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%'e derive the third-frequency-moment (co') sum rule and exact high-frequency dielectric response
function for the layered electron liquid in zero magnetic field. The latter is examined in the kd ~0 and
kd~ ao limits characteristic of bulk behavior and two-dimensional (2D) single-layer behavior, respec-
tively (k is the 2D wave number, d is the distance between any two adjacent layers). %'e incorporate the
correlational part of the e' sum rule into a mean-field-theory description of the long-wavelength disper-
sion of the in-phase and out-of-phase plasmon modes in the presence of very strong correlations.

PACS number(s): 52.25.Mq, 52.35.Fp, 73.20.Mf

I. INTRODUCTION II. THIRD-FREQUENCY-MOMENT SUM RULE

A great deal of attention has been directed to the for-
mulation and analysis of the third-frequency-moment (co )

sum rule for the purpose of assessing the behavior of
strongly correlated Coulomb liquids at high frequencies
and in the neighborhood of the plasma frequency. While
this sum rule has been derived and extensively analyzed
for three-dimensional (3D) [1—5] and two-dimensional
(2D) [6—8] one-component plasma (OCP) configurations,
its derivation and analysis for the layered OCP
configuration has yet to be carried out. This is the first

goal of the present paper.
The importance of the third-frequency-moment sum-

rule coeScient lies in the fact that it is the lowest-order
moment that exhibits correlational effects. In strong-
coupling regimes characteristic of the crystalline or su-

percooled liquid phases of the OCP, it has been shown

[9—12] that the correlational contributions to the disper-
sion of the 2D and 3D plasmon modes are identical to the
correlational parts of their companion co sum rules. The
infinite superlattice (NL ~ ~ ), or layered OCP
configuration, which is intermediate between the 2D and
3D OCP configurations, surely must exhibit this same
feature —a feature that we will exploit in describing the

plasmon dispersion of the layered OCP at strong cou-

pling. This is the second goal of the present paper.
The plan of the paper is as follows. In Sec. II, starting

from the Auctuation-dissipation relation for the layered
OCP, we establish the third-frequency-moment sum rule
and exact high-frequency expansion for the dielectric-
response function in zero magnetic field. The latter is
then examined in the kd ~0 and kd ~ Oo limits charac-
teristic of 3D bulk behavior and 2D single-layer behavior,
respectively. In Sec. III, we incorporate the correlational
part of the co-' sum ru1e into a mean-field-theory descrip-
tion of the dielectric-response function and we calculate
the long-wavelength dispersion of the layered OCP
plasmon modes in the presence of strong correlations.
Conclusions are drawn in Sec. IV.

The layered OCP model considered in this paper con-
sists of a large number NL of parallel plane layers a dis-

tance d apart. Each layer contains a 2D electron liquid
with mean areal density n2D =N, /S and a rigid inert neu-

tralizing positive background. The introduction of a
small external charge-density perturbation p(r~D, z, t )

produces the induced charge-density response

p'" (r2n, z, t)= —e g n,
'" (r~ Dt)5(z —z ),

j=l

p'" (k, q, co)= —1 p(k, q, co),1

E k, q, co
(2)

with the stipulation that the external charge-density per-
turbation, like the induced charge-density response, is to
be confined to the lattice planes. Both quantities are
therefore periodic in q for translations through any lat-
tice number Q = ( 2m. /d X integer ); as such, q is defined

only in the first Brillouin zone, viz. , ~q~
~ ~/d.

We wish to calculate the s=1,3 frequency-moment
sum-rule coefficients

(to')(k, q)= —I dcoco'1mj'(k, q, co) (3)

in the exact high-frequency expansion

R -(k )
(to)(k, q) (co')(k, q)

Rey(k, q, co)=-
CO CO

(4}

where n/'" (r2n, t ) is the first-order density response (over
and above n2D) of the electrons in layer j; zI=jd. Let
(k, q) denote the wave-vector components conjugate to
(rzD, z), viz. , k is a two-dimensional wave vector in the xy
plane and q is the wave number perpendicular to the (xy)
plane layers. We introduce the convenient superlattice
dielectric-response function s(k, q, co ) through the consti-
tutive relation [13]
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for the density-density response function y( k, q, co ),
which describes the linear response of the system to an
external longitudinal field perturbation. The appropriate
starting point for the calculation of the sum-rule
coeScients is the fluctuation-dissipation relation

Imp(k, q, co) = J dt e'"'( [n„,n„(t)]&
oo

D(k, q)= g g F(k', q')1

e L k' jq'L ~ m/d

X [S(k—k', q
—q'}—S(k', q'}]

2 (k k')
. k'(k'+ ')

X [S(k—k', q
—q') —S(k', q') ]

n20
tanh S(k,q, co),

B
is the correlational part with

which can be derived from straightforward statistical-
mechanical linear-response theory;

S(k,q)= I dcoS(k, q, ~) . (12)

ilk q=
N, NL

i=1 j=1
The high-frequency expression for the dielectric-response
function

is the Fourier transform of the local-density operator (x; .

denotes the position of the particle i in layer j), the ( I
brackets refer to ensemble averaging over the equilibrium
ensemble, and

S(k,q, ~)= I dt e'"'( In„,n„
2N, NL

2nN NL 5g5q5(co)

is the dynamical structure function.
The lowest order (s = 1)f sum rule

co~D(k)
e "(k,q, co)=1— F(k, q }

N

c02D(k)
F(k, q)

A'k' '
e /a 8me

follows from (4), (9), (10), and the relation

(13)

(c0&(k,q) = —. ( [n~,, n~, , ] &
=-

tAN, NI

n2Dk
2

(~'&(k, q)= . ([n~t, ,'n„, ]&,
s AN, NL

however, is far more involved: repeated use of
Heisenberg's equation followed by some lengthy commu-
tator algebra yields

n2Dk
2

(~'&(k, q) =— 3k
cozD(k)F(k, q}+ (E2&;„&

AI 2

+ +cozD(k)D (k, q )
2m

(10)

where c02D(k)=(2mn2De k /m }' is the 2D plasma fre-
quency, F ( k, q) =sinhkd /( cosh kd —cosqd ) is the super-
lattice form factor, (Ez;„& is the expectation value of the
(2D) kinetic energy per particle for an interacting system,
and

readily results from substituting (6} into (4) and carrying
out routine commutator calculations for the Hamiltonian
and the local-density operator. The calculation of the
co -sum-rule (s =3) coefficient

=1+F(P,q )4(k, co)y(k, q, co), (14)
e k, q, co

where p=(k co lc )', —C&(k, co)=$2D(k)p(k, co)/k is
an effective potential that takes account of retardation,
PzD(k)=2me /k is the Fourier transform of the 2D
Coulomb potential, and ct = (n.n zD )

'~ is the 2D
Wigner-Seitz radius. In deriving (13), however, we have
ignored the retardation effect in (14) [and in (18}below]
by letting P(k, co) =k; this is a reasonable assumption in
view of the fact that the displacement currents are almost
always dominated by the electrostatic effects of nearby
layers [13]. We note that our analysis is necessarily re
stricted to wave-number domains k » co& /c; or,
equivalently stated, the dimensionless wave number ka is
stipulated to be much larger than the relativistically
small quantity (e /o }/mc . This is a consequence of re-
quiring m (co for the convergence of the sum-rule ex-
pansion, while at the same time requiring co&&kc to
guarantee that the displacement current will always be
negligibly small.

We next consider the two limits kd ~0 and kd ~~
where the high-frequency expression (13) for the layered
OCP dielectric-response function is expected to exhibit
3D bulk behavior and 2D single-layer behavior, respec-
tively. The kd~0 limit can be physically meaningful
only if one sets d equal to the 2D %'igner-Seitz radius a
and then lets kd and qd tend to zero at the same rate. In
this limit, F(k, q)=2k/(k +q )d, and, insofar as corre-
lational effects are concerned, the system is isotropic so
that S(k, q) =S(k3D); Eq. (13) therefore becomes
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e3D (k3D~0, to ) = 1—
2

C03~

CO

3D 2 & Ekin ~ 4 (Ec )3D

/a 3Q 45 e'/a 3Q

X (k3Da3D ) (16)

for the 3D OCP dielectric-response function at long
wavelengths reveals that, aside from the difference be-
tween &Ek;„) and ( —,')&Ek;„) (which is quite marked at
zero temperature, but disappears in the classical limit),
and aside from the (k /k3D) and (1—

q /2k ) factors,
(15) replicates (16). The unavoidable (k /k3D) factor
also shows up in the random-phase approximation (RPA)
and is well understood [13].

In the kd ~ nn limit, F(k, q) = 1, S (k', q'}=S(k'), and

Xiq, i&„/d F(k', q')=Nt,

e "(kd~O, qd-~O, co)~d

2
~3@ k

co k3~2 2

~3D k &Ekin ~ q 4 (Ec }3D

co k 3Q e /a 3z 2k 45 e /a 3Q

X(k3Da3D )
— . , (15)

wh«e k» =k +q, (E, )3D is the correlation energy per
particle (

—
—,', times the Madelung energy for the 3D OCP

bcc crystal), a3D=(3/4m. n3D)' is the 3D Wigner-Seitz
radius, and to3D=4nn3De /m Co.rpparison with the ex-
act high-frequency expression [5]

which portrays the linear response to the total (external
plus induced polarization) field perturbation. At long
wavelengths and in the absence of collisions, this
response function can be well approximated by the hy-
drodynamic RPA formula

n2~k 2

' —3k'&E'„}, '(k, , to) = (19)

where, at zero temperature &E„;„}0=en 2' /2m is the
kinetic energy per particle of a noninteracting 2D system;
in the classical limit, &Ek;„)o=k~T. Equation (19) is an
adaptation of Fetter's [13]hydrodynamic description of a
layered electron Quid with collisional damping to a
description without collisional damping. The adaptation
amounts to reformulating the Ref. [13] collisional adia-
batic energy equation for the hydrodynamic pressure into
a collisionless adiabatic energy equation: the heat-
capacity ratio C /Ci, =2 quoted in Ref. [13] refiects the
fact that, in the presence of particle collisions, adiabatic
compressions of plasma waves are necessarily two dimen-
sional; however, in the absence of collisions, the adiabatic
compressions are essentially one dimensional [15],
whence the appearance of the numerical coefficient
C /Ci, =3 in the denominator of (19) and in the RPA
third-frequency-moment sum rule

can therefore be realized by incorporating D(k, q) into
our construction of E(k, q, to). This can be accomplished
within the framework of the mean-field-theory formalism
presented below.

It is convenient to work in terms of the screened
density-density response function ysc( k, q, co )

e(k, q, to) = 1 —F(k, q )$2D(k)gsc(k, q, to),

In this limit, the exact 2D OCP e "(k,to) for the single
uncoupled layer [6—8] is rigorously recovered from (13).

& to &(k q)IRpA=
n2~k 2

3k(k)F(k, q)+ &E„;„)
m

III. LONG-WAVELENGTH
PLASMON DISPERSION

Ak

2m
(20)

e(k, q, co(k, q)}=0 . (17)

In constructing e(k, q, co), we are guided by the observa-
tion [9—12] that the correlational contribution to the
dispersion of the OCP is identical to the correlational
part D(k, q) of its companion to sum rule at long wave-
lengths. A correct description of long-wavelength
plasmon dispersion in the presence of strong correlations

We turn now to the calculation of plasmon dispersion
in the strongly coupled layered OCP: the primary goal
here is to determine how the mode structure is affected
by strong particle correlations. Their importance in su-
perlattice structures is especially underscored by the re-
cent prediction [14] that the critical r, =a/ao value (ao is
the Bohr radius) marking the occurrence of quantum
Wigner crystallization in a single isolated layer can be
significantly decreased in a superlattice by the Coulomb
interaction between layers.

The plasmon frequency of the layered electron liquid is
calculated from the dispersion relation

(21)

Satisfaction of the co sum rule (10) can then be
guaranteed by setting [5,12]

& E'„„),—& E'„;„&
F (k, q)G (k, q ) = D(k, q )+——

e /a
ka .

(22)

Here, we wish to reiterate our rationale for embedding
the correlational part, D ( k, q ), of the to -sum-rule
coelficient into the mean-field-theory formula (20): at
very strong coupling, the correlational contributions to

which (19) satisfies.
To account for correlational effects, we introduce the

static local )beld correction G (k, q ) through the phenome-
nological mean-field formula [5]

ysc(k, q, co)
Xsc(k q ~)=

1+F(k, q )pzD( k )ysc(k, q, co)G (k, q )
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the long-wavelength dispersion of the 3D and 2D OCP
plasmon modes are known to be identical to the correla-
tional part of the co sum rule. We therefore argue that
this must also be an inherent feature of the intermediate
layered OCP configuration thereby motivating the ansatz
(22).

Now, the plasmon modes of the layered OCP are
spread into a band with each mode labeled by a q value.
The frequency band is bounded from above and below by
the q =0 in ph-ase (bulklike) and q =+a/d out-of phase
(acousticlike modes}, respectively. In describing the
long-wavelength dispersion of the plasmon band in the
presence of strong correlations, it suffices here to direct
our attention to these two boundary modes. From Eqs.

co (k~O, q=O)=co 1+— k ad+ —k d I3D 4 2

Acoustic plasmon:

(23)

co (k —+0, ~q~=m/d)= 2 (1+2I+),
ma

where

(24)

(17}—(19), (21), and (22), one readily obtains the following
plasmon frequencies.

Bulk plasmon:

L) k 0, ~q(
= „* „2d 2d

F~(k', q') [S(k', q') —1], +—'„' [cothk'd —F~(k', q') ]
NeNL k' Iq'I

+—,'k'd [F+ (k', q') ,'F+ —(k—',q')cothk'd+ —,
'

]

( k, ,
)

sinhk'd
coshk'd icos q'd

(25)

For the acoustic plasmon, we note that the long-
wavelength hypothesis k (Ez;„)/m «co indeed
remains intact since it is tantamount to the strong
Coulomb coupling condition (Ez;„)«(e /a )(d/a) that
prevails for the layered OCP under consideration in this
paper. At the same time, this requires that the kinetic-
energy term be dropped from (24) as we have done.

Accurate calculations of D(k, q) and I+ are contingent
on the availability of static structure-function data for the
layered OCP. While Monte Carlo (MC) simulations pro-
vide these data for the 2D and 3D OCP in the classical
[16] and quantum [17] domains, MC structure-function
data for the layered OCP have yet to be generated.

The appearance of the layered OCP correlation energy
per particle

2 3 kI = 1 ——
NN d ~ ~ (k'+ ') 2k'+

e L k' q' q

X [S(k', q') —1], (27)

and

8 (~ }3D o3DI
45 e /ct3D ct

(28)

where [as in the second version of (11)]the q' summation
extends from —00 to + 00. From the point of view of
passing to the d =a bulk limit, the form (27) is more
transparent than (25): in this limit, we recall that
$(k', q')=S(k3D') whence (27) and (23) become

)LOCP

e /a
1 F (k, q) [S(k, q) —1]

1

k Iql —~/d

co(k~O, q=0)=co3d 1+— k a3D
e /a3D

(26)

in the expression (25) for I is hardly surprising, espe-
cially in view of the fact that the correlational contribu-
tion to the 2D and 3D OCP counterparts of (23) is a pure
correlation energy density [9,10] term [see, e.g. , (29)
below]. As an aside, we note that I can also be written
as

2 c 3D(& )

45
(29)

Equation (29) without the kinetic-energy term is identical
to the Ref. [10],Eq. (8), long-wavelength plasmon disper-
sion formula (with q =0) corresponding to the quasihar-
monic Wigner lattice along the [1,0,0] direction.

Equations (23) and (24) describe long-wavelength
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(kd~0) plasmon dispersion in the strongly coupled lay-
ered OCP. Our preliminary estimates indicate that I
and I+ are negative and, as expected, overwhelm their
kinetic-energy counterparts at high coupling. We note
that the correlational correction to the q =0 plasmon
dispersion (like its kinetic-energy counterpart) is O(k ),
as it should be for the bulk mode. As to the iq~ =n/d
plasmon, when d /a ))1, the contribution

5 a «. )2D

16 d e /a
(30)

is small and affects the acoustic velocity only negligibly.
For order unity values of dla, however, it appears that
the acoustic velocity should be substantially diminished
by the presence of strong correlations.

IU. CONCLUSIONS

Starting from the superlattice fluctuation-dissipation
relation [Eq. (5)] (derived by us from straightforward
statistical-mechanical linear-response theory), we have es-
tablished the third-frequency-moment sum rule [Eq. (10)]
and exact high-frequency dielectric-response function
[Eq. (13)] for the layered electron OCP. Equations (5),
(10), and (13) are valid in both the quantum and classical
domains and they are valid for a d ~ 00 and for arbi-
trary values of the k and q wave numbers.

In the d =a, kd~0, qd~0 limit, characteristic of
bulk behavior, the correlational part of the high-
frequency dielectric-response-function expression (13) for
the layered OCP comes remarkably close to replicating

its 3D counterpart in (16) at long wavelengths; the two
become identical when q =0. In the opposite limit
kd ~ co, (13) exactly reproduces its 2D single-layer
dielectric-response-function counterpart.

We have embedded the correlational part of the third-
frequency-moment sum rule into a standard mean-field-
theory formula for the dielectric-response function and
we have calculated the dispersion of the q =0 and
iq~=a/d plasmon modes. The resulting plasmon fre-
quency formulas (23) and (24) should provide a reliable
description of long-wavelength plasmon dispersion in the
strongly coupled layered OCP.

The O(k ) correlational correction that appears in the

q =0 bulk plasmon contains the expected correlation en-

ergy density contribution. Our preliminary estimates in-
dicate that, similarly, to what occurs in strongly coupled
2D and 3D OCP's, this correction is negative and
overwhelms its 0 (k ) kinetic-energy counterpart. As to
the

~ q ~

=
m /d plasmon, it appears that for order unity

values of the d/a ratio, the correlational correction could
substantially reduce the acoustic velocity in the strong-
coupling domain.
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