (e), we ob-
serve an increased degree of local bcc symmetry in the
distribution of clusters with N, = 14.

For the quench to I =400, distributions of clusters
with N, = 12 and 14 at stages (a) and (p) resemble those
for the fluid phase. At stage (y), some fractions of clus-
ters with N, = 12 coalesce at the fcc marker; at this stage,
a concentration to 8'6-—0.013 takes place for clusters
with N, =14. The smooth feature of g(r) observed at
stage (y) may be attributed to such a coexistence of the
local fcc and bcc symmetries. At stage (5), only a small

number of clusters with N, =12, which have no fcc or
hcp structures remaining, and clusters with N, = 14 have
the bcc symmetry to a large extent.

A11 the analyses on the local orders mentioned above
consistently show that the metastable states in both
quenches have almost perfect local bcc structures. The
metastable states in the present quenches, therefore, have
local structures quite different from the mixture of local
fcc, hcp, and bcc structures for the glass states obtained
in paper I.

D. Extended bond-orientational orders

Evolution of the extended bond-orientational sym-
metries are displayed in terms of G6(r) in Fig. 16 for the
quench to I =300 and in Fig. 17 for the quench to
I =400. For the quench to I =300, no extended order
exists at stage (a). At stage (b), bond correlations extend
themselves approximately two-thirds of L. At stage (c),
G6(r) =0.1 in the entire MC cell; hence, the system ex-

hibits a degree of long-range order. For the quench to
I =400, G6(r) is short-ranged at stage (a). At stage (p)
bond-correlation length extends to a half of L. Bond-
orientational correlation becomes long-ranged at the
stage (y) to the same degree as with stage (c) for the
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quench to I =300. Final values of G6(r) in both
quenches are about two-thirds of the bcc value.

0.4

E. Layered structures

One of the main concerns in the present simulations
has been a possible formation of the layered structures
and their relation to the periodic boundary conditions.
For elucidation of such an issue, two-dimensional projec-
tion maps of particles have been constructed from vari-
ous directions to illustrate possible layered structures.
We begin isolating those particles inside a sphere of ra-
dius L/2, then rotating these as a whole by an angle g
around the y axis and by g around the z axis; the result-
ing configuration is projected onto the y-z plane. (Note
that the particle positions are averaged over a sequence of
b,c/N X 10 =0.069.) For each of the stages (a)—(e) and
(a)—(5), we have thus constructed maps from various an-

, h

0.4

0.4

(~)-

0.

G6(r) o.2-

0. I I I I

0 2 4 6 8 10
P 6

FIG. 17. Same as Fig. 16, but for the quench to I =400.

0.

0.

I ) I I

0 2 4 6 8 10

FIG. 16. Evolution of bond-orientational correlation func-
tion G6(r) for the quench to I =300.

FIG. 18. A collection of maps which are made by projecting
particles onto the y-z plane with various rotation angles
($,7))= [(n /40)i, (m /40)j ], i,j=0,1, ,20...
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gles (g, r)) = [(m/40)i, (m. /40) j]with i j =0,1,...,20.
Such a collection of maps at a prenucleation stage (a)

for the quench to I =400 is shown in Fig. 18. We find
particles forming a layer like structure in the map with

(g, g) =(1ln/4. 0, 2m/5. ). Also at stage (a) for the quench
to I =300, we find layered structures emerging at
different angles ( g, g) = (m. /4, m. /5) from those for the
quench to I =300.

Evolutions of such particle layers are depicted in Fig.
19 for the quench to I =300 viewed at the same angles
(g, ri) =(n /4, n /5 ) and in Fig. 20 at (g, g)
=(lie./40, 2m/5) for the quench to I =400. Particle

layers develop over a half of the sphere at stages (b) and
(P). We find nearly perfect layers already at stage (c) for
the quench to I =300. For the quench to I =400, we
find two domains at stage (y): in one domain, particles
are well-ordered forming nearly perfect layers; in the oth-
er domain, particles show a rather disordered feature. At
stage (5), the domain of well-ordered particles spread
over the cell. Such an emergence of two domains at stage
(y) may be understood as a result of the coexistence of
local fcc and bcc symmetries seen in Fig. 15.

If the formation of layered structures has anything to
do with the periodic boundary conditions in the cell,
orientations of emerged layers would have a cubic sym-
metry. We single out the two cases where the layered
structures are found at the prenucleation stages. The two
values of the angle g are very close to each other and ap-
proximately take on n/4, h. alf the characteristic angle for
the cubic symmetry. On the other hand, the values of the
angle q in both cases are multiples of ~/5, characteristic
angles for the fivefold symmetry. Further investigation
on the relation between the periodic boundary condition

FIG. 19. Evolution of layered structures for the quench to
1 =300 viewed at angles (j,g) {m/4, ~/5=)

FIG. 20. Same as Fig. 19, but for the quench to I =400 at
angles {g, g ) ={1 1n /40, 2' /5 ) .
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FIG. 21. Bond-angle distribution P(8) and two-dimensional
radial distribution function g&(r) between intralayer particles in

stages (e) (upper) and (5) (lower). The bottom figures show the
corresponding quantity for the bcc (dashed lines) and for the
fcc, i.e., hexagonal, (solid lines) lattices.

and the emergence of layered structures in a prenu-
cleation stage would require an increased number of sam-
ples.

In the metastable states for the quenches with N=432,
we found layers at angles (g, ri) =(n /20, n. /2), (3m /20, 0),
and (17m/40, n/40) In the. se cases, we could not detect
such an indication of possible cubic symmetry.

Since all the particles reside on layers at the final stages
(e) and (5) as in the case of a lattice structure, two-
dimensional particle positions on the layers may contain
some imperfections. We investigate the character of the
final states, (e) and (5), from the point of view of in-
tralayer correlations by the two-dimensional radial distri-
bution function gz(r}, and the correlation of bond angles
P(8) around a particle. Here, bonds are redefined as the
connecting lines between a particle and its neighboring
particles on a layer inside the circle of radius 2.5a, which
correspond approximately to the first minimum of gz(r).
We note that about 97% of the particles have six parti-
cles inside a circle of r/a =2.5 at stages (e) and (5).

Figure 21 shows gz(r) and P(8) at stages (e) (upper)
and (5) (lower). At the bottom of the figure, intralayer
correlations on the most closely packed planes for each
structure are shown: vertical solid lines depict the corre-
lations for the fcc-hcp hexagonal planes; vertical dashed
lines for the bcc I 1101 planes. Peak positions and
heights of gz(r) and P(8) are nearly identical to the bcc
structures. Nevertheless, we find substantial degrees of
deviation from the bcc structures: for instance, P(8)
around 8-m/2 and gz(r) around r -2.5a do not vanish.
Both for stages (e}and (5), imperfections are found in the
particle correlations on the layers.

F.Motion of defects

Since u shows transient behaviors in the metastable re-
gion, it appears probable that the final state may trans-

form into a purely bcc crystalline state by a further exten-
sion of the MC samplings. To estimate the probability of
such a transition, we investigate the character of the in-
tralayer imperfections and their dynamics during the
metastable state by tracing the motion of particles.

The following three periods are defined in terms of
c/N X 10: (1) 12.6—16.7, (2) 16.7—20.8, (3) 20.8 —24.9.
In each of the three periods, we first single out particles
in a layer (exemplified in Figs. 19 and 20) that extends
continuously into the surrounding image cells at the final
configuration, and projects these (solid circles) on the x-z
plane. Then their positions are traced back to the begin-
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FIG. 22. Motions of particles in and near a layer {size:
2L X2L) projected onto a x-z plane for the quench to I =300
during the periods c /N X 10 = 12.6—16.7 (top), 16.7—20.8
(middle), and 20.8—24.9 (bottom). The open circles denote the
positions at the beginning of a period, the solid circles, those at
the end; in between 19 particle positions follow at an equal in-
terval of Ac/NX10 =0.21. Examples of type (A), (B), and (C)
imperfections are shown. The pairs of vertical noisy lines (left
for x (0, right for x &0) depict the projections of the particle
motions onto a y-z plane.
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ning of the period {open circles) with an equal interval of
hc/NX10 =0.21. Such maps, extended to the size
2L X2L to see the linked motion of particles, are depict-
ed in Fig. 22 for the quench to I =300: (top} corresponds
to period {1);(middle), for the same layer as the top, but
to period (2); (bottom), for the same layer:ts the top, but
to period (3). The pairs of vertical noisy lines depict the
projections of the particle positions during the corre-
sponding period on a y —z plane: the left line is for x & 0
particles; the right, for x & 0 particles. For the quench to
I =400, we depict in Fig. 23 such a map for period (3).

The imperfections found in these analyses can be
classified into three types: (A) a particle outside the layer
(belonging mostly to one of the adjacent layers) in the
open-circle configurations, (B) an interstitial (or an extra
particle outside the adjacent layers) in the layer, and (C) a
vacancy in the open-circle configurations. For the
quench to I =300, we find real transitions during period
(1) (top of Fig. 22} in the forms of merges between (A) and
(C) and between {B}and (C) and of a transformation (or a
settling) from (A} to (B), as well as virtual transitions
within (B); the virtual transition usually ceases at a return
to the original interstitial configurations. We attribute
these real transitions as the causes of the transient behav-
iors of u around c/NX10 =14.0. During periods (2)
and (3) (middle and bottom of Fig. 22), however, no im-
perfections of the types (A) and (C) appear to remain in
the system; transient behaviors in u arise only through
the virtual transitions within (B). For the quench to
I =400 (Fig. 23), we find only virtual transitions within
type-(B) imperfections in period (3). The jitters observed
in the metastable states shown in Figs. 6 and 7 are attri-
buted to those incidents of the virtual transitions.

We thus characterize the imperfections at the final
states in both quenches as intralayer interstitials. An an-
nihilation of such an isolated interstitial by the MC sam-
pling processes would call for a slight but homogeneous
compression of a configuration of particles that surround
the interstitial in the layer, concurrent with appropriate
compressions of the particle configurations in the neigh-
boring layers, in such a way as to preserve the overall bcc
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FIG. 24. Same as Fig. 6, but for the further quench to
I =800.

crystalline structures. We speculate the probability of
such a sampling, if not zero, would be extremely small.

G. Quench to I'=800

One expects the possibility that a further increase in I
might introduce some additional changes to the final
state since the deviation of Madelung energy in units of
k~ T from the purely bcc crystalline state grows propor-
tional to I . Besides, a state where the I parameter is as
large as 1000 may become necessary when application of
the MC results is considered in the outer crustal matter
of the neutron stars. We therefore perform an additional
MC simulation for a further quench. Starting from the
final state for the quench to I' =400 (i.e., at
c/N X10 =25.0), we increase I stepwise through 600
to 800, and maintain it until c/N X 10 =35.0 as shown
in Fig. 1 (bottom).

Excess internal energies u, depicted in Fig. 24, stay
about 0.2 above the bcc value (dashed line), though tran-
sient behaviors are seen at around c/N X 10 =28.5 and
33.0. No change in g (r) is observed during the run after
the quench to I'=800. Figure 25 shows such a g(r) at
c/NX10 =32.4. In Fig. 26,motion of particles in the
same layer as in Fig. 23 is described on a x-z plane from
open circles to solid circles during the period
c /N X 10 =30.7 —34.8 with an equal interval of
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FIG. 23. Same as Fig. 22, but for the quench to I =400 dur-
ing the period c/N X 10 =20.8—24.9. An example of type-(B)
imperfection is shown.

FIG. 25. The radial distribution function at
c/N X 10 =32.4 for the further quench to I =800.
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FIG. 26. Same as Fig. 22, but for the further quench to
I =800 during the period c/N X10 =30.7-34.8. The same

layer is chosen as in Fig. 23.

FIG. 28. Same as Fig. 25, but at c/NX10 4=7.2 for the
quench to I =200.

bc/N X 10 =0.21. A pair of vertical noisy lines depict
the projections of the particle positions onto a y-z plane:
the left line is for x &0 particles; the right, for x )0 par-
ticles. We find that motions of particles are locked
around their original positions.

It has not been possible to remove the defects produced
-rirg--the-rapid -quenches-througu apphcation-of a fur--

ther quench to the system.

V. SUPERCOOLED FLUID STATE

0.4

GP(r) 0.2-

U

0 2
I I

6 8 10

The OCP has the lowest free energies for the bcc phase
at I & I =180. MC simulations with N & 1024, howev-
er, indicate that the supercooled Quid OCP at I =200 ap-
pears stable. The stability of the OCP in the supercooled
Quid state would be attributed to a limited span of simu-
lations and to the periodic boundary conditions. %'e
study the stability of the supercooled Quid OCP with
N=1458 by performing an additional long run. Starting
with the Quid state at I =160, we apply a sudden quench
to I =200 at c=0. The evolution is monitored until
c/N X 10 =7.5.

Figure 27 shows u as a function of c/N. u stays at the
fluid extrapolation level (dashed lines) immediately after
the quench to the final configuration. During
c/N X 10 =0.6—7.5, g (r) continues to exhibit a smooth

FIG. 29. Bond-orientational correlation function 66(r) at
c/N X 10 =7.2 for the quench to I =200.

—176.5

—177.0-
U

NkpT
—177.5-

—178.0
0

I I

5
10 c/N

7.5

FIG. 27. Same as Fig. 6, but for the quench to I =200.

FIG. 30. Motion of particles inside a slab of width M =2.0a
for the quench to I =200 during the period
c/N X 10 =5.7-7.3. The open circles denote the positions at
the beginning of a period, the solid circles, those at the end; in
between eight particle positions follow at an equal interval of
Ec/N X 10 =0.21.
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feature. Figure 28 depicts g(r) at c jNX10 =7.2, near
the last configuration. Distributions of ( W~, 8'& ) values
for clusters with N, =12 and 14 scatter as in the fluid

case at I =160. Bond correlation is short-ranged since
G&(r) =0.0 as shown in Fig. 29. Difi'usive motions of par-
ticles are traced in Fig. 30 from ciN X 10 =5.7 (open
circles) to 7.3 (solid circles) with an equal interval
hc/NX10 =0.21 for those inside a slab of width
hz=2. 0a at the open circle configurations. In all the
analyses, we found no indications of phase transitions.

VI. DISCUSSION AND CONCLUDING REMARKS

In the present simulations, rapidly quenched OCP's
have solidified into bcc monocrystalline states with de-
fects. Microscopic structures in these final states are
significantly different from those in the polycrystalline
glasses obtained in the former simulations with ¹ 432.
Since the quenching procedures are almost the same in
both simulations, the difference in the final states should
be attributed to the difference in N. The choice of N at a
bcc number appears to bear no essential consequences to
the solidification processes since substantial numbers of
imperfections from the perfect bcc crystalline states have
been observed in both metastable states. By considering
the effects of the periodic boundary conditions as to
hinder the motion of particles for smaller N, we may ex-
plain the mechanism of the formation of the metastable
states in both simulations: When the OCP is rapidly
quenched to I )I, particle layers emerge first in an ar-
bitrary direction, which would favor fcc-hcp local struc-
tures. Subsequently the system may transform itself into

a bcc crystalline state if N is large enough, since the
Helmholtz free energies assume the lowest values in the
bcc phase. In case that N is no large enough, however,
the motion of particles would be hindered by the bound-
ary conditions resulting in a mixture of fcc, hcp, and bcc
structures; this would be the case for the simulations with
N= 432.

Emergence of layered structures preceding the nu-
cleation may be a characteristic of the solidification pro-
cesses in OCP's. Experiments [23] and computer simula-
tions [24,25] have discovered that the charged particles in
an external confining field freeze into a state in which
shell (layer) structures are formed in the field direction.
The long-range nature of the Coulomb force, which is a
feature common to both systems, might be a cause for the
emergence of a layered structure in these rapidly
quenched systems.

In the present simulations, the temperature is lowered
by about —,

' during the very short span of time

to t -3X 10 [evaluated through Eq. (5)]. To obtain
metastable glassy states in the MC simulations with large
number of N ( ) 1458), a OCP would have to be quenched
to a value of I much higher than 300-400.
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