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We investigate the kinetics and fractal morphology of aggregating polystyrene latex in an intermediate
region between diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation
(RLCA). The measurements are made by means of a low-angle elastic-light-scattering setup covering
two decades in scattering wave vectors. For each aggregation run, the salt concentration ¢ is changed
and the samples are prepared under isopycnic conditions, to avoid differential sedimentation. The aver-
age cluster mass is found to grow according to a power law with an exponent z varying in a continuous
fashion in the range of salt concentration used. At high ¢ (DLCA), we find for the fractal morphology
d;=1.65. For lower concentrations, d, is at first larger than 2 and therefore close to the typical RLCA
fractal dimension, but then it gradually reverts to lower values not far from those typical of DLCA. This
behavior is also exhibited at the lowest values of ¢ explored, although the decay to DLCA is much
slower. An interpretation of the results is presented on the basis of the available theories and simulation
work on the cluster morphology in the intermediate regimes.

PACS number(s): 64.60.Cn, 05.40.+j, 82.70.Dd

INTRODUCTION

Over the last decade a large amount of work has been
produced in the area of colloidal aggregation, both
theoretically [1-6] and experimentally [7—16]. There are
various reasons for this upsurge of interest in the field.
Among them is the fact that both theory and experiments
have shown that universality features are exhibited when
the aggregation process occurs according to two well-
defined regimes [13—15], those of diffusion-limited cluster
aggregation (DLCA) and reaction-limited cluster aggre-
gation (RLCA). In these regimes the sticking probability
between monomers is assumed to be equal to one or
much smaller than one, respectively. Experimentally the
sticking probability is varied by adding to a solution of
stable colloids some reagents that screen or reduce at will
the Coulombic stabilizing interaction.

The two most prominent features associated with the
universal behavior are the reaction kinetics and the clus-
ter morphology. The theory predicts that the average
cluster mass should grow linearly in time for DLCA and
exponentially for RLCA, the fractal dimensions of the
clusters being close to 1.8 and 2.1, respectively.

Most of the experimental work has been done in these
two regimes, and there is striking evidence that if the
reacting solutions are properly arranged to meet the
DLCA or RLCA conditions, then universality features
are indeed observed, irrespective of the details of the sys-
tems under investigation.

The work on pure DLCA and RLCA has been so
influential as to often generate the incorrect impression
that all the aggregation processes should fall into either
one of these two modes.

In this work we have investigated by means of static
low-angle light scattering the kinetics and cluster mor-
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phology of polystyrene colloids aggregating under condi-
tions between DLCA and RLCA. We will call these re-
gimes “intermediate.”

The description of the reaction kinetics is usually given
in terms of the Smoluchowski equation [17]. Unfor-
tunately, analytical solutions are known only for a few
simple forms of the kernels appearing in the equation.
To overcome this difficulty and in order to describe the
intermediate regimes, dynamic-scaling concepts have
been introduced [18] by parametrization of the kernels in
terms of only two scaling coefficients. Asymptotic ex-
pressions for the cluster distributions and for the evolu-
tion average quantities are thus derived at the expense of
a minimal budget of ad hoc assumptions.

Alternatively, simulation work [19,20] and preliminary
experimental observations [21] suggest that the inter-
mediate regimes could be described as a crossover be-
tween RLCA and DLCA, although no analytical work to
describe such a transition has been produced so far.

Additional and complementary characterization of col-
loidal aggregation comes from the analysis of the aggre-
gate morphology. In this regard, we have studied wheth-
er the aggregates still retain dilation symmetry in the in-
termediate regimes and, if so, how the fractal dimension
changes as one moves from DLCA towards RLCA.
Indeed, although simulation work has been produced on
this topic and provides interesting predictions [19], sup-
porting experimental evidence is still lacking.

THEORY

We will briefly recall some of the results of the
dynamic-scaling solutions of the Smoluchowski equation
(17]
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where c, describes the concentration of clusters made up
with n monomers. It is a rather crude description of the
system since it is valid in the mean-field limit. Most of
the nonsimulation theoretical predictions are, however,
based on this equation, where all the physics is contained
in the expressions of the kernels k(ij). It is commonly
assumed [18] that they are homogeneous functions of the
arguments i and j,

k(ai,aj)~a’*k(i,j), A<2, )

k(i,j)~itj¥ (j>>i), v<1 (3)

where the restrictions on A and v arise from the inter-
penetrability of clusters.

The previous relations provide a classification of the
kernels by means of the two exponents A and u
(v=A—p). Let us recall here their physical meaning.

Since a is supposed to be a large positive constant, the
homogeneity parameter A describes the reactivity of two
big clusters. It accounts for the tendency of the system to
form large aggregates in a short time. Moreover this pa-
rameter is strongly related to the aggregation kinetic,
since, as indicated above, A=0 corresponds to DLCA
while A=1 yields RLCA. Values larger than 1 imply
gelation, namely, the formation of an infinite cluster at a
finite time. Scaling arguments have been used [18] to pre-
dict that in the intermediate regimes the growth of the
average mass is given by

M=V1"2 g<r<1. 4)

Values of A at variance with those characteristic of
DLCA and RLCA have been reported in a recent paper
[22] but very little work has been done to investigate in a
systematic way the intermediate regimes.

The exponent u describes whether big-cluster—big-
cluster or big-cluster—small-cluster aggregations are
favored, and therefore is a control parameter for the
cluster-size distribution. No restriction is imposed on
this exponent, and its sign is the all-important element.
In fact, for u <0 the aggregation between a big cluster
and a small one is favored and the cluster distribution is
monodisperse. On the contrary, for u >0 the interaction
between two big clusters is stronger and the system is po-
lydisperse. When u=0 neither the former kind of reac-
tion nor the latter plays a special role. The prediction is,
however, that the distribution is still polydisperse to some
extent.

THE EXPERIMENTAL SETUP

Since the fractal morphology can be best evaluated
from the asymptotic behavior of the scattered intensity,
we have used a low-angle scattering setup covering al-
most two decades in scattering wave vectors, from
g=4X10%tog=3%X10*cm .
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It has already been described in previous papers
[12,23], so we will recall here simply that the measure-
ments are taken at 30 scattering wave vectors equally
spaced on a log plot. Light scattered from the sample is
collected by a lens and focused on a multielement monol-
ithic sensor. Each element is shaped in the form of a
quarter of an annulus centered around a tiny hole
through which the transmitted beam is allowed to pass
clear of the sensors. Two additional sensors are used.
One is placed behind the transmitted beam pinhole to
monitor transmitted beam power. The other collects a
small portion of the incoming beam power via a low
reflectivity beam splitter placed before the scattering cell.
Since the system collects light at small angles, there is no
possibility to avoid stray-light contributions. Conse-
quently, prior to each run a blank measurement is taken
with the scattering cell filled with the solvent alone.
These blank measurements are then used to correct the
scattering data by properly taking into account both in-
coming beam intensity variations and the sample turbidi-
ty. The sample thickness is selected so as to give a
scattering signal large enough to make stray-light correc-
tions reasonably small.

The sample is made of surfactant-free polystryrene
spheres 0.13 um in diameter suspended in a mixture of
water and heavy water so as to make the solvent density
as close as possible to the density of the polystyrene
spheres. Divalent salt (MgCl,) is used to promote the ag-
gregation. We found that a 30 mM concentration is ade-
quate to generate pure DLCA. The salt content is then
lowered to cover the intermediate region toward RLCA,
while the polystyrene concentration is kept equal to

5% 10'° monomers/cm?>.

EXPERIMENTAL RESULTS

In order to extract estimates of the average cluster
mass M, average radius of gyration R, and fractal di-
mension d,, we have tried to fit the scattered intensity
distributions with the easiest guess possible for the struc-
ture factor, namely, with the Fisher-Burford (FB) func-
tion [24]:

5(0)
[1+(gRg)2/3d, 17"

S(g)= (5)

The choice was prompted by the fact that in previous
studies on fast DLCA aggregation we found that it did fit
the data quite nicely [12]. We have also assumed that the
cluster-size distribution is monodisperse. This assump-
tion is consistent with the fact that u <0 corresponds to
DLCA and p=0 to RLCA [25], so a reasonable guess for
the intermediate regimes is u <0. We show in Fig. 1 a fit
to scattering intensity data taken at an intermediate value
of the salt concentration, where (as we will show later)
the reaction kinetics was definitely at variance with the
DLCA behavior. In the fitting procedure [26] the
I(qg =0) value, the average radius of gyration, and the
fractal dimension were kept floating. As one can notice,
the fit is very good, and we have not attempted to utilize
different expressions other than FB since we estimated
that the quality of the fit could hardly be improved.
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FIG. 1. Typical nonlinear least-squares fit of experimental
data in the intermediate regimes ([MgCl,]=14 mM) with the
Fisher-Burford function.

Furthermore, since the average mass comes from the
I(g =0) extrapolated value [6], it is reasonable that such
an estimate would not be strongly dependent on the
choice of the fitting function.

In Fig. 2 we plot the dependence of the average mass
on aggregation time ¢. The data are shown for two limit-
ing concentrations, namely, ¢ =13.5 mM and ¢ =30 mM.
In both cases the data can be fitted with a power-law
growth and it is quite evident that the exponent z be-
comes larger as the salt concentration is diminished.
Cases at intermediate values of the salt concentration ¢
are not shown to avoid overcrowding, but power-law
growth is always observed. If these data are interpreted
on the basis of dynamic-scaling solutions, then
z=1/(1—A) and one can extract the dependence of A on
salt concentration ¢. The data are shown in Fig. 3. One
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FIG. 2. Log-log plot of {M ), vs t for two limiting salt con-
centrations: (a) ¢=30 mM, () ¢=13.5 mM. Since
(M), <t?=¢"1"%) the slope gives an estimate of z and conse-
quently of A.
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FIG. 3. Behavior of the homogeneity coefficient A as a func-
tion of salt concentration.

can notice that the variation is fairly smooth and A
changes from A=0.03 to A=0.51. Of course if dynamic
scaling is inapplicable, then the interpretation of the data
in terms of A is meaningless. Comments about this point
are included in the last section.

We point out that we could not study the kinetics at
lower values of salt concentration because the duration of
the runs becomes unacceptably long. Indeed the time re-
quired to collect the data at the lowest concentration is
already two days. Incidentally, we have also performed
runs under nonisopycnic conditions, using water instead
of the water—heavy-water mixture as a solvent. Under
these conditions, reaction rates are definitely faster (by a
factor between 2 and 3). We attribute this speeding up to
sedimentation effects. It is worth mentioning that while
at low salt concentration the dependence of M on ¢ re-
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FIG. 4. Log-log plot of { M ) vs ¢ for a nonisopycnic run (a)
Both curves are for ¢ =30 mM

and an isopycnic run (b).

(DLCA).
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tains the same power-law behavior, at high salt concen-
tration (close to DLCA) there is a marked difference be-
tween isopycnic and nonisopycnic conditions (Fig. 4).
Although in the early phases both water and
water—heavy-water solutions give M « ¢, later on noniso-
pycnic samples exhibit a quite evident and repeatable ac-
celerated growth.

At present we have no explanation why reactions
closer to DLCA show larger deviations between isopycn-
ic and nonisopycnic conditions when compared to what
happens for reactions closer to RLCA. Simulation work
in this area would be very useful to clarify this issue.

We now present the results concerning the fractal mor-
phology of the clusters grown in the intermediate re-
gimes. As we indicated in the experimental section, we
derive from each plot of the scattered intensity as a func-
tion of the scattered wave vector an estimate of the frac-
tal dimension d > SO we are able to recover the time evo-
lution of d; for each aggregation run in the intermediate
cases. The data are shown in Fig. 5, and refer to three
runs. Curve (a) refers to one of the largest salt concentra-
tions (¢ =27 mM), (b) to an intermediate case (c =17
mM), while (c) corresponds to one of the lowest concen-
trations (c =14 mM). Curve (a) is close to a pure DLCA
growth. Correspondingly the value of d is rather low,
d;=1.68, and in agreement with the findings of a previ-
ous study [12]. It is worth noticing that the value of d,
does not change during the entire run, the data being
scattered around a stable value. The behavior of curve
(b), at variance, starts from a larger value, close to 2, and
then decays to a value close to that of curve (a). Finally,
curve (c) stays close to d,=2.03, a value typical of
RLCA, in the initial stages of the aggregation and then
exhibits a slow decay.

The following comments are appropriate. First, it is
quite surprising that such a large value for d is actually
observed before the reaction kinetics attains the exponen-
tial growth typical of the RLCA regime. Accordingly,
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FIG. 5. Behavior of the fractal dimension as a function of
time for three salt concentrations: (a) c =27 mM, (b) ¢ =17 mM,
(c) c=14 mM.

fractal morphology has a quicker response than the kinet-
ics to changes in the sticking probability. Second, and
most interesting [curve (b)], the dimension changes dur-
ing the course of the reaction, starting from values not
far from the RLCA value, and then reverting to a level
close to that typical of DLCA. This is in contrast with
the definition of a fractal as a scale invariant, self-similar
object. Its structure is described by a unique fractal di-
mension irrespective of the actual size of the cluster.
This is the case of DLCA and RLCA and is in agreement
with the results presented here for case (a) shown in Fig.
5.

To understand what happens in the regimes far from
both DLCA and RLCA, notice that by choosing the FB
function for the fitting procedure we tacitly assume that
the clusters are ideal fractals. Strictly speaking, we there-
fore derive an “‘effective’ fractal dimension. Its strong
dependence on time, i.e., on the aggregate size, means
that the way clusters meet and stick to one another
changes during the growth. Indeed it has been pointed
out [20] that at the beginning monomers can freely
wander among the branches of the growing clusters, due
to the low sticking probability and this results in a dense
packing. As the clusters grow, however, the number of
points of contact increases too and the effective sticking
probability is higher. So the clusters do not succeed in
interpenetrating each other as they used to do when they
were small. According to this picture one should not be
surprised to observe more tenuous structures and lower
fractal dimensions as the reaction proceeds.

To further corroborate the data above, and again ig-
noring that the clusters in the intermediate regimes are
not fractals in a strict sense, we have plotted for each run
the average mass as a function of the radius. For true
fractals, a log-log plot would give a slope equal to d,
since M <R;’. A plot of this type is shown in Fig. 6.
One can see that the data fall initially on a straight line.
The value of d, thus derived is in good agreement with
the value determined at the early stages via the fitting of
I(q) with the FB function. Later one, however, the data
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FIG. 6. Log-log plot of {M ), vs R; for ¢ =13 mM (inter-
mediate regimes).
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FIG. 7. Log-log plot of (M), vs R for a DLCA (c =30
mM). The slope gives an estimate of d.

tend to align on a smaller slope, thus confirming that the
fractal dimension decreases. On the contrary, Fig. 7
shows that in the case of DLCA no sign of change of
slope is noticeable in the plot of M versus Rg;.

These experimental results can be interpreted on the
basis of a simulation work by Kolb and Jullien [19] in
connection with the morphology in the intermediate re-
gimes. The authors do predict that for sticking probabili-
ty between 1 and 0, a crossover should exist. Conse-
quently they suggest a generalized fractality reaction

Rg

M«RYf (6)

where £, is a characteristic interpenetration length de-
pending on the sticking probability and independent of
R, and f(R; /&) is an unspecified function.

To illustrate it, they show log-log plots of
R (p =1)/R (p) as a function of the mass of the cluster.
For p =1 the ratio is of course equal to one and describes
the DLCA mode. As p is decreased, the plots start with a
finite slope, but show a rolloff, and the slope eventually
decreases and tends to align itself to a horizontal asymp-
tote. The position of the rolloff shifts to larger values of
the cluster mass as p is reduced. For p =0 a straight line
with the appropriate slope is also reported, indicating the
pure RLCA mode.

The experimental results shown in Fig. 5 are therefore
in qualitative agreement with the findings of Kolb and

Jullien. A quantitative comparison is not possible at this
stage.

CONCLUSIONS

Working with isopycnic and unsheared samples we
have investigated by means of static light scattering the
kinetics of aggregation under conditions that are inter-
mediate between DLCA and RLCA.

The data show that the rate of growth of the weight
average cluster mass follows a power law. If these data
are compared with the dynamic-scaling solutions for the
Smoluchowski equation [18], the only available analytical
solution so far, good agreement is found, and the so-
called homogeneity exponent A varies in a range quite
consistent with the scaling hypothesis (0 <A <1). Within
this scenario one could then conclude that regimes at
variance with DLCA and RLCA do exist and no cross-
over between the two is actually taking place. An alter-
native explanation, however, could be presented on the
basis of the morphology results.

They show that although under DLCA conditions
rather typical d r values are found, for intermediate
values of the electrolyte the “effective” fractal dimension
changes during the course of the reaction, first attaining
larger values, typical of RLCA, and then reverting to
values not far from those typical of DLCA. Consequent-
ly the morphology data strongly suggest that,, as the
average cluster mass grows, diffusion becomes the pre-
vailing limiting process and the aggregation crosses over
to a diffusion-limited one [21].

In order to reconcile such a behavior with the reported
time evolution of the average cluster mass, one has then
to assume that the plots shown in Fig. 2 cannot be con-
sidered as truly asymptotic. This would suggest that, if
measurements could be performed at later times, a cross-
over in the kinetics should eventually become evident.
This alternative picture is quite interesting and stimulat-
ing, but further work, both theoretical and experimental,
is highly desirable.
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