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Construction and application of an accurate local spin-polarized Kohn-Sham potential
with integer discontinuity: Exchange-only theory
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An accurate spin-polarized exchange-only Kohn-Sham (KS) potential is constructed from a considera-
tion of the optimized-effective-potential (OEP) method. A detailed analysis of the OEP integral equation
for the exchange-only case results in a set of conditions which are manifestly satisfied by the exact OEP;
these conditions are employed to construct an approximate OEP, V„,and therefore an approximate KS
exchange-only potential as a functional of KS orbitals. Further, it is shown that this V, can be derived
analytically based on a simple approximation of the Green's functions in the OEP integral equation. The
constructed potential, although approximate, contains many of the key analytic features of the exact KS
potential: it reduces to the exact KS result in the homogeneous-electron-gas limit, approaches —1/r as
r~ (x), yields highest occupied-orbital energy eigenvalues c, that satisfy Koopmans s theorem, and ex-
hibits an integer discontinuity when considered as a function of fractional occupancy of the highest-

energy occupied single-particle state of a given spin projection o. In addition c. nearly exactly satisfies
Janak's theorem. The approximate OEP is a simple but remarkably accurate representation of the exact,
numerically derived exchange-only OEP. Detailed numerical results obtained by employing V„as the
exchange-only potential for ten atoms with closed subshells yield total energies, Hartree potentials,
single-particle expectation values, and c, which are in excellent agreement with both exact OEP and
Hartree-Fock (HF) results and represent a significant improvement over the results obtained by employ-

ing other exchange-only potentials. Similarly, the properties of alkali-metal atoms are calculated includ-

ing the separate spin-up and spin-down densities to obtain results in excellent agreement with those of
spin-unrestricted OEP and HF methods. Finally, we demonstrate the accuracy of V„by calculating the
total energy, e t, and e t as a function of fractional filling f, of the highest occupied single-particle or-
bital for the magnesium atom (Z = 12) from N=9-12 electrons and find excellent agreement with both
spin-unrestricted OEP and HF results even when e is strongly dependent on f. In addition we display
the integer discontinuity in V„when the highest-energy spin subshell begins to be filled.

PACS number(s): 31.10.+z, 31.20.Sy, 31.90.+s, 31.20.Di

I. INTRODUCTION

The major problem in the implementation of the
Hohenberg-Kohn [1], Kohn-Sham [2] (KS) density-
functional theory for the calculation of the ground-state
properties of interacting electrons subject to external po-
tentials is in obtaining an accurate approximation to the
exchange-correlation potential V„,([n],r), which is the
functional derivative of the exchange-correlation energy
functional E„,[n] with respect to the electron density
n(r) Unfortun. ately, although it has been shown that E,
may be written as a functional of n only [1],no functional
of n alone [or of the spin densities n (r) in a spin density
theory [2,3]] has yet been proposed which results in accu-
rate calculations of the total energy E, the maximum oc-
cupied orbital energy eigenvalue c, which has been
shown to equal the negative of the ionization energy of
the system [4], and n(r). Moreover, the likelihood of
ever finding a V„,([n ],r) that respects the principle of in-
teger preference [4—6] has been considered doubtful.
Such a V„„ for a closed-subshell system, would be a

discontinuous function of N, the total number of elec-
trons in the system. In such a system, the value of V„,(r)
must essentially jump by a constant for finite r as the
number of electrons is allowed to vary from N —6 to
%+5 where 5 is a positive infinitesimal [4—7]. Such a
discontinuity is important not only to ensure that atoms
that are far apart contain an integral number of electrons,
but also makes a significant contribution to the calcula-
tion of energy band gaps in semiconductors and insula-
tors [8,9].

Reasonably accurate results for E, e, and n (r) have
been obtained by Perdew and Zunger [10], who employ
an orbital-density-dependent self-interaction correction
to the usual local-spin-density approximation (LSDSIC)
for E,. This method lies outside the usual KS theory in
that instead of each orbital with spin projection o. being
acted on by the same exchange-correlation potential,
V„, , each orbital P, is acted on by an orbital-dependent
potential, U", . The Perdew-Zunger method, however,
effectively yields a discontinuity in the orbital potential
for the highest occupied state when N is increased
through integral occupancy and thus enables it to respect
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the principle of integer preference [5,6]. Recently,
Krieger and Li [11], extending an earlier physically
motivated conjecture of Harbola and Sahni [12], have
shown how any [ v„'," ), including possibly SIC and
gradient-expansion corrections, may be combined to cal-
culate a single V, for each a which yields nearly the
same results for E, n (r), and generally for the s as do
the [ v„", ) for integral N [13]. However, the resultant
V„varies continuously as the number of electrons is
varied continuously about integer occupancy.

In the present work we discuss the derivation and ap-
plication of an accurate local spin-polarized Kohn-Sham
potential for the exchange-only case by constructing an
approximate solution of the integral equation for the op-
timized effective potential [14,15] V'. Here V' corre-
sponds to the set of spin-polarized potentials whose
eigenfunctions, when employed as elements in a Slater
determinant, minimize the expectation value of the Ham-
iltonian of the system.

Section II is devoted to a discussion of some properties
of the exact solution of V„', which is the exchange poten-
tial obtained by subtracting the external potential and the
Hartree potential from V' [l4]. In particular we show
that the expectation value of V„' in the state g' corre-
sponding to the occupied orbital having spin projection o
with maximum single-particle-energy eigenvalue e is
identically equal to the expectation value of the Hartree-
Fock (HF) orbital potential corresponding to this state.
From this it follows that c.' is exactly equal to the ex-
pectation value of h ", the single-particle HF Hamiltoni-
an corresponding to the m o orbital, and thus
Koopmans's theoretr. [16] is satisfied. In the uniform-
electron-gas limit, we find that V„' reduces to the usual
local-spin-density result [2,3]. In addition, we show that
c' equals the rate of change of the total energy E', with
respect to the fractional occupancy f of the mcr state,
i.e., Janak's theorem [17] is valid for E„=E„"[[f;) ),
but only for the highest occupied single-particle state of a
given spin projection 0. Furthermore, we show that the
exact V„' must behave discontinuously when the number
of electrons is increased to fill a complete spin subshell
and a simple expression is derived for the size of this
discontinuity. Finally, we derive the behavior of V„' in
any region in which one orbital dominates the density.

Using simple physical arguments together with the
known behavior of V in any region in which one orbital
dominates the density, we derive in Sec. III a simplified
integral equation for the approximate optimized effective
potential (OEP) V„. This equation is found to be identi-
cal to that obtained by making a simple approximation
[14] to the single-particle Green's function in the exact
OEP integral equation. The resulting V„ is shown to
preserve exactly all the properties satisfied by the exact
V' discussed in Sec. II with the exception of the exact
extension of Janak's theorem, which is now only approxi-
mately satisfied. In addition, the relation of V to the
Harbola-Sahni [12] exchange-only potential IV„ is dis-
cussed. Finally, the exact solution of the integral equa-
tion for V„ is derived and expressed as a functional of
the occupied orbitals having spin projection o..

Section IV is devoted to a detailed study of the accura-
cy of V„, the approximate exchange-only potential, com-
pared with numerical solutions of the HF equations and
the exact OEP equation for atoms with closed subshells
[18,19] as well as with results obtained employing the ex-
act Slater exchange potential [20], the LSD exchange po-
tential, and W„[21]. We find that for the total energy
our results are only 9 ppm above the OEP result [18) for
Be, the overestimate decreasing to (1 ppm for Xe, and
are only = —,

' to —,
' a greater overestimate of the exact HF

result [22] than that given by the OEP calculations. In
addition, the calculated e (for systems with closed sub-
shells e; &

= e; &
) are very close to what is believed to be the

essentially exact OEP [23] lying higher with an average
difference of =0.002 Ry and a maximum difference of
0.003 Ry. The eigenvalues satisfy Janak's theorem to
within 0.002 Ry on the average. The V„ is shown to be
a much better approximation to V„' than is V" or the
exact Slater potential and the resulting Hartree potential,
which is a measure of the accuracy of the calculated den-
sity, is nearly identical to that given by a numerical HF
calculation. The electron density at the atomic nucleus is
found to be within =0.3% of the exact result and the ex-
pectation value of r, which is proportional to the di-
amagnetic susceptibility, is closer to the result of an exact
calculation than similar calculations using other approxi-
mate exchange potentials. Furthermore, we find that the
overlap integrals between the corresponding orbitals de-
rived from the self-consistently calculated V and those
calculated using V„' or calculated by solving the HF
equations are ~0.999 for all states in the ten atoms with
closed subshells from Be to Xe.

In Sec. V, calculations using spin-polarized exchange
potentials have been performed for alkali-metal atoms
and compared with the results of spin-unrestricted
Hartree-Fock (SUHF) [24] calculations as well as spin-
polarized OEP results. We again find excellent agree-
ment with the SUHF and OEP calculations for total en-
ergy, c

&
and c. &, the electron density and the spin den-

sity for each atom. The behavior of the V„ for fractional
occupancy of the highest occupied orbital is also dis-
cussed in Sec. V. We show analytically that V„changes
discontinuously as a spin subshell is filled and also show
that V„~ f /r as r ~ ~ where —f is the fractional oc-
cupancy of this state. A detailed numerical analysis is
presented for Mg (Z =12) as the number of electrons is
increased from N =9 to 12. We show that calculations
employing V„closely approximate those given by the
spin-polarized extension of the OEP method as well as by
the SUHF method. In particular, we find that our results
for the total energy are only a few ppm from the OEP
calculations and closely approximate the SUHF results
with a cusp in the E versus N curve at integer occupancy.
In addition, the V„yield c. for both o. as a function of
X, which are discontinuous at integral occupancy and are
nearly identical to those obtained from the OEP and
SUHF calculations even when these eigenvalues are
strongly N dependent. Furthermore, we show numerical-
ly the behavior of the discontinuity in V as a function
of f. In particular, we show that the discontinuity in the
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exchange potential is a constant for r &R where R be-
comes large compared with the size of the atom when

f ((1. Finally, in Sec. VI we discuss the implications of
our results concerning applications to other many-
electron problems.

II. SPIN-POLARIZED OPTIMIZED
EFFECTIVE EXCHANGE POTENTIAL:

DERIVATION OF EQUATION AND PROPERTIES

In the usual spin-density-functional theory, the
exchange-energy functional E„[{n j ] is assumed known.
It then follows from minimizing the total energy E, with
respect to arbitrary variations in the n that preserve the
total number of electrons in the system, that the KS or-
bitals satisfy the Schrodinger-like one-electron equations
(in a.u. )

from such an analysis. We shall have more to say about
such a relationship in Sec. III. In this section we present
the generalization of the derivation of the equation
satisfied by the optimized potential to include the possi-
bility of orbital fractional occupancy [5] for spin-
polarized potentials corresponding to spin-unrestricted
HF theory [24] and discuss some important properties of
the exact solution of this equation.

The condition that the total energy E[{tj; j ] be mini-
mized with respect to variations in the optimized effective
potential V' may be expressed as

E[{0;.j 1 f, 5E
5V'(r); ~ 5$;. (r') 5V'(r} (3)

where the optimized orbitals satisfy an equation analo-
gous to Eq. (1), i.e.,

h g; (r)=——
—,
'V' g; (r)+ V'(r)1(; (r)=s,' P; (r) .

—
—,'V'yKs+[V, „,(r)+ V (r)+ V„".'(r)]y,".'

sKsyKs (1)
Equation (3) is useful because it follows immediately

from perturbation theory that, if V' —+ V' +5V' in Eq.
(4) [5,14,15],

Here V,„,(r) is the external potential, VH(r) is the usual
Hartree potential of the electrons, and the exchange po-
tential is given by

5E„[{n j ]
( )

(2)

In practice, since E„[{n j ] is not known exactly, ap-
proximations to it must be employed, e.g., local-spin-
density approximation, gradient corrections [25], and
generalized gradient corrections [26].

If, however, we define the exact exchange-energy func-
tional [27] as that given by the HF theory, i.e.,
E„=E„"[{f; j ], then it is no longer possible to simply
calculate the corresponding exchange potential by em-
ploying Eq. (2) because the functional derivative of the
{P; j with respect to n is not known. An alternative
procedure, which reduces to the KS result if
E„=E„[{nj] is to Snd the spin-polarized optimized
effective potentials V', which, when employed in a
single-particle Schrodinger equation, yield eigenfunctions
whose Slater determinant minimizes the expectation
value of the total Hamiltonian. Such a method was first
proposed by Sharp and Horton [14) (for the unpolarized
case} long before the advent of density-functional theory.
It was their intention to investigate whether the Slater ex-
change potential [20] could be approximately obtained

5&; (r')= —fdr"G (r', r")g; (r")5V'(r") (5)

where G,' (r', r") is the Green's function for noninteract-
ing electrons moving in the potential V (r), i.e.,

Gp (
I ~~) i Jp ~Jp' (r')&"(r")

ia 0 0
&Je

(6)

5$; .(r') = —G,' (r', r)g; (r)5
5V' (r)

Furthermore, in the exchange-only approximation we
have

E[{4;.j )=gf;.f0;.*(,'~')C.dr

+f V,„,(r )n '(r)d r

+ ,' ff—,drdr'+E„""[{g; j] (8)

where

where the prime on the sum means the sum over j is re-
stricted to states for which e,

' Ws,' .
Consequently,

(9)

'(nr) =gn (r),
(10)
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and f, i.s the fractional occupancy of the icr orbital. It
follows from Eq. (8) that

—f [
1+2/0!lt( I)

5g;. (r')

+ [ V,„,(r')+ VH(r')+u, (r')]]1;*(r')

Operating on Eq. (16) with E' —h (r), where h is

defined in Eq. (4), and employing

[E' —h (r)]G' (r', r)= —g p; (r')1; (r)
imam

= —[5(r—r') —q' .(r')g' .(r) ]

(17)

=f; Ie,' —V„' (r')+u, (r')]g;"(r') (12)
for all r and r', and performing the indicated integration
over r', we obtain for r & R

where we have defined (for f, WO)

gE HF

5$; (r)

V„' (r)=v (r}+(V„' —u' ) (18)

where the average values of V„' and v are both taken
over the m o. state, i.e.,

gf,.—f g;*(r')P (r')P; (r)

~r
—r'~g (r)

(13)

V„' (r)=—V'(r) —V,„,(r) —VH(r) . (14)

VH(r) is the Hartree potential and we have used Eq. (4).
Equation (13) is of course exactly the effective single-
particle HF potential that appears in the HF equation for
gH"' as can be seen by relaxing the condition that the

satisfy Eq. (4) but instead minimizing E with
respect to variations in the t1'; ] subject to the usual
orthonormality condition between orbitals.

Substituting Eqs. (7) and (12) into Eq. (3) and using

r' G r', r dr'=0

we obtain for each 0.

gf; f d r'[ V„' (r') —
u; (r') ]

X G,' (r', r)1;*(r')g; (r)+c.c. =0 (15)

for r & R where 6 is arbitrarily small. Then dividing
both sides of Eq. (15) by f P' (r) and dropping terms
of O(5) we obtain for r )R

f dr'[V' (r') —u (r')]f' (r')G' (r', r)=0 . (16)

which is the generalization of the original equation for
the optimized effective exchange potential to the case of
the spin-polarized potentials including fractional occu-
pancy.

The exact analytic solution of Eq. (15) to yield V„' as a
functional of the Iu, ] and the [g; ] is not known. We
may, however, obtain some insight into the behavior of
the exact V„' by a careful analysis of Eq. (15) [28]. For
simplicity, we assume that V,„„and consequently V',
has a small symmetry breaking term so the solutions of
Eq. (4) for a given o are nondegenerate and therefore can
be chosen as real. Let f; =0, i & m, i.e., g' is the occu-
pied orbital corresponding to the highest single-particle-
energy eigenvalue c' of a state having spin projection o .
Then, since 1' approaches zero as rica more slowly
than does any other orbital, R exists such that

v
' = '* r ' r v r dr (19)

and similarly for V'„. Equation (18) has the same
property possessed by Eq. (15) that if V„' (r) is a solution
so is V„' (r)+ C where C is an arbitrary constant. Choos-
ing C such that V„' (r)~0 for r ~ ~ and using
u ~ f /—r for r~ ~ from Eq. (13) we obtain from
Eq. (18)

and

0 ——0
V~~m v m~ (20)

V„' (r) f~ 00 (21)

for each cr. Equation (21) is the generalization for frac-
tional occupancy of a previously derived result [15] for
the case f =1 and is the same result as that obtained
for the exact KS exchange-correlation potential [29].

It is also of interest to consider the behavior of V„' (r)
in a region of space in which one orbital other than f
dominates the density. Whereas f' will dominate the
density for sufficiently large r, in any physical problem it
may not be possible to find a region Q for which
n' (r) &)n (r), imp Never. theless, it will be useful to
consider those cases in which such a condition exists. We
may then divide Eq. (15) by f f' (r) and dropping
terms of O(f, g; (r)/f 1' (r)} for r in 0 we obtain
the equation analogous to Eq. (16), i.e.,

f dr'[V„' (r') —u (r')]g' (r')G' (r', r)=0

V„' (r)=u (r)+(V„' —v' ) . (23)

The extension of the derivation of Eq. (18), and conse-
quently of Eqs. (20)—(24}, to the degenerate case with a
choice of possibly complex orbitals is treated in Appendix
A.

In the constant-density limit V„' is clearly a constant.
It then follows rigorously from Eq. (20) that in the
homogeneous-electron-gas limit, the value of V„' equals
the value of the HF exchange potential at the Fermi ener-

for r in 0 . Operating on Eq. (22) with [s' —h (r)] and

employing the equation analogous to Eq. (18) with m re-
placed by p we obtain [32] for any p provided
n,
' (r)/nJ (r)~0 for all imp,
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gy, a result obtained by Kohn and Sham [2] by employing
the local-density approximation; it is well known that this
result is —', the value obtained by Slater by averaging the
single-particle HF exchange potentials over all the occu-
pied states. Furthermore, since

= fQ" ( —
—,
'V' +V,„,+VH+V„' )g' dr

it follows from Eq. (20) that

=f I}'j'* ( ——,'V + V,„,+ VH+U )g' dr

f goo QHFyo dr &
oHF

(24)

(25)

where the HF single-particle Hamiltonian corresponding
to the orbital mo. is evaluated using the OEP orbitals

[ f'; ] . [It should be noted that since Eq. (20) is valid only
for the highest-energy occupied orbital of spin projection
0, the equation analogous to Eq. (25) will not in general
be valid for

imam

]Bu.t since the right-hand side (rhs) of
Eq. (25) is identical to the difference in the expectation
values of the total energy for the N- and (N —1 }-particle
systems if a Slater determinant of the exact same unre-
laxed orbitals is employed, it follows from Eq. (25) that

E'(N) E„'(N —1—) =e' (26)

where E'(M) is the expectation value of the total energy
for the M-particle system; the subscript u indicates the
value calculated using the same orbitals as employed in
the N-particle calculation with the mo. orbital missing.
Thus, as in the HF calculation, Koopmans's theorem [16]
is satisfied, but here only for the highest-energy occupied
state of either spin projection.

We may also study the rate of change of the total ener-
gy E with respect to f, the fractional occupancy of the
nondegenerate state with energy eigenvalue c~ by treat-
ing E as a functional of both f~ and the V' [v'=( t, 1)]
because the [g; ] are functionals of V' from Eq. (4). In
the following we take all f; =const, i Wp

If Ip ~f~ +5IP, which leads to a change in the
self-consistent potentials from V' to V'. +5V' in order
that the new total energy be minimized, then

5E'= 5fp +g f 5V'dr . (27)

But the condition satisfied by the V ~ is that E is rnini-
mized for fixed [f, j, i.e., Eq. (3}so it follows from Eqs.
(3) and (27) that

dE' BE'
(28)

The same result obtains in a density-functional theory in
which E (or the exchange-correlation energy functional
E„,) is taken as a functional of the density n(r) [17]or of
the spin densities n (r), or in the HF theory in which the
single-particle potentials U; are orbital dependent [10].
In each one of those cases, the right-hand side of Eq. (28)
is shown to be equal to the expectation value of the
single-particle Harniltonian for which the po. state is an
eigenfunction with eigenvalue c, a result which is

But unlike the case where the po- states are eigenfunc-
tiOnS Of hpo" With eigenValue epo, the fp are eigenfunC-
tions of h given by Eq. (4) and the expectation value of
h "in the state po will generally not be equal to c' ex-
cept in one case, i.e., if p =m as shown in Eq. (25). Thus
in general

&Po Po &Po +Po I fiyo
(30)

and for the highest-energy occupied state with spin o.

(31)

In the homogeneous-electron-gas limit, the single-particle
wave functions are plane waves and satisfy
gp' (r) =gp "(r}which results in E'=E " and it follows
from Eq. (30) that

dEo
&HF — Po + VHF(k
po 2 xo po

pa
(32)

for all pa where V„(kp ) is the exact HF exchange po-
tential for an electron with momentum k, which is the
exact result for the ground state of the energy functional
given by Eqs. (8) and (9). It is interesting to note that the
result of employing Janak's theorem is

=E"s= + VHF(k„)Pep", pram (33)

where c, is the KS eigenvalue, and k is the Fermi
momentum. Thus although E =E " if all states below
the Fermi energy are filled, it is not possible to obtain the
correct rate of change of E with respect to f by merely
replacing np (r) by f~ pp' pp in the KS energy function-
al for states below the Fermi energy. It follows that al-
though Janak's theorem is an exact consequence of ex-
tending the domain of the energy functional to include
fractional occupancy in this simple way, this extension
does not yield the HF total energy for fractional occu-
pancy and thus the theorem is an identity satisfied by the
self-consistent solutions of the KS equations without
physical significance for pram. On the other hand, the
OEP result given by Eqs. (30) and (31) shows explicitly
that only c' has the significance of being equal to the
rate of change of E' with respect to fractional occupancy
f and that in general the rate of change of E' with
respect to the fractional occupancy of any state, fp, is
equal to the expectation value of the corresponding
single-particle HF Hamiltonian h ", and not to the value
of c', the latter having no special significance for p&m.

Finally, it is possible to deduce from Eq. (20} that V„'

is discontinuous as the number of electrons with spin pro-

known as Janak's theorem. However, in the present case,
this is not always valid, i.e., by direct differentiation of E
given by Eq. (8) where E and n' are given by Eqs. (9) and
(10) we obtain the usual HF result, i.e.,

=fg"h "P' dr= f g' dr . (29)
df po Po Po Po f $/0
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V„' ( r, N +f ) —V„' ( r, N ) =C„' (34)

But in order that V„' (r, N +f )~0 as r ~ &e it follows
froin Eq. (20) that

jection cr is increased from N to N +f where N is the
number necessary to completely fill a spin subshell. It is
clear from Eq. (21) that V„' (r, N )~—1/r and
V' (r, N +f)~ f—lr for r~ oo thereby showing that
the asymptotic form of the exchange potential changes
discontinuously when N is increased infinitesimally
beyond an integer. However, for sufficiently small f this
change in the asymptotic value of the potential has a
negligible effect on [P; j, i = 1, . . . , m, because it obtains
only for r &8 corresponding to the region in which all

g; ~0, i =1, . . . , m. Moreover, for r &R, correspond-
ing to the region in which the additional fractionally oc-
cupied state makes a negligible contribution to the densi-
ty, we expect the P; to be essentially unchanged in the
limit f~0 so we may continue to approximate these
wave functions by their value for f =0. It then follows
that a consistent solution of Eq. (15) for V„' (r, N +f ) is
identical to V„' (r, N ) up to possibly an overall constant
for r (R ~ ao as f—+0, i.e., [5]

with results having been published only for problems for
which the potential is a function of a single variable, i.e.,
spherically symmetric atoms [15,18,19] and jellium sur-
faces [30]. It would be useful to obtain V„' as an explicit
functional of the [ 1(;. j since it could then be employed in
the KS equations for the exchange potential just as any
expression that is a functional of the n or, as for the
Harbola-Sahni exchange potential [12,21], which is a
functional of the single-particle orbitals. %'e discuss such
a construction below from two different points of view-
one using simple physical arguments and a second em-
ploying an approximation to the Green's function in Eq.
(15) first proposed by Sharp and Horton [14]. We find
that both methods lead to the identical result and that
this result yields a V„ that maintains nearly all of the ex-
act properties possessed by the exact V„' as discussed in
Sec. II.

The earliest approximation for a single local exchange
potential that could be employed to obtain results similar
to those from a HF calculation was given by Slater [20].
His result, generalized to the spin-polarized case, may be
written

n, r v; r

V'„+i(N +f )=u'+i (35) V„(r)=
gn, (r)

(37)

where it follows from Eq. (34) and the definition of u;

given by Eq. (13) in the limit f~0, u +, is identical to
the result obtained by taking the exchange potential to be
given by V„' (r, N }. Then, taking the expectation value
of Eq. (34) in the m + l, cr state and using Eq. (35) yields

xn um+ l, e V xcr, m +1(Na (36)

III. CONSTRUCTION
OF AN APPROXIMATE OPTIMIZED

EFFECTIVE POTKNTIAI.

The integral equation satisfied by V„' given by Eq. (15)
has no known analytic solution for V' as a functional of
the [g;. j. Moreover, it is difficult to solve numerically,

which in general will not be zero provided g' +i is not
trivially related to it' . This is, of course, the case when

electrons fill a complete spin subshell so the m +1,cr

state is not simply related to the mo. state so that the sa-
tisfaction of Eq. (20) does not lead to a similar result for
mo. ~m+1, cr. On the other hand, for a metal the
m+1 state is only infinitesimally different from the m
state which leads to C; =0 as given by Eq. (36).

In concluding this section it is useful to note the
significance of Eq. (20). We have seen that this relation-
ship immediately leads to the LSD approximation for
V„' in the homogeneous gas limit as well as to the result
given by Eq. (25) that s' equals the expectation value of
h ", the HF single-particle Hamiltonian, and conse-
quently to the satisfaction of Koopmans's theorem given
by Eq. (26). Moreover, the extension of Janak's theorem
given by Eq. (31) for the mo state follows directly from
Eq. (20) as well as the size of the discontinuity in the ex-
change potential given by Eq. (36}.

V„(r)=
gn; (r)

(38)

where the I C, j are a set of orbital-dependent constants.
Equation (38) reduces to V„=u +C in the region in
which n~ (r) dominates n (r), which leads to a shift in
the single-particle-energy eigenvalues, but continues to
suggest that the single-particle eigenfunctions satisfy

P~" provided the re—sulting VH is close to VH".
The appropriate [ C, j may be chosen by requiring that

in the limit in which n dominates n, the potential
given by Eq. (38) should be identical in form to the poten-

where u; (r) is given by Eq. (13) and n; is given by Eq.
(10) with, in both expressions, [P; j replaced by [P j,
the self-consistently calculated orbitals, when V„ is em-

ployed as the exchange potential. The potential given by
Eq. (37) has the property that in the region in which
n (r) dominates n (r)—=g;n; (r), V„=u so that one
might anticipate that the resulting single-particle orbital

p =1tz", the HF single-particle orbital provided that
the self-consistently calculated Hartree potential is close
to that calculated using the HF electron density. Howev-
er, it is clear from detailed numerical calculations [31],or
by simply taking the local-spin-density approximation to
Eq. (37), that V„ is too deep, i.e., Eq. (37) results in an
exchange potential that is too large in magnitude, and is a
factor of —,

' larger than both the KS-LSD and the OEP re-

sults in the homogeneous-electron-gas limit as discussed
in Sec. II.

We may, however, generalize the Slater method of
combining the separate u; to form V„by writing [32]

gn, (r)[u, (r)+C; ]
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Cp — -~ (39)

tial obtained from the OEP equation in the same limit. It
then follows immediately froin Eq. (23) that for each C~,

Consequently,

V„(r)gn, (r) —gn, [u, (r)+( V„,—u, )]=0 . (46)

where u is given by the analogous expression to Eq. (19)
with g' replaced by the self-consistently obtained g

Substituting Eq. (39) into Eq. (38) yields

gn; (r)[u; (r)+ V„;—u; ]

V, (r)=
gn; (r)

n; (r)= V„(r)+g (V„;—u; )
n r

(40)

where we have used Eq. (37).
Equation (40) may also be derived from the OEP equa-

tion by employing an approximation to the Green's func-
tion G (r', r} first suggested by Sharp and Horton [14].
If we approximate a in Eq. (6) by some mean energy f, ,
we obtain the approximation to G

G, (r', r) —= (Z; —a; ) 'g'g (r')g' (r)
J

=(Z; —s; ) '[5(r —r' }—g, (r' }P,
" (r) ] (41)

independent of j, and

(43)

where the {g j and e; are the self-consistent solutions
of Eq. (4) corresponding to employing V„as the ex-
change potential where V„ is the solution of the OEP
equation with G,

' replaced by G; . Here we have as-
sumed the energy level c.; is nondegenerate. The degen-
erate case will be treated in Appendix B. They then sub-
stituted Eq. (41) into Eq. (15) and neglected the terms
arising from the contribution of the second term on the
rhs of Eq. (41) (see footnote 4 of Ref. [14]). They found
that if the further approximation is made that
Y; —c; =Ac. is independent of i, the resultant V„ is
identical to the then recently derived Slater exchange po-
tential given by Eq. (37). However, if the nonlocal second
term on the rhs of Eq. (41) is treated exactly and the only
approximations made in evaluating G; are

(42)

xom mo (47)

because for a system with a finite number of electrons,
V„(r)~ f lr for r~ 0—0 and, using the same argu-
ment employed in the discussion of the asymptotic behav-
ior of V„' that for sufficiently large r, n, /n ~0 (imam}

the coefficient of n /n in Eq. (40}must be zero. Equa-
tion (47) is the analog of the condition satisfied by the ex-
act solution of the OEP equation given by Eq. (20).

However, it is by no means obvious that if Eq. (47) is
substituted into Eq. (40) the resulting equation

Solving Eq. (46) for V„(r) immediately yields Eq. (40)
without further approximation as previously claimed
[33]. Clearly, if the contribution arising from the in-

clusion of the second term on the rhs of Eq. (41) in G; is

neglected, i.e., the term proportional to (V„,—u, ) in Eq.
(45), then the solution for V„ is given by Eq. (37},i.e., by
the Slater exchange potential [14]. However, we shall
show below that including these terms leads to a
significant improvement over the Slater expression and
results in an exchange potential that more closely approx-
imates V,' than any other exchange potential previously
proposed.

Unlike Eq. (37), which expresses the Slater exchange
potential as a functional of the self-consistently derived
orbitals, Eq. (40) is an integral equation for V„since the
unknown expectation values, V„;, appear on the rhs.
Before deriving the exact solution of this equation, it is
useful to discuss the properties of this solution and to
compare them with the properties of the exact V„' as dis-
cussed in Sec. II.

As for the solution of the OEP equation given by Eq.
(15), the solution of Eq. (40) is determined only up to a
constant, i.e., if V„ is a solution, so is V, +C, since the
eigenfunctions will be the same, which results in all v,

being unchanged, and each V„;~V, ; +C. Conse-
quently, the addition to the rhs of Eq. (40) is

g;n; C/n =C, so if V„ is a solution so is V„+C.
Choosing this constant so that V ~0 for r~00 re-
quires

independent of i, then the substitution of Eq. (41) into Eq.
(15) yields

gf, Jdr'[ V, (r') —
u,- (r') ]P; (r') V (r)=

n, r v; r

gn; (r)
(48)

XP; (r)[5(r—r'}—f; (r')g," (r}]=0 . (44)

gf, {[V (r) —u; (r)]f,* (r)g, (r)

exactly.

—
[ V„,—u, ]g; (r)f, (r)] =0 (45)

Performing the indicated integration over r', we obtain
(where the prime means sum over i = 1, . . . , m —1) has a
solution such that Eq. (47) is satisfied, i.e., the value of
V„does not even appear in Eq. (48) and there is no ap-
parent a priori reason that Eq. (47) will be satisfied by the
solution of Eq. (48). We can, however, show analytically
that the solution of Eq. (48) satisfies Eq. (47) by multiply-

ing both sides of Eq. (48) by n (r) and integrating over r.
The resulting equation is then
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gf; V„;=gf; u; +g'f, (V„,—u, )

or

fma Vxcrm =fm rum e

Thus for any f )0, Eq. (47) is exactly satisfied by the
solution of Eq. (48).

As noted at the end of Sec. II, the fact that Eq. (20) is
satisfied leads to several important relationships satisfied
by the exact OEP results. Similarly, the fact that Eq. (47)
is exactly satisfied by V„given by Eq. (48) leads to many
of the analogous results that we now discuss.

First of all, it follows from Eq. (48) and the asymptotic
behavior of V that

8E ~ HF gE BV ~

f &.*-h."."&.-"r+&f gV,po p

and

gE BV ~

SV., af„. '

(54)

(55)

i.e., analogously to Eq. {26), Koopmans's theorem is
satisfied.

It is, however, not possible to exactly derive the analo-
gous equations to Eqs. (30) and (31), which were valid for
the exact V,' because we may not employ the conditions
that 6E/6V =0. Thus, although the equations corre-
sponding to Eqs. (27) and (29) obtain, instead of Eqs. (30)
and (31) we find

V„(r)~— (49)

LSD 2 S
~xcr Vxo =

3 Vxcr (50)

which is identical to the behavior of V„as discussed
above Eq. (24). Therefore, not only are the corrections to
V„given in Eq. (40) non-negligible, but they provide pre-
cisely the necessary terms so that V„reduces to the
correct LSD and V' result in the uniform gas limit. In
addition, in the other limit in which there is only one oc-
cupied orbital with spin projection o., it follows from Eqs.
(48) and (13) that

n (r')
V (r) =u (r) = — dr'

~r —r'~
(51)

which cancels exactly the self-interaction term in the
Hartree potential as it must and is identical to V„(r), as
can be seen from Eq. (15) if only f~ %0.

Using the same arguments as in Sec. II, it follows im-
mediately from Eq. (47) that the analog of Eq. (25) is val-
id, i.e.,

—(q lgHF~y )
—HF (52)

where now the HF single-particle Hamiltonian corre-
sponding to the m o. orbital is evaluated using the orbitals
Ig; I that are obtained by taking V„rather than V„' as
the exchange potential. Furthermore, since the difference
in the expectation value of the total Hamiltonian of the
system with and without the mo. orbital (a11 other orbit-
als held fixed) is given by the expectation value of the
single-particle Hamiltonian h " in the mo. state, it fol-
lows from Eq. (52) that

E(N) E„(N —1)=c, — (53)

which is the analog of Eq. (21). The analog of Eq. (23) is
also valid by our initial construction of V„given in Eq.
(40).

In the uniform-electron-gas limit, V is independent
of r and thus equal to its value averaged over the mo. or-
bital. But according to Eq. (47), this is equal to the aver-

age value of the HF single-particle exchange potential
averaged over the mo. orbital, i.e., equal to the exchange
potential in the LSD approximation. Thus, in the
homogeneous-electron-gas limit,

Equation (55) can provide a useful self-consistency test
for the accuracy of V„, i.e., if V, were exact, then Eq.
(31) would obtain. Thus a comparison of dE/df and

(f ) will give an estimate of the accuracy of
em (f ) because dE/df should be very close to
dE /df, since it follows from the variational principle
that if V„ is in error by O(5), then E will be in error by
O(5 ). We shall illustrate this in Secs. IV and V. We
note that in the homogeneous-electron-gas limit,
V = V', so 5E/5V =0 and Eq. (54) reduces to the ex-
act OEP result given by Eq. (32).

Furthermore, since the existence of a discontinuity in
V„' was derived solely on the basis that V' ~0 as
r ~ ~ and Eq. (20) is valid, it follows from Eqs. (47) and
(49) that as f~0, for finite r

V„(r,N +f ) V„(r,N )=C„—

where

(56)

C„=u +, —V„+i(N ) . (57)

It is easy to see how this result arises from Eq. (48). If
a fractionally occupied orbital with f +, «1 is added
to the system, then as f +, ~0, we expect the n; and

U, , i=1, . . . , m, to be essentially unchanged for r &R,
where R is such that n; (r)))n +i (r) in this region.
However, once the m + 1,o. orbital is added to the second
term in Eq. (48), no matter how small the value of
f +, , as long as f +, )0, in order for V„~O as
r~ao instead of satisfying Eq. (47), the potential must
now satisfy

V, + {N +f)=u +,

therefore

V„+,(N +f)—V, +,(N )

(58)

=u +, —V„+,(N )=C, . (59)

Furthermore, since as f +, ~0, all the n; and u,

must remain unchanged, this implies that the potential it-
self changes only by a constant for r(R, and this con-
stant must be equal to the average value of the difference
V„(r,N +f ) V„(r,N ) in any—orbital, e.g., the
m+1, o. orbital, so C„ is this constant that yields Eq.
(56) for r &R. We note that if each V„, in Eq. (48) is
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so the argument is self-consistent.
Finally, in order solve the integral equation given by

Eq. (48), we need to find the constants, V„;,
i =1, . . . , m —1. This can be achieved by multiplying
Eq. (48) by n, (r ), j= 1, . . . , m —1 and integrating over
r. Then

m —1

fjcr Vxoj fjcr V xcrj + X ji ( Vxoi uio)
i=1

j= l, . . . , m —1 (61)

with

nj (r)n; (r)
Mj; '= f ' dr, ij =l, . . . , m —1.

n r (62)

It then follows by dividing by fj and subtracting uj
from both sides of Eq. (61) that

m —
1

g (&j, fj 'Mj'; —')(V, ;
—

u; )=V„,—u, (63}

Then

m —1

V„,—v, = g (A '),,(V'„j—vj ), i=1, . . . , m —1
j=1

(64}

where

(A )j;=5i, f 'M,', ' . — (65)

[Equation (64) corrects a typographical error appearing
in Eq. (17) of Ref. [33].] Substituting this result into Eq.
(48) yields V„(r) as a functional of the [lie, ]. In addi-
tion, since n; /n &1 for all r and the integral of n over
all space equals f, it follows from Eq. (62) that

changed to V,- +C, and the sum is taken over
i =1, . . . , m, then

V„(r,N +f)=V, (r, N )+C„, r(R
(60)

IV. APPLICATION OF APPROXIMATE
OPTIMIZED EXCHANGE POTENTIAL

TO ATOMS WITH CLOSED SUBSHELLS

In order to test the accuracy of the approximate OEP
given by the solution of Eq. (48), we have performed
self-consistent calculations for the ground state of the ten
atoms with closed subshells from Be to Xe and have com-
pared our results with those of the most accurate numeri-
cal solution of the OEP equation that has been published
[18]. As noted in Sec. III, for a system with only one
electron with a given spin projection, V„ is identical to
the exact HF exchange potential. Thus our results for He
are identical to the HF results as well as to those of an ex-
act OEP calculation and will not be further discussed
here. The other ten atoms from Be to Xe then constitute
all the remaining systetns considered in Ref. [18]. For
each one of these atoms, there is only a single exchange
potential because states with opposite spin projection
have the same occupancy.

A comparison of the results of employing our approxi-
mate V„ for the calculation of the energy given by Eq.
(8) with those obtained by using other standard approxi-
mate exchange potentials is presented in Table I. For
each comparison, we have tabulated, in mRy, the energy
by which each approximation overestimates the OEP re-
sult, the latter representing the lowest possible energy
calculated by employing a Slater determinant constructed
from orbitals that are eigenfunctions of a single local po-
tential. In addition, we have also tabulated the difference
between the OEP and HF results, the latter representing
the lowest possible energy calculated by employing any
Slater determinant, to put into perspective the magnitude
of these overestimates. The HF total energies are tabu-
lated in order to compare the size of these overestimates
with the total energy.

We see immediately that the results of employing V,
given by Eq. (48) yield the smallest overestimate of the
OEP energy compared with the results obtained by em-

ploying any other approximate exchange potential, being
at most only ( 10 ppm above the OEP result for Be with
the fractional overestimate decreasing to & 1 ppm for Xe.
They are only =—,

' to —,
' greater overestimates of the exact

HF results than those given by the OEP calculations.

TABLE I. Comparison of overestimates of the OEP total energy E', calculated in various approximations compared with the
overestimate of the Hartree-Fock total energy by E' (in mRy) for ten atoms with closed subshells. [E„l, was calculated using V„
given by Eq. (48).]

Atom

Be
Ne
Mg
Ar
Ca
ZI1

Kr
Sr
Cd
Xe

E"" (Ref. [22]) (R—y)

29.1460
257.0942
399.2292

1 053.6350
1 353.5164
3 555.6962
5 504. 1100
6 263.0914

10 930.2662
14 464.2768

E' (Ref. [18]) E""—
1.1
3.4
6.0

10.6
12.6
27.5
24. 1

24.5
37.4
35.0

Ecalc

0.3
1.1
1.8
3.4
4.4
7 ' 3
6.3
7.1

12.0
12.1

E" (Ref. [21]) —E'

2.0
6.9

10.6
15.8
18.6
29.5
26.9
28.3
43.4
39.9

ELSD Eo

8.7
35.7
28.5
34.4
32.2

101.6
64.3
58.5
88.7
68.0

ES Eo

22. 1

89.4
157.2
218.3
291.5
516.1

574.0
648.5
837.8
897.5



J. B. KRIEGER, YAN LI, AND G. J. IAFRATE 45

This overestimate of the OEP results is on the average
only = —,', of that obtained if the KS-LSD approximation
is employed and is about a factor of 100 smaller than that
provided by the Slater approximation. The Slater-LSD
approximation (not tabulated) results in total energies
that are even higher.

A significant improvement over the KS-LSD result is
obtained if 8', the potential conjectured by Harbola and
Sahni [12], is employed [21]. They pointed out that
Slater's original arguments tacitly assumed that the ex-
change hole is static, whereas a more careful derivation
should include the fact that it is dynamic, i.e., that the ex-
change potential arises from an exchange hole that
changes as the electron on which it acts changes its posi-
tion. 8'„ is then the work done by an external force in
moving an electron from infinity to r in the presence of
the electric field of the dynamic Fermi hole. Unlike the
Slater potential, 8; reduces to the KS-LSD potential,
i.e., to the exact V„', in the homogeneous-electron-gas
limit [18], has the correct asymptotic behavior, and ex-
actly satisfies the virial-based Levy-Perdew theorem [27]
analytically, which must be satisfied by the exact OEP
[18]. This theorem, which states that the exact OEP
should yield [ P; ] such that

E„"[f;I
= —f n'(r)r VV„'(r)dr (66)

is satisfied to =1% by our V„results, although the cal-
culated E„"[[t)'j; ]] equals the numerically calculated
E„"[[g; ] ] to within a part per thousand.

It is interesting to note that 8'„may be derived by
making a simple approximation in Eq. (40) as shown in

Appendix C. However, the resulting 8'„no longer
satisfies Eq. (47) and consequently does not satisfy
Koopmans's theorem nor does it exhibit an integer
discontinuity. Most significantly, its application results
in the overestimate of the OEP energy, which is more
than a factor of 3 larger than that provided by employing

V„, the exact solution of Eq. (48). Recently, Sahni and
Harbola [34] have noted the fact [21] that the single-
particle-energy eigenvalues c, calculated by employing
8'„as the exchange potential, are generally closer to
minus the ionization energy than c " suggesting that 8'„
should not be considered as an approximation to the
exchange-only OEP but rather as a separate method that
somehow incorporates some of the effects beyond those of
exchange. We shall therefore forgo making any further
detailed comparisons of the Harbola-Sahni potential cal-
culations with the results of the other approximations ap-
pearing in Table I.

The result that the total energy calculated by employ-
ing V„ is significantly closer to the OEP result than the
LSD or Slater results suggests that V more closely ap-
proximates V' than the other exchange-only approxima-
tions. This is in fact the case, as displayed in Fig. 1 for
Ne, the lightest element in Table I for which the last

complete subshell has p electrons, and in Fig. 2 for Cd,
the heaviest element in Table I for which the last com-
plete subshell has s electrons. We see that in both cases
the Slater potential is much too strong and is significantly
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FIG. 1. Exchange potential {in a.u. ) vs distance from the nu-

cleus {in a.u.) for neon. The OEP refers to the exact Kohn-
Sham result as calculated using a modification of the computer
code in Ref. [19]. V„refers to the results obtained by employ-

ing Eq. (48): LSD refers to the local-spin-density exchange-only
potential [3]:and 5 refers to the exact Sister potential given by
Eq. (37).
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FIG. 2. Exchange potential {in a.u. ) vs distance from the nu-
cleus (in a.u. ) for cadmium. The curves denoted OEP, V
LSD, and S refer to the same potentials described in Fig. 1.

deeper than is the OEP. However, when the second term
on the rhs of Eq. (48) is added to V„', the resulting V„ is
an excellent approximation to V„', particularly in the re-
gions between the bumps in V„', which correspond to the
electron shells, i.e, for the regions in space in which

n, )&n, for i', V, is nearly identical to V„,which is
to be expected on the basis of the construction of V, dis-
cussed above Eq. (40). Moreover, V„ is not merely an
interpolation formula connecting these regions but clear-
ly mimics the behavior of V„even in the vicinity of the
bumps that appear in the intershell regions. In addition,
we see that the exchange potential corresponding to the
LSD approximation is generally too weak nearly every-
where in space and becomes a better approximation to
V„' for Cd, the atom with the higher atomic number.
All of the above observations are valid for all atoms listed
in Table I, including the result that the LSD result tends
to improve as Z increases, although it never approxi-
mates V„' as well as V does.

In order for an approximate exchange potential to
yield results close to those of the OEP, it must result in a
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Hartree potential that is a good approximation to the VH

calculated by employing V' as the exchange potential.
This follows from the fact that the Hartree energy is a
significant term in the expression for E[ [ g; ] ] as well as
the fact that c is the eigenvalue of a Schrodinger-like
equation that includes VH. Figures 3 and 4 display the
difference between the calculated Hartree potential and
VH", the Hartree potential calculated using the density
obtained from the solutions of the appropriate single-
particle HF equations. We see that in both cases the VH

calculated using the OEP density is very close to the ex-
act HF result, corresponding to the fact that n' is nearly
identical to n ", and the VH obtained by employing V„
as the exchange potential is an excellent approximation
to the VH" as well. In both cases, the result of employing

V„ leads to a Hartree potential that is significantly too
large. This follows from the fact, as already seen in Figs.
1 and 2, that this exchange potential is too deep and thus
leads to electrons being too localized near the nucleus.
On the other hand, the VH in the LSD approximation is
too small, which follows from the fact that the corre-
sponding exchange potential was too weak. Similar re-
sults obtain for all atoms in Table I, including the fact
that the relative error in VH in the LSD approximation
becomes smaller for increasing atomic number.

We may also compare the accuracy of various ex-
change potentials by examining the expectation values of
various one-electron operators. Of particular interest are
n(0), the value of the density at the origin, and (r ),
which is proportional to the diamagnetic susceptibility,
this latter expectation value being sensitive to the behav-
ior of the density far from the nucleus.

Table II is a compilation of the values of n (0) calculat-
ed by employing the exact HF results and those obtained
from the OEP and the other approximate exchange po-
tentials for the atoms listed in Table I. We find that the
OEP result is nearly identical to that of HF, the two be-
ing the same through at least five significant figures ex-
cept for Ne, which agrees through four. The V„results
are systematically too low (except for Be) and are always
within 2.5 parts per thousand of the HF and OEP results,
with the discrepancy decreasing to = 1 part per

thousand for large atomic number. The discrepancy be-
tween the OEP and the LSD results varies from being a
factor of 3 larger than the V discrepancy for light
atoms to a factor of 2 for the heavy atoms, with the LSD
results also being systematically too low, as expected. Fi-
nally, we see that the Slater result is systematically too
large, as expected, with a discrepancy with the OEP re-
sult that is slightly larger than that for the LSD. If the
LSD approximation is made on the Slater potential, the
results (not tabulated) have an even larger discrepancy.
Thus, for all atoms, the density at the origin obtained
from employing V„ is closer to both the HF and the
OEP results than those obtained from either the LSD or
the Slater approximations.

Similarly, we see from Table III that the OEP and HF
results for (r ) are nearly identical for the ten atoms
with a difference of & 1 part per thousand. Moreover, for
every atom, the use of V yields results that are closer to
the OEP results than those provided by employing the
LSD or Slater exchange potentials. The V„results for
the noble gases are particularly accurate, being less than
1 part per thousand from the OEP and HF values. The
largest discrepancy exists for Zn and Cd, for which the
differences from the OEP values are 1.7% and 1.2%, re-
spectively. This is undoubtedly due to the strong ex-
change interaction of the s states in the last filled subshell
of these atoms with the filled d states immediately below
them, which makes their precise description diScult.
Similar diSculties arise in calculating properties sensitive
to the precise description of the outer electron states of
these atoms when the self-interaction correction is made
to the LSD [35]. In addition, we find that the discrepan-
cy in the LSD results is usually several times that of the
V„results, with the values for the noble-gas atoms al-

ways above those of OEP and the results for the other
atoms lying below the OEP values with the exception of
Be. However, the results obtained by employing V„are
always too small, as expected, with errors of 5—8% for
the noble-gas atoms and & 15% for the others.

The accuracy of the various approximations in describ-
ing the electron density in the interior of the atom may be
discussed in terms of the calculated values of (1/r ). We
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FIG. 3. The difference between the Hartree potential VH(r)
calculated by employing different expressions for the exchange

potential and the Hartree potential calculated using the HF
density VH "(r) vs the distance from the nucleus for neon.

FIG. 4. The difference between the Hartree potential VH(r)
calculated by employing different expressions for the exchange
potential and the Hartree potential calculated using the HF
density VH "(r) vs the distance from the nucleus for cadmium.
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TABLE II. Values of n (0), the electron density at the origin, for ten atoms with closed subshells cal-
culated by employing various exchange-only approximations (in a.u. ).

Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

HF

35.3877
619.922

1 093.72
3 839.78
5 319.61

18 447.7
32 235.9
38 042.8
77 641.6

111219.4

OEP'

35.3877
619.930

1 093.73
3 839.78
5 319.64

18 447.6
32 235.9
38 043.0
77 641.7

111219.6

y b

35.4426
618.310

1 091.15
3 832.60
5 310.47

18 421.7
32 194.1
37 995.1

77 561.0
111 112.7

LSD

34.7001
614.230

1 085.12
3 818.69
5 293.06

18 387.2
32 144.3
37 939.7
77 475.6

111003.7

Slater

36.0089
625.820

1 104.09
3 864.60
5 352.63

18 526.2
32 351.3
38 175.4
77 859.1

111496.5

'Calculated using a modified computer code of Ref. [19].
Calculated using V„given by Eq. (48).

find that in this case the HF and OEP results are different
by ~ one part in one hundred thousand for all atoms list-
ed in Table I. The values obtained by employing V„as
the exchange potential are different from these results by
less than one part in a thousand for Be, with the devia-
tion decreasing for increasing atomic number to one part
in ten thousand for large Z. The LSD results for ( I /r )
are always too low, with a discrepancy at least ten times
larger than those obtained by employing V . Further-
more, the results obtained by using V lie above the
OEP results, with a discrepancy that is larger than that of
LSD and that unlike the other approximations, does not
significantly improve for large Z.

The most interesting single-particle property and also
the one that has been most diScult to accurately calcu-
late using various approximate exchange functions is c.

which, as we have seen in Sec. II, has particular
significance.

In Table IV, we present our results for the calculation
of s, s " [defined in Eq. (25)], and of dE/df for the
OEP [using a modification of Talman's code [19],denoted
OEP ]; for our approximation to the OEP, V„,discussed
in Sec. III; and for the LSD and Slater exchange poten-
tials for the ten atoms listed in Table I. The values of
dE/df wereobtained by calculating bE/hf for small

variations (+0.05) in the occupancy of the highest occu-
pied atomic subshell. These results were checked by re-
peating the calculation by varying the occupancy of only
one spin subshell in a spin-polarized calculation. In addi-
tion, we also list s and s " [23], using the same numeri-
cally calculated V„' as in Wang et al. [18] [denoted
OEP']. The results for dE/df, using an extension of
this code to include fractional occupancy, are not avail-
able. The HF eigenvalues c. "are listed for comparison.

We note that if the OEP calculations were the exact
numerical solutions, then according to Eq. (31), the two
numbers in the OEP' column and the three in the OEP
column should all be identical. The fact that they differ
slightly arises from the diSculty in precisely solving the
integral equation. It should be noted that for a given nu-
merical solution of the OEP equation, the estimated ac-
curacies of s,s, and dE/df are not the same. This
follows from the fact that if the numerically calculated
solution of the OEP equation is in error by O(5), then the
eigenvalue calculated from this potential, c, can be ex-
pected to be in error by O(5), whereas the total energy
will be in error by O(5 ). This is consistent with the fact
that both OEP calculations for the energy are the same to
1 X 10 Ry, the precision of the results given in Ref. [18]
(corresponding to differences of less than 1 ppm) but the

TABLE III. Values of (r'), for ten atoms with closed subshells calculated by employing various
exchange-only approximations (in a.u. ).

Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

HF

4.3297
0.9372
2.4676
1.4464
2.8283
1.1660
1.0981
2.0016
1.1325
1.1602

OEP'

4.3316
0.9372
2.4693
1.4465
2.8282
1.1648
1.0980
2.0006
1.1312
1.1600

4.3255
0.9367
2.4610
1.4467
2.8174
1.1453
1.0985
1.9923
1.1180
1.1607

LSD

4.4809
1.0036
2.4575
1.4889
2.7503
1 ~ 1392
1.1196
1.9294
1.1065
1.1716

Slater

3.9064
0.8918
2.0538
1.3511
2.3348
0.9716
1.0162
1.6500
0.9685
1.0743

'Calculated using a modified computer code of Ref. [19].
Calculated using V given by Eq. (48).
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calculated by employing these potentials may be
di6'erent by as much as a few parts per thousand. On the
other hand, the fact that E is in error by O(5 ) implies
that dE/df is in error by O(5 ). The estimated accura-
cy of K

" generally lies between these limits, as can be
seen from the following argument.

Whereas the value of c' depends explicitly on V„', the
value of K' "depends only implicitly on V' through the
value of the [P; I that must be employed in constructing
v (g, I [as well as the value of VH(r), which is common
to both calculations]. The value of s ' " can thus be ex-

pected to change at a slower rate than does c,
' as V„' is

varied about its exact value. We have studied this varia-
tion numerically by calculating c' and E' " for the ex-

change potential given by kV„' where V, is the numeri-
cally calculated OEP and A, is nearly unity. We find that
E' " changes approximately one-third as rapidly as c.'
does. Thus we conclude that the most accurate value of

is given by dE/df followed by s ", with the least
accurate value given by the direct calculation of the ei-
genvalue, c

It follows from the above analysis that the most accu-
rate approximation to c.' is given by the value of
dE/df calculated using our modification of Talman's
code, appearing as the third entry for each atom in Table
IV in the column denoted OEP . These results are in
each case within 0.0001 Ry of the corresponding OEP
calculation of E "providing further support for the self-

TABLE IV. Values of c, the single-particle eigenvalue corresponding to the highest-energy occu-
pied state s ", defined by Eq. (25), and dE/df, calculated by employing various exchange-only ap-
proximations (in Ry} for ten atoms with closed subshells.

Atom

Be &m—HF
&m

dE/df—

HF

0.6185
0.6185
0.6186

OEP'

0.6182
0.6185

OEPb

0.6184
0.6185
0.6185

0.6177
0.6177
0.6184

LSD

0.3401
0.6246
0.6149

Slater

0.6529
0.5868
0.6295

Ne &m
—HF
&m

dE/df—

1.7008
1.7008
1.7009

1.6971
1.7016

1.7014
1.7014
1.7015

1.6988
1.6988
1.7021

0.8861
1.7921
1.6696

1.8240
1.5202
1.7109

Mg &m

~HF

dE/df—

m
~HF

dE/df—

0.5061
0.5061
0.5061

1.1820
1.1820
1.1821

0.5059
0.5061

1.1770
1.1817

0.5060
0.5060
0.5061

1.1815
1.1816
1.1815

0.5048
0.5048
0.5061

1.1786
1.1786
1.1817

0.2843
0.5085
0.5080

0.6676
1.2059
1.1708

0.5681
0.4314
0.5368

1.2763
1.0163
1.1990

&m

~HF

dE/df—
0.3911
0.3911
0.3911

0.3908
0.3911

0.3912
0.3913
0.3913

0.3901
0.3901
0.3913

0.2227
0.3880
0.3954

0.4491
0.3137
0.4274

Zn &m

~HF~mdE/df—
0.5850
0.5850
0.5850

0.5847
0.5858

0.5855
0.5855
0.5856

0.5837
0.5837
0.5856

0.3707
0.6062
0.5902

0.5425
0.4610
0.6476

Kr &m

&m
—HF

dE/df—
1.0484
1.0484
1.0484

1.0424
1.0472

1.0478
1.0468
1.0468

1.0440
1.0440
1.0466

0.5997
1.0645
1.0390

1.1347
0.8486
1.0759

Sr

dE /df—
0.3569
0.3569
0.3569

0.3572
0.3575

0.3572
0.3573
0.3573

0.3564
0.3564
0.3574

0.2055
0.3522
0.3623

0.4173
0.2700
0.3970

Cd

Xe

&m

&m
—HF

dE /df'„—
&m

&m
—HF

dE/df—
0.5297
0.5297
0.5297

0.9146
0.9146
0.9145

0.5307
0.5314

0.9085
0.9133

0.5310
0.5310
0.5311

0.9145
0.9129
0.9128

0.5301
0.5301
0.5313

0.9109
0.9109
0.9126

0.3357
0.5401
0.5381

0.5314
0.9176
0.9083

0.6588
0.3822
0.5915

0.9927
0.6905
0.9454

'Reference [23].
Calculated using a modified computer code of Ref. [19].

'Calculated using V„given by Eq. (48).
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consistency of these calculations and are on average only
0.0002 Ry from the corresponding OEP' calculation of
E ". The high precision of the OEP results is consistent
with the fact that these calculations satisfy the Levy-
Perdew theorem to within 1 part in 10 .

The major problem in calculating the eigenvalues c.' is
ensuring that the calculated V' ~0 as r~~. This is
usually accomplished by adding a constant to the poten-
tial so that it satisfies Eq. (21) at some large value of r—:R
and then employing Eq. (21) as the potential for r &R.
Typically R is obtained from the solution of
R g' (R)=0.0001 which yields R of order 10 a.u. How-
ever, even if the exact V„' is different from the asymptot-
ic value given by Eq. (21) by 1%, this procedure results in
a constant shift of order 0.001 a.u. ( 0.002 Ry) from the
exact value of the potential which leads to an error of this
magnitude in the calculation of e,

' as found in the OEP'
eigenvalues for the noble-gas atoms. We have avoided
this problem by employing Eq. (18) [with Eq. (20)] to give
the exchange potential for r & R. Whereas Eqs. (18) and
(21) yield the same result in the large-r limit, Eq. (18) is
valid when n (r) is the dominant contribution to n (r),
a condition that is satisfied for smaller r than that given
by Eq. (21). We find that our OEP calculations of s are
unchanged through five significant figures for s states
when Eq. (18) is employed rather than Eq. (21) for r & R,
but the s corresponding to p states are =0.003-0.004
Ry deeper.

The resulting OEP eigenvalues, when Eq. (18) is em-

ployed, are listed in Table IV and are nearly identical toe""and dE/df except for Kr and Xe which are never-
theless a significant improvement over the OEP' calcula-
tion. We note that the values of s~" (as well as dE/df )

are independent of the addition of a constant to the po-
tential, which explains the excellent agreement between
the values of E "calculated by the OEP' and OEP pro-
cedures, even though the e calculated by the OEP' are
considerably different for p states. Finally, we observe
that the best approximation to c' is very close to c, ", as
would be expected on the basis of Eq. (25), with the
difference generally increasing in magnitude with increas-
ing Z.

We now consider the accuracy of the approximate ex-
change potentials in calculating s, e ", and dE/df~.
First of all, we note that unlike the OEP' and OEP cal-
culations, the results of employing V„given by Eqs. (48)
and (64) are pairs of e and s that satisfy Eq. (52) ex-
actly as they should. The reason is that in this case, V„
is given as an explicit functional of the {P, j, which
makes it much simpler to calculate this exchange poten-
tial with higher precision than is possible in numerically
solving the OEP integral equation. Secondly„we note
that, in agreement with the observation that dE/df is
in error by O(5 ), their calculated values, using this ap-
proximate V„,are nearly identical to those calculated by
the OEP method, being within 0.0002 Ry for all atoms
except Ne, for which the difference is only =1 part in
3000. Finally, and most significantly, the direct calcula-
tions of the eigenvalues c. are remarkably accurate, be-
ing at most 0.4% from the best estimate of c' and of c

as well. Furthermore, these values of c. for the noble-

gas atoms are even closer to c' than the direct calcula-
tion provided by the OEP' procedure.

In comparing the V„results with those of LSD and

V„, we see that, as expected, the values of dE/df give
the best approximation to c,

' but the deviation from the
exact result is at least 20 times that of the results of the
V„calculation. In addition, we note that although the
V„results for the direct calculation of c,~ are too deep
by approximately 10%, the LSD eigenvalues, as is well
known, are too shallow by =40%%uo. This is due to the fact
that the LSD exchange potential has the wrong asymp-
totic form, approaching zero like n ' as r ~~ instead
of becoming equal to the correct result given by u (r),
as is the case for V . Finally, we observe that despite
this fact, the values of K "calculated in the LSD approx-
imation are much closer to c' than are those calculated
by employing V„, the latter being consistently too shal-
low.

This result may be understood as follows. Suppose the
set of orthornormal functions {P, j is a one-to-one ap-
proximation to {g; "j. Then

—yHF+5y (67)

so

=
& y",."+5q;.Ia;H" {y";."j+5V +5v;.I+"+5y,.)

=s,"."+(y,.I5V +5v,.Iy,.)+O(5') (68)

where 5VH and 5u; are the changes in VH and v, when
these functionals are evaluated with {P, j instead of

Generally, if the {P; j are eigenfunctions of a
single potential, V, then the more attractive this poten-
tial is, the more localized will be the {P; j. For
sufficiently attractive V, this results in the exchange po-
tential v; being more negative than u, ", i.e., 5v; (0,
and the resulting VH becomes larger, i.e., 5VH &0. Gen-
erally, u; varies more slowly than V& does when the
wave functions are varied, so although there is some can-
cellation, 5VH+5u, will usually have the same sign as
5 VH and be of the same order of magnitude.

When V is employed as the approximate exchange
potential, the resulting potential is too attractive, leading
to a Hartree potential that is too large for each atom, as
illustrated in Figs. 3 and 4. Consequently, it follows from
Eq. (68) that in the Slater approximation, K

"always lies
above c ", as seen in Table IV, even though in this ap-
proximation, c lies below c. ". Similarly, when the LSD
approximation is employed, the exchange potential is
generally too weak, although a much better approxima-
tion than is V„. The resultant 5VH is negative, as illus-

trated in Figs. 3 and 4, but much smaller in magnitude
than in the Slater approximation. Thus, in the LSD ap-
proximation, K "is much closer to c. "than in the case
where V is employed and generally lies below c. ", ex-
cept in two cases (Ca and Sr), where the two are(5 X 10 Ry apart.
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The above analysis also provides some insight into the
behavior of the E when V, is employed. Since Eq. (52)
is satisfied by our numerical procedures to within 10
Ry, it suffices to consider E "given by Eq. (68). Then,
since VH is positive and much smaller in magnitude than
in the LSD case, c, "will be closer to c "than the LSD
result and will generally be above c ". The last remark is

true for all atoms in Table IV except Cd, for which c in

the V„approximation lies deeper than c " by only
4X10 Ry, but lies above c.'. Thus the fact that Eq.
(52) is satisfied, along with the result that V„results in

n (r) very close to n (r) and thus to small 5VH essential-

ly guarantees that the eigenvalues c obtained will be
very close to the E ". Similarly, using the same argument
when the exact V' is employed, we conclude that the ex-
act E' should be very close to e ", which is indeed the
case.

In addition, we note that since Eq. (68) is valid for all i
it follows that if the (P; I is a good approximation to
[f; "I, then E; "will be very close to E; ", i.e., we could
obtain an accurate approximation to c;" for each i
without the necessity of solving the nonlocal HF single-
particle equations. As discussed at the beginning of Sec.

III, our construction of the equation satisfied by V was
based on an attempt to obtain an exchange potential that
would result in single-particle eigenfunctions that closely
approximated the corresponding HF single-particle orbit-
als.

In order to test how accurately the single-particle
eigenfunctions approximate the HF orbitals when V is
employed as the exchange potential, we have calculated
the overlap integral (f; "~f; ) of corresponding orbitals.
These overlap integrals for the two highest-energy occu-
pied states for the atoms listed in Table I are tabulated in
Table V. The value of the overlap integral for all lower-
lying states is &0.999955. In addition, for purposes of
comparison, we have also calculated the overlap integrals
of both the KS-LSD eigenfunctions, (f, "~g; ), and the
Slater eigenfunctions, ( f, "~P), with the HF orbitals.
The value of the overlap integral for all lower states for
the KS-LSD and Slater orbitals is &0.9997 and 0.9977,
respectively. %e see that in all cases these overlap in-
tegrals are remarkably close to unity with the V„results
yielding the largest overlap and the LSD results being
larger than the Slater results for atoms heavier than Ne.

In order to make a more quantitative comparison, we

TABLE V. Comparison of overlap integrals calculated by employing various exchange-only approxi-
mations for the two highest occupied states with the corresponding Hartree-Fock orbitals for ten atoms
with closed subshells.

Atom

Be(ls)
Be(2s)

(/HFDF/ ~)

0.999 984
0.999970

( yHF
~

yLSD )

0.999716
0.999 723

( qHF~ yS )

0.999 971
0.997 660

(QOEPb~p ~)

1.000000
0.999 991

Ne(2s)
Ne(2p)

0.999 986
0.999996

0.999 810
0.999423

0.999 969
0.999 536

0.999 997
0.999 998

Mg(2p)
Mg(3s)

Ar{3s)
Ar(3p)

0.999 989
0.999 907

0.999 980
0.999 980

0.999 835
0.999737

0.999917
0.999 675

0.999 578
0.990436

0.999 287
0.998 761

0.999 999
0.999 975

0.999 997
0.999 994

Ca(3p)
Ca(4s)

0.999 968
0.999 875

0.999 879
0.999 341

0.998 782
0.985 430

0.999 993
0.999 964

Zn{3d)
Zn(4s)

0.999 809
0.998 962

0.998 946
0.997 503

0.999 251
0.985 321

0.999 985
0.999 698

Kr(4$)
Kr(4p)

0.999 859
0.999 972

0.999 749
0.999 718

0.999 677
0.998 308

0.999989
0.999 993

Sr(4p)
Sr(5s)

0.999 951
0.999 851

0.999 885
0.998 852

0.998 261
0.981 459

0.999 992
0.999 954

Cd(4d)
Cd(5s)

0.999 845
0.999087

0.999403
0.997 597

0.998 913
0.983 821

0.999 983
0.999 712

Xe(5s)
Xe(5p)

0.999 794
0.999 974

0.999 624
0.999 805

0.996 768
0.997 952

0.999 987
0.999 993

'Calculated using V„given by Eq. (48).
Calculated using a modified computer code of Ref. [19].
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note that for normalized P,

(69)

so the value of the left-hand side of Eq. (69) is a measure
of the deviation of P; from the corresponding g,. ". Ap-
plying this criterion, we find, using the results presented
in Table V, that for the highest occupied state (except
Ne), the LSD results have a deviation from HF that is( ]p that of the Slater result. For lower-lying states, the
LSD results are usually, but not always, an improvement
over the Slater results. More significantly, the results of
employing V„as the exchange potential yield deviations
for the highest occupied state that are always smaller
than those of LSD and = —,

' those obtained by using
the Slater exchange approximation. Since ( p; "~ l(; )
&0.999955 for all lower-lying states when V is em-

ployed, we conclude that this exchange potential results
in eigenfunctions that are an excellent approximation to
the HF orbitals for all states of these ten atoms. More-
over, we also see that employing our approximate OEP
exchange potential results in eigenfunctions that are even
closer to the OEP orbitals than they are to those of HF
for the two highest occupied orbitals for all ten atoms
considered. In addition, for all lower-lying states of these
atoms, (l(;~tj'j, ) &0.999993, which is another demonstra-
tion of how well V„approximates V' and suggests that
the E; "calculated by employing these orbitals should not
only closely approximate c.;" but closely approximate
E' "as well.

Table VI is a comparison of c; "with K; "calculated by
employing our modification of Talman's OEP code, V, ,
the KS-LSD approximation, and V, , as well as the re-
sults of the direct eigenvalue calculation c; for each ap-
proximation for Zn. Zinc is chosen because in one sense
it is the worst case for V since, according to Table V,
its 4s state has the smallest overlap integral with both the
HF and the OEP 4s state. We find that for each i, c'; is

significantly closer to the corresponding value calculated
by employing V„ than that obtained from either the
LSD or the Slater approximations, which provides fur-
ther support that V more accurately approximates V„'

than the other exchange potentials. It is interesting to
note that c., is always closer to c; " than is calculated by
the other methods, including the OEP for all i except
i =m. This is generally the case for the other atoms as
well because V„reduces to U,. in the limit in which n;
dominates the density, whereas this is not true for the
other approximations, except in the case i =m for both
V„' and V„. However, as we have seen in Sec. II, the
physically meaningful quantity is e ';

"since this quantity
is equal to the rate of change of the total OEP energy
with respect to the fractional occupation of the I', o. state
(generalization of Janak's theorem) and is also equal to
the difference of the total ground-state energy and the to-
tal unrelaxed energy with the i a state unoccupied
(Koopmans's theorem). Similar statements are true for
c, "if the HF approximation is employed.

Comparing the calculated values of c. ;.
" for each ap-

proximation with K'; ", we see that the LSD results are a
significant improvement over those obtained from V„,
which are systematically too deep compared with K; "or
E'; "

by = —,', the energy that E; " underestimates the
magnitude of these quantities. More significantly, we find
that the V„results, E; ", are a substantial improvement
over the LSD results, with energy differences from c. ';

from =
~p

to ]pp of those obtained from the latter approx-
imation. In fact, the V results for E; "are on the aver-

age even closer to c; " than are the calculated c. '; ", hav-

ing a mean difference of 0.005 Ry from the HF result,
which suggests that a more precise OEP calculation
would bring c ';

"even closer to c; "for all i, which, as we
have seen from our discussion of Table II, must be true
for i =m. Similarly, for all atoms in Table I, we find that
the LSD is a significant improvement over V in calcu-
lating accurate values of c; "and that the V results are

TABLE VI. Comparison of e";"with K";"calculated in various exchange-only approximations for Zn (in Ry). Also listed are the

values of the single-particle eigenvalues (c.;) calculated in the same approximations.

Atomic state

1s

2$

3$

3p

3d

HF

—706.609

—88.723

—77.850

—11.276

—7.679

—1.565

—0.5850

OEP'

—706.600
( —691.519)

—88.708
( —83.431)
—77.842

( —73.487)
—11.268
(
—9.591)
—7.673

( —6.421)
—1.556

( —1.076)
—0.5855

(
—0.5855)

v b

—706.611
( —691.103)

—88.710
(
—83.366)
—77.849

(—73.505)
—11.277
( —9.518)
—7.681

( —6.372)
—1.560

( —1.050)
—0.5837

(
—0.5837)

LSD

—706.888
( —689.772)

—88.951
( —82.942)
—78.098

( —73.173)
—11.468
(
—9.040)
—7.863

(
—5.939)
—1.703

(
—0.696)
—0.6062

( —0.3707)

Slater

—704.028
(
—700.618)
—86.923

( —85.883)
—75.958

( —76.313)
—10.437

( —10.017)
—6.856

( —6.892)
—0.829

( —1.513)
—0.4395

( —0.7135)

'Calculated using a modified computer code of Ref. [19].
Calculated using V given by Eq. (48).
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a significant improvement over the LSD results, with the
maximum difference between c; " and c; "or c'; "being
a few hundredths of a Rydberg even though the eigenval-
ue c; calculated in the V„approximation may be
different by as much as tens of Ry.

V. APPLICATION OF APPROXIMATE
OPTIMIZED Kk I ECTIVE POTENTIAL

TO SPIN-POLARIZED SYSTEMS

Our discussion of the results of employing V„as the
approximate exchange potential in Sec. IV was limited to
atoms with closed subshells. Consequently, there is only
a single exchange potential, i.e., V„&

= V„&, for these sys-
tems. In this section, we investigate the accuracy of em-
ploying the spin-polarized potentials V„& and V„~ for the
simplest open-shell atoms, i.e., Li, Na, and K, as well as
study the accuracy of employing V„ to approximate the
exchange potential as a function of fractional occupancy
of the highest-energy occupied state. Finally, we demon-
strate numerically the existence of the integer discon-
tinuity in V, as a spin subshell is completely filled.

Table VII is analogous to Table I and presents the re-
sults for the total energy for Li, Na, and K obtained by
performing a spin-unrestricted Hartree-Fock (SUHF) cal-
culation for each atom. In addition, we tabulate (in mRy)
the overestimate of this energy by the energy calculated
using the spin-polarized generalization of our
modification of Talman's code for the pair of OEP poten-
tials, V' . Finally, we tabulate the overestimate of the
OEP energy by the results obtained by employing V„
given by the solutions of Eq. (48) and by the LSD approx-
imation. (The results obtained by employing V provide
significantly larger overestimates of the energy as found
in Sec. IV and will not be further discussed. )

We find that the trends displayed by the results tabu-
lated in Table I are evident here as well, i.e., the fraction-
al overestimate of the energy calculated by employing the
OEP, V„, or the LSD approximation significantly de-
creases with increasing Z, the results of employing V„
overestimate the OEP result by only = —,

' of the OEP
overestimate of the SUHF result, and, most significantly,
the overestimate of the OEP total energy by the LSD re-
sults is at least eight times larger than the overestimate
provided by the V„results.

Further evidence supporting the conclusion that the
pair of spin-polarized V„closely approximate the corre-
sponding OEP potentials is presented in Figs. S and 6.

We see that for potassium (where we have assigned the
unpaired electron to the 4s f state), both V, t and V„& are
an excellent approximation to the corresponding OEP re-
sults except possibly at the bumps in the latter, which
occur in the intershell regions. We find that the major
difference between the spin-up and spin-down OEP po-
tentials is the small bump that appears in the spin-up po-
tential near r =2 a.u. corresponding to the intershell re-
gion between n =3 and 4, which is missing in the spin-
down potential because the n =4 spin-down states are all
unoccupied. It is clear that V„accurately accounts for
this difference and is nearly identical to V for r & 1 a.u.
We also observe, as in the previous discussion concerning
atoms with closed subshells, that the LSD approximation
is nearly everywhere too weak and approaches zero too
rapidly because V„" -n', which ~0 exponentially
fast as r~ac instead of approaching zero like —1/r
This is more evident in the graph of the spin-down poten-
tial because the exponential decay of the spin-down den-
sity is much faster, depending essentially on the more
tightly bound 3p $ state than the density of the 4s f state,
which determines the decay of the LSD spin-up exchange
potential.

It is also interesting to compare the calculated c.

with s " and dE /d f for each spin projection, which
should be equal to each other in an exact OEP or SUHF
calculation, as discussed in Sec. II. In addition,

=e H" if the exact V„given by Eq. (48) is employed.
We observe from Table VIII that Eq. (31) is altnost exact-
ly satisfied by the OEP results for the most weakly bound
electron, i.e., spin up, for each atom. In all cases, for
both spin up and spin down, the value of dE'/df
which we believe is the most accurate estimate of the ex-
act c', is very close to the value of E ". The value of
the direct calculation of the energy eigenvalue, which we
believe is the least accurate estimate, is within 0.05% of
these results.

In considering the accuracy of the V„calculations, we
note that, as in the unpolarized case, the condition that
c~ =c ~~ is exactly satisfied to the precision of the tabu-
lation and is in fact satisfied to 1X10 Ry by our nu-
merical procedures. In addition, the calculated c.

&
is

within 0.0002 Ry of the best estimate of c'
&

and e ~
is

within 0.3% of the best estimate of s'
&

and the values of
dE/df are within one part in 3000 of the values of
dE'/df . On the other hand, the LSD results for the
direct calculation of c are too shallow by at least 40%
for cr = 1' and at least 25% too shallow for cr = 1 (both re-

TABLE VII. Comparison of overestimates of the spin-polarized OEP total energy E' calculated in

various spin-polarized approximations compared with the overestimate of the spin-unrestricted
Hartree-Fock (SUHF) total energy by E' (in mRy) for three alkali atoms.

Atom

Li
Na
K

EsUHF (Ry)

14.86SO 50
323.7159

1198.3297

0.51
4.6

11.6

0.12
1.4
3.9

~LSD ~ o

7.74
30.6
32.7

'Calculated using a spin-polarized extension of the computer code of Ref. [19].
Calculated using V„given by Eq. (48).
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FIG. 5. Exchange potential for spin up for potassium vs the
distance from the nucleus. The OEP, V„,and LSD refer to the
same potentials as described in Fig. 1.

FIG. 6. Exchange potential for spin down for potassium vs
the distance from the nucleus. The OEP, V„,and LSD refer to
the same potentials as described in Fig. 1.

suits arising from the observation that this potential is a
poor approximation to V; for large r). The fact that
these LSD eigenvalues are not close to a self-consistent
OEP calculation is further demonstrated by the large
differences between a. and E~" evaluated in this ap-
proximation. As expected, the values of e " are a much
better approximation to the exact OEP results, but are

still not consistently as close to the exact result as the
direct eigenvalue calculation when V„ is employed.

We may also test the accuracy of any approximate ex-
change potential by comparing the separate spin densities
with those calculated by SUHF as well as by the V; .
The values of n

&
(0), n &(0), and the resultant spin density

at the nucleus, nl(0)=n&(0) —n&(0), are presented in

TABLE VIII. Values of e, s""„and dE/df for o = t and a =l calculated by employing vari-
ous spin-polarized exchange-only approximations (in Ry) for three alkali-metal atoms.

Atom
(electron state)

Li(2s f) &mo
~HF

mo—dE/df

SUHF

0.3927
0.3927
0.3927

OEP'

0.3926
0.3926
0.3926

0.3924
0.3924
0.3925

LSD

0.2009
0.3944
0.3895

Li(ls 4)

Na(3s f)

&mo
~HF

mo

dE/df—
&mo
~HF

modE/df—

4.9374
4.9374
4.9375

0.3644
0.3644
0.3644

4.9377
4.9377
4.9378

0.3641
0.3642
0.3642

4.9343
4.9343
4.9379

0.3640
0.3640
0.3642

3.6092
4.9801
4.9068

0.1934
0.3686
0.3667

Na(2p g)

K(4s f)

&mo
~HF

modE/df—
&mo
~HF

modE/df—

3.0341
3.0341
3.0342

0.2953
0.2953
0.2953

3.0339
3.0354
3.0355

0.2954
0.2954
0.2954

3.0311
3.0311
3.0361

0.2954
0.2954
0.2955

1.9940
3.1041
3.0152

0.1609
0.2975
0.3002

K(~p l)
~HF

modE/df—
1.9070
1.9070
1.9070

1.9066
1.9069
1.9069

1.9012
1.9012
1.9071

1.2811
1.9109
1.9013

'Calculated using a spin-polarized extension of the computer code of Ref. [19].
bCalculated using V„given by Eq. (48).
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Table IX for Li, Na, and K. First of all, we note that the
SUHF and OEP results are almost identical for the
separate spin densities, with difFerences of less than 15
ppm for Li and decreasing to only 4 ppm for K. The V
results for n &(0) and n &(0) are within 0.2% of the OEP
results and the deviation of the LSD results is about three
times larger, which is similar to the discrepancy in n (0)
for the atoms with closed subshells. The resulting values
of m (0) for both SUHF and OEP calculations are nearly
identical, with differences of at most =1% for K. How-
ever, because rrt (0) is a very small fraction of the separate
spin densities, n t (0) and n &(0), small percent deviations
in the latter lead to much larger deviations in the former.
In fact, the deviations in the separate spin densities are
much larger in magnitude than m(0). More detailed
analysis reveals that the contribution to m (0) from the
highest-energy s state, which for these atoms is unpaired,
is =90% of the total OEP, V„, and LSD result, with
reasonable accuracy, while the contribution of the inner
subshells in both the V„and LSD approximations is
very small with large percent errors compared with the
OEP results. Thus the deviation in the LSD result for
m (0) from the OEP value is = 10% for Li, and increases
to =15% for Na and K, while the deviation in the V„
values is approximately —', as large. For larger values of r,
the values of m (r) tend to decrease with the V„results
more closely approximating the SUHF and OEP values
than those of LSD as depicted in Fig. 7 for K.

We have also studied the accuracy of the above
exchange-only potentials in calculating the properties of
N, P, and As, each of which has a highest-energy spin
subshell with three spin-polarized p electrons, and Mn,
whose highest occupied states are two 4s electrons that
lie above five spin-polarized 3d electrons. We find that in
each case the spin-polarized V„results for the energy
are again only =—,

' as large an overestimate of the OEP
result as the OEP result is above the SUHF value. In ad-
dition, the V results for c are within 0.004 Ry of the
best estimate of the OEP values for both spin-up and
spin-down states, whereas the LSD results for the highest

deviate from the OEP results by more than 40%.
Moreover, the separate spin densities n

&
(0) and n

&
(0) ob-
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FIG. 7. The net spin density m(r) (in a.u. ) for potassium vs

the distance from the nucleus (in a.u. ). The OEP, V„,and LSD
refer to the same potentials as described in Fig. 1. SUHF refers
to spin-unrestricted Hartree-Fock calculation.

tained from the OEP calculation are again only a few
ppm from the SUHF result and the deviation of the V„
values is less than four parts per thousand, which is about
half the deviation in the LSD results. However, unlike
the situation for the alkali-metal atoms, there are no un-
paired s electrons that make the dominant contribution
to m (0). Instead, m (0) arises from the polarization of
these pairs by the subshell occupied by totally polarized p
or d states with more than one s subshell making a
significant contribution to m (0). Moreover, for a given
atom, these separate s subshell contributions have possi-
bly di8'erent signs so there is a considerable amount of
cancellation and, in addition, as in the case of the alkali-
metal atoms, the OEP contributions from these separate s
subshells containing electrons of opposite spin are not al-
ways well approximated by the V, or LSD calculations.
Consequently, the values of m (0) calculated in these ap-
proximations are unreliable and may even have the
wrong sign. However, it should be noted that as r in-
creases, the contributions to m (r) from the totally spin-
polarized highest-energy occupied p states (for N, P, and
As) and d states (for Mn) rapidly dominate the contribu-
tions of the other subshells and the V and LSD approx-

TABLE IX. Spin densities at the origin, n (0), and net spin density at the origin,
m(0) =n ~ (0)—n ~ (0), for three alkali-metal atoms calculated in various spin-polarized exchange-only

approximations (in a.u.).

Atom

Li n ~(0)
n g(0)
m (0)

SUHF

7.01975
6.795 06
0.224 68

OEP'

7.019 84
6.794 96
0.224 88

V b

7.032 03
6.793 39
0.238 64

LSD

6.837 59
6.635 99
0.201 60

Na n ~(0)
n )(0)
m (0)

417.203 3
416.555 9

0.647 4

417.206 5
416.561 5

0.645 0

416.1896
415.465 9

0.723 7

413.679 4
412.946 3

0.733 1

n ~(0)
n g(0)
m (0)

2269.756 3
2268.902 9

0.853 4

2269.766 7
2268.906 8

0.859 9

2265.715 8
2264.773 0

0.942 8

2257.920 9
2256.923 2

0.997 7

'Calculated using a spin-polarized extension of the computer code of Ref. [19].
bCalculated using V, given by Eq. (48).
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imations yield values for m (r) that are very close to both
the SUHF and the OEP results for r ~0.2 a.u. , for those
cases in which these approximations do not give the
correct sign for m (0). Consequently, the deviations in

the calculated spin density are significant only within a
small fraction of the volume of these atoms in which the
value of m(r) is relatively small and in the region of
space in which m (r) reaches its maximum value, the spin
density is accurately approximated by both the V„and
LSD results.

Thus far, our analysis has been restricted to testing the
accuracy of V„ for integral occupancy of the individual
orbitals. However, the full implications of the KS theory
are best understood by treating systems in which the par-
ticle number is allowed to vary so that the highest-energy
occupied state has a fractional occupancy [4—7]
0&f (1.

As an example, we consider the magnesium atom
(Z = 12) as the number of electrons is continuously in-
creased from N =9 to 12. Figure 8 is a graph of the total
SUHF energy as well as the energy calculated using the
spin-polarized V„potentials, both as a function of N, the
number of electrons in the system. The V„results
overestimate the SUHF total energy by less than 0.008
Ry for all N. The results of the spin-polarized OEP cal-
culations (not shown) lie above the SUHF results by
&0.006 Ry and lie below the V„ total energy by less
than 0.002 Ry. We note that there are cusps in the E
versus N curves at integer values of N as expected, and
the values of the slopes, i.e., dE/df, on both sides of
each cusp are within 0.3% of the eigenvalues s, calcu-
lated by employing V as the exchange potential. In an
exact SUHF or OEP calculation, these quantities are of
course exactly equal according to Eq. (31).

-392-

Moreover, the eigenvalues of the highest occupied
spin-up and spin-down single-particle states calculated by
employing V„are in excellent agreement with those ob-
tained from the SUHF, not merely at integral values of N
but for 9&N &12, as shown in Fig. 9. Here the lower-
energy state is completely filled and the higher-energy
state is fractionally occupied when N is nonintegral. We
see from the figure that c.

&
and c

&
are both very close

to the corresponding values of c. t and c.
&

even when
these eigenvalues significantly change as the occupancy of
the highest occupied energy state is increased. Thus for
9&N &10, the value of sz "& gradually rises as the 2pt
spin subshell is filled from a total occupancy greater than
two to an occupancy of three electrons. At N =10, the
2pf and 2pg subshells are filled, so ez+Ft=PzFt. The
strong dependence of ezz~ on the fractional occupancy of
the highest occupied level can be attributed mainly to the
increase in the Hartree potential as the 2p1 subshell is
filled. Similarly, in the ranges 10 & N & 11 and
11 & N & 12, the single-particle eigenvalues corresponding
to the filled 2p f and 3s J, subshells, respectively, also rise
with increasing fractional occupancy of the highest-
energy occupied subshell for the same reason. On the
other hand, as the 3s spin subshells are filled, these
highest occupied states have e3, almost independent of
fractional occupancy, as would be expected for the
highest occupied state in a theory that included correla-
tion efFects [4]. In view of this fact, the dependence of
62p f on fractional filling of this level for 9 & N & 10 and
the related slight bowing of the E versus N curve in this
interval is an artifact of the SUHF theory, i.e., an exact
calculation including correlation would yield E versus N
as a series of straight lines with cusps at integral values of
N. It then follows that s ~=dE/df would be in-

dependent of f with rno being the highest occupied
state. Nevertheless, it should be noted that the V„re-
sults for c for both spin projections are as close to the
values of the corresponding values of e and s' (not
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Fock calculations and V„ is described in Fig. 1.

FIG. 9. The maximum energy eigenvalues c. (in Ry) for
spin up and spin down for magnesium vs the number of elec-
trons ¹ HF refers to spin-unrestricted Hartree-Fock calcula-
tions and V„ is described in Fig. 1.
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FIG. 10. Spin-up exchange potentials V„t {in Ry), for Mg+
for filled 2p subshells and empty 3s f subshell {lower curve) and
for partially filled 3s 1 state with f„I=10 plotted as a func-
tion of the distance from the nucleus (in a.u.).

shown) for fractional N as they are for integral N, while

the LSD results (not shown} remain 25—40 % too small

in magnitude.
Finally, it is interesting to examine how the exchange

potential changes discontinuously when an unoccupied
spin subshell begins to be filled. Figure 10 displays the
self-consistent solutions of Eq. (48) for V„& for magnesi-
um with N= 1 1 electrons, i.e., a filled 3s1 and an empty
3s 1' subshell, and V„& for N = 11+f, where f=10,i.e.,
a filled 3s 1 and a partially fIlled 3s f subshell. In agree-
ment with our discussion in Sec. III, we see from Fig. 11
that for f=10, the discontinuity in the potential is al-
most exactly constant for r &5 a.u. with the difference
——1/r in the large-r limit. In addition, we see that the
size of this discontinuity is = 1 Ry, which is nearly identi-
cal to that required to yield the correct value of s3, &

when
V„'& ="'(r) was the exchange potential that resulted in
the correct value of s2 &

when the 3s 1' state was empty
(see Fig. 9). We also note from Fig. 11 that for inuch
smaller fractional occupancy, i.e., f=10 ', the region
of constant discontinuity extends further in space but
maintains the same value. The extension to larger r fol-
lows from the fact that the asymptotic form of the poten-
tial given by Eq. (49) becomes valid only in the limit in
which n &)n; for all i & In, which requires larger r iff
is decreased. The reason the size of the constant discon-
tinuity remains essentially unchanged is that for
f=10, the region for which the constant discontinuity
obtains is so large it contains almost the entire 3s f state,
so Eq. (47) remains satisfied without any additional
change in the size of V„& in this region [note that it fol-
lows from Eq. (13}that U is essentially independent of
f for f «1]. However, if the fractional occupancy
of the 3s 1 state is increased to f=10, then the region
of constant discontinuity is reduced to one that is
suSciently small that it no longer contains nearly the en-
tire 3sf state. Consequently, in order that Eq. (47}
remain valid, V„& must increase by a slightly larger con-
stant when the value off is increased from 10 to 10
These results concerning the range of the constant
discontinuity as a function of f as well as the size of the
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FIG. 11. The difference in the spin-up exchange potential for
Mg+ with fractional occupancy f of the 3s t state, V„'f ="+ ',

and the spin-up exchange potential for f =0, V,'I "' (in Ry) vs
the distance from the nucleus (in a.u. ) for three values off.

discontinuity are in excellent agreement with numerical
results obtained from directly solving the OEP integral
equation. However, accurate V results are much easier
to obtain due to instabilities in the OEP equation for
small f [7].

VI. CONCLUDING REMARKS

The exchange potential V„, derived in Sec. III as a
functional of the occupied orbitals [P,. ], is an excellent
approximation to the exact V„'; V„exhibits many of the
analytic properties of the exact OEP and yields results for
E, e, and n (r) as well as the integer discontinuity in
the potential that are in excellent agreement with the V„'

results. In addition, these results are in much better
agreement with the exact OEP values than those given by
the LSD or Slater approximations.

Moreover, the numerical results presented in Secs. IV
and V demonstrate that the OEP values for E, c, and
n (r) are all very close to the corresponding HF or
SUHF results. Consequently, in addition to closely ap-
proximating the OEP, the V„results may be used to
serve as an excellent approximation to HF and SUHF re-
sults as well.

Furthermore, the agreement between the calculated
values of F. and c. for both spin polarizations calculated
by employing the spin-polarized V„are remarkably
close to both the corresponding HF and OEP as a func-
tion of fractional filling f of the highest-energy single-
particle state even when the c. are strongly dependent
on f. The fact that the valence electron states are so ac-
curately described, as determined by the accuracy of the

, the values of ( r ), or the fact that the overlap in-
tegral with either the corresponding HF or OEP wave
function is so close to unity, supports the contention that
this method, especially when extended to include correla-
tion effects, will provide an accurate procedure for rnolec-
ular calculations. In addition, for the first time, an expli-
cit functional of the orbitals has been given that displays
the integer discontinuity that is known to exist in the KS
potential and that is important for maintaining the prin-
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ciple of integer preference in molecules, as well as being
crucial for the accurate calculation of electron energy
bands in solids. We note that the value of this discon-
tinuity in Mg is =1 Ry, which is the same order as the
underestimate the LSD approximation makes in calculat-
ing the band gaps of noble-gas solids.

In completing this discussion on the accuracy of vari-
ous quantities calculated by employing V as the ex-
change potential, we compare our results with those ob-
tained from the exchange-only local-spin-density approxi-
mation with self-interaction correction [10] (LSDSIC).
Although this approximation lies outside the usual KS
theory because it employs a different orbital-density-
dependent potential for each state, it has proved to be a
useful method for correcting some of the problems in-
herent in the LSD. In the following discussion, we shall
refer to the work of Li [35], who performed LSDSIC cal-
culations for the ten atoms listed in Table I. We find
that for the atoms heavier than Be, the LSDSIC values of
E, given by Eq. (8) with g; replaced by the LSDSIC P;,
not only lie above the V„result but lie above those ob-
tained by employing the Harbola-Sahni potential [21].
(The LSDSIC results for the energy for Be are lower than
E', refiecting the fact that these orbitals, for a given cr,
are not eigenfunctions of a single Hamiltonian and there-
fore E' is not a lower bound to the LSDSIC energy. ) In
addition, although the LSDSIC method makes a
significant improvement over the LSD in correctly calcu-
lating c, , the results for the p states are still in error by
an average of 8% and in all cases the s for the ten
atoms listed in Table I calculated by employing V„are
much closer to both the HF and the OEP results. Furth-
ermore, the LSDSIC density and, consequently, Hartree
potential do not approximate the HF results as well as
the corresponding V„results, nor are the overlap in-
tegrals with corresponding HF orbitals as large. We thus
conclude that although the individual LSDSIC single-
particle potentials are expected to mimic the HF U;, the
results of employing the single V„given by Eq. (48) lie
closer to the HF values.

Finally, in order to perform realistic calculations on
atoms, molecules, and solids, it is necessary to include the
effects of electron correlation. In principle, the correla-
tion energy functional may be written as a functional of
the spin densities n, i.e., E, [ [n j ]. If such a functional
could be found, then it could be added to the expression
for the Hartree energy in Eq. (8) and would lead to an ad-
ditional contribution to the Hartree potential given by
u, (r}=5E,/5n (r), with the OEP exchange potential
still given by the solution of Eq. (15). In practice, howev-
er, it is difficult to construct such a functional that in-
cludes the self-interaction correction, and functionals
that depend on orbital densities, i.e., LSDSIC [10], have
been employed.

In this regard we note that the OEP method is not lim-
ited to the exchange-only case [6,7] but can be applied to

any possible E„,[{f, j] by merely replacing E„[[f, j]
by E„,[[P; j ] in Eqs. (8) and (13) and replacing V„by
V, . It is then possible to generalize many of the results
obtained in Sec. II to the case in which both exchange
and correlation effects are treated as well as to extend the
derivation of Eq. (48) with u; now given by the generali-
zation of Eq. (13). In future work, we intend to extend
the generalization of Secs. II and III to include correla-
tion effects. We also plan to test the accuracy of various
exchange-correlation energy functionals in predicting the
properties of atoms with both open and closed subshells
as well as to demonstrate that our results satisfy the prin-
ciple of integer preference.
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APPENDIX A: DERIVATION
OF ANALYTIC PROPERTIES

OF THE OPTIMIZED EFFECTIVE POTENTIAL
FOR SYSTEMS WITH DEGENERATE STATES

gf'~' f dr'[V„' (r') u'~'(r—')]
P

X G' (r', r)1(t'~"(r')g'~'(r) +c.c. =0 .

For sufficiently large r the wave functions take the
asymptotic form

g'~g'(r ) ~g'~' (6,$)R (r) . (A2)

Dividing both sides of Eq. (Al) by R (r), operating on
the resultant equation with [e' —h (r) ], neglecting
terms proportional to Vg'~' (0,P) —1/r and
7 g'~'(8, $)-l/r, and multiplying the resulting equa-
tion by R (r), we obtain

The derivation of the integral equation satisfied by V„
given by Eq. (15) did not assume that the single-particle
states were nondegenerate [note that the sum in Eq. (6) is
restricted to s,' As,', so is well defined even if the icr
state is degenerate] and is applicable to systems with de-
generate states.

In the following we give a brief description of how the
results of Sec. II may be eneralized to the degenerate
case. We shall denote f ', p=l, . . . , p; as the set of
degenerate OEP states with single-particle-energy eigen-
value c'; . Then from the definition of the Green's func-
tion in Eq. (6), G;"~'=G independent of P. Equation
(15) may then be written for r )R as

gf'~' f dr'[V„' (r') —u'g'(r')][[a' —h (r)]G' (r', r}jg'~"(r'}g'~'(r)+c.c. =0 .
P

(A3)
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But

[e' —h (r)]G' (r', r) = — g g; (r')QJ" (r)

= —[5(r—r')

yyo(y)(r~ )yo(y)e(r) ]
y

and that consequently, Eq. (26), i.e., Koopmans's
theorem, is also valid for the degenerate case as well.

Finally, we may extend Eqs. (30) and (31) to the degen-
erate case by noting that if tf(p)

]~ [f~p) +5f~ps) ],
which leads to a change in the self-consistent potentials
from V' to V'. +5V', then the change in the minimized
energy is given by the generalization of Eq. (27), i.e.,

(A4)
as'5E'=g 5f (P)

gf (P)
P per

(A10)

which is the generalization of Eq. (17). Substituting Eq.
(A4) into Eq. (A3) and, as is customary in degenerate per-
turbation theory, taking the [(){'p)] such that the off-
diagonal matrix elements of (V,' —v ) (where u is the HF
exchange operator) are zero, we obtain for large r

g [ [ V; (r)—v'P' (r) ]—( V'„'P' —u' '
) I

P

whose solution is

Xn "P)(r}+c.c.=0, (A5)

y[u(P) (r)+( V o(P) v o(P))]no(P)(r)

V„' (r)=
yn o(p)(r)
P

(A6}

which is the generalization of Eq. (18}to the degenerate
case, including the use of possibly complex wave func-
tions. In the above, we have taken u'p' (r) as real since in
the large-r limit, v'P' (r)~ f 'P' Ir. —

Since the angular dependence of different n'(p)(r) will
in general be different, the condition that V,' (r)~0 for
r ~ oo independent of 8,P will require

where we have used Eq. {3}.
It follows from Eqs. (8) and {9)that

EO ,I o(p)e g (p)HF, I o(p)d r &
0(p)HF

Jp~
(Al 1}

—0HF

de
(A12}

where f is the total number of electrons in the degen-
erate states. Moreover, it follows from Eqs. (A9) and
(A10) that for p =rn

For simplicity, we shall assume that e, p~
' " is also in-

dependent of P for all p and not merely for p =m, as al-
ready shown in Eq. (A9), i.e., by hypothesis e' is degen-
erate and therefore independent of P; we are assuming
that the corresponding e'(P)HF is also independent of p,
which is certainly the case for all systems we have treat-
ed.

It then follows from Eqs. (A10) and (Al 1) that

y o(p) -o(p)
xcrm Vmn (A7) &0 &

oHF
me & me (A13)

V„' (r}~ f /r, r~oo— (A8)

which generalizes Eq. (21).
Moreover, even for degenerate states, it is possible to

derive the analog of Eq. (23}. This follows from the fact
that in such a case there can be regions in which one
gr"p'(r) is much larger than the wave functions of other
states with which it is degenerate, e.g., for states with an-
gular momentum I =1, we may choose the [g'p'] to be
proportional to x, y, or z, in which case only one of them
is nonzero along each coordinate axis. If we assume that
this is in general the case, i.e., along some lines or in some
regions of sPace, different real fr(P'gr' P' dominate the sum
in Eq. (15},we can neglect the contributions of all other
orbitals in the sum, which yields Eq. (22). It then follows
in the same way as in the nondegenerate case that Eq.
(23) is valid under these conditions. In addition, it fol-
lows from (A7), Eqs. (24) and (25), that

&o &
o(P)HF

&m~ &ma (A9)

for each P, which is the generalization of Eq. (20).
Finally, employing (A7) and the asymptotic behavior of

v'p', it follows from {A6) that if some or all of the degen-
erate mo states have f'p' =f independent of p with
the remaining f 'p' =0, then

Equations (A12) and (A13) are the generalizations of Eqs.
(30) and (31) for the degenerate case.

In closing this appendix we observe that the result
given by Eq. (A6) for the asymptotic behavior of the ex-
act solution of the OEP equation gives support for the ad
hoc weighting of the single-particle potentials employed
in constructing the approximate solution given by Eq.
(38).

APPENDIX B: DERIVATION OF APPROXIMATE
OPTIMIZED EFFECTIVE POTENTIAL

FOR SYSTEMS WITH DEGENERATE STATES

The arguments leading from Eq. (38) to Eq. (40) are
applicable to systems with degenerate states once the gen-
eralization of Eq. (23) is employed for the determination
of C given by Eq. (39).

We consider here how Eq. (40) may also be obtained by
making the approximations given by Eqs. (42) and (43) in
the Green's functions for systems with degenerate states.

If we make the approximation for e given by Eq. (42}
in 6, then instead of Eq. (41}we obtain for the approxi-
mate Green's function
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G, (r', r)=(e, —s, )
' g P) (r')g,* (r)

=(s; —s; ) '[5(r—r') —gg', r'(r')g';r'*(r)] .
r

(81)

Substituting this approximation for G,' into Eq. (15)
and making the further approximation given by Eq. (43),
we obtain the integral equation for the approximate V
i.e.,

gf g' fdr' [V„(r') u—g'(r')] '5(r —r') —gfI '(r')g';r" (r)
'
[gP'(r')g';~'(r)] +c c .=.0 .

i,p r
(82)

yn g'(r) [ v g'(r )+ ( V „'~'; —v ';~') ]

V„(r)=
gn g'(r)
i,p

(84)

where we have used the fact that it follows from Eqs. (13)
and (37) that for any [f; j and tg, j, V„ is real. Equa-
tion (84) is the generalization of Eq. (40) for complex and
possibly degenerate [ gP' j and is identical to the previous
result for real nondegenerate eigenfunctions, given by Eq.
(40).

It follows from (84) that the asymptotic behavior of
V„(r}for large r has the same form as given by (A6).
Thus, requiring that V„(r)~0 as r~oo results in re-
sults analogous to those given by Eqs. (A7}—(A9), i.e.,

~ (p) ——(p)
xcrm m 0 (85)

V„(r)~—mo f'~ 00
T

(86)

where, as in Appendix A, we assume that if f '~' %0 then

f '~' =f independent of P, and

~ (p)HF
m~ ma (87)

so that Koopmans s theorem is still valid in this approxi-
mation. Equations (85)—(87} are the generalizations of
Eqs. (47), (49}, and (52), which were derived for eigen-
functions that were real and nondegenerate. Finally, us-
ing the same reasoning that led to Eqs. (54) and (55), we
find that if the fractional occupancy of the po. states
changes, i.e., [f'~'~f'~'+5f'~' j, then

av. ,

5f'u +g f g dr5fI~' . (88), af,'~I " ., 5V, ay~~i

Then if we use the analog of Eq. (29) and take 5f '~' in-

dependent of P, i.e., the fractional occupancy of each of
the fractionally occupied states is changed by the same
amount, then

Performing the indicated integration over r, we obtain

gf;~'[[ V..(r) —u ~'(r)] —[ VS;—v. '] j
i,p

X P,'~'(r)P,'~"(r)+c c =.0. (83}

where we have chosen the [gI~'j so that the off-diagonal
elements of [ V —u ] between degenerate states is zero,
as done in Appendix A.

The solution of (83) for V„ is then

(89)

where f is the total occupancy of the p states, ( )
denotes the value averaged over all P for fixed po, and we

have assumed, as in Appendix A, that the degenerate pe
also have the same c. ", which is true for all systems we

have studied. Taking p =m and using Eq. (87), we ob-
tain

dE 5E (810)

APPENDIX C: RELATION OF HARBOLA-SAHNI
POTENTIAL TO V

In the following, we show that the spin-polarized ex-
tension of the Harbola-Sahni potential, W, may be de-

rived directly from the expression for V„given by Eq.
(40) by employing one further approximation. For sim-

plicity, we assume that the [g, j have been chosen as

real so the [ v; j are all real.
We make use of the identity

n; (r) , n; (r)
g(V„., —u,.) =g f (V„., —v,.)V

(Cl)

Equations (89) and (810) are the generalizations of Eqs.
(54) and (55) for the degenerate case.

The excellent agreement between e and dE/df
for atoms given in Table IV with differences of only
(0.3% on average and with maximum difference of
(0.4% supports the conclusion drawn from Table I that
5E/5V =0. In addition, the results presented for zinc
in Table VI demonstrate that the [s~ "j generally closely

approximate both the [ e ~
"j for the inner electrons as

well as the [sz "j. Similar results obtain for the other
atoms considered in Table IV.

Finally, we note that if u I~' is independent of P, and

f~ =f~, i.e., degenerate states have equal fractional oc-
cupancy, then it follows from Eq. (13) that V„given by
Eq. (84) is invariant under a unitary transformation of
the degenerate states, which is a condition satisfied by the
exact OEP, V„' . In addition, it is easy to show that V„
given by Eq. (84) satisfies the usual coordinate scaling
properties of the exact Kohn-Sham exchange-only poten-
tial [36].
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where the integral, which is independent of path, is taken
over any path from ~ to r. [Note we are assuming that
Eq. (47) is satisfied so there is no contribution to the in-

tegral when evaluated at the lower limit. ]
We now make the assumption that Eq. (23) is approxi-

mately satisfied for all r and not merely in the region in
which one orbital dominates n (r), so

n; (r)
g( ~xcri iver }

l

= —g f u (r)V dl
oo n

(C4)

Substituting Eq. (C4) into Eq. (40) and integrating by
parts results, without any further approximation, in

(V„,—u, )=—[V„(r)—u; (r)] .

Then substituting Eq. (C2) into Eq. (Cl) and using

(C2) , n, (r)
V„(r)—=g f Vv; (r) dl .~n r

(C5)

gn,

g f V„(r)V dl= f V„(r)V
l

yields

~ d1=0

(C3)

[Parenthetically, we note that the result given by Eq. (C5}
is identical to one conjectured by Krieger and Li [11]for
the construction of a single KS potential from the indivi-
dual v; obtained from any E„or E„, as, for example,
from the LSDSIC approximation. ]

In the present case, employing the [v; ] given by Eq.
(13) for real [g; ], we find

gn; (r)Vu, (r)

n (r)
(C6)

where

=0

X [l(~; (r)VQ (r)

-llew, (r)VQ, (r)]

(C7)

V„(r)= —f C„(r) dl—= W„(r}

where

(C8}

(C9)

is the effective electric field due to the Fermi hole charge
density given by

1p„(r,r') = n (r, r')
n (r)

(C 10)

with

n (r, r')=gf, g, (r)g; (r') (Cl 1)

for real [g; ]. Equation (C8), together with the defining

Eqs. (C9)—(C 1 1), is the spin-polarized, fractional-
occupancy extension of the exchange-only potential first
proposed by Harbola and Sahni [12], based on
significantly different considerations.

Although the above arguments demonstrate that 8'„

because i,j are durnrny indices being summed over, and
interchanging i and j results in Q changing sign.

Finally, substituting Eqs. (C6} and (C7) into Eq. (C5),
we obtain

may be derived as an approximation to V„, and thus to
V„', it lacks certain important properties possessed by
the latter two potentials. First of all, 8'„does not satis-

fy Eq. (47) and consequently does not satisfy Koopmans's
theorem, nor does it possess a discontinuity at integer
filling of the highest occupied spin subshell for a given 0..
Furthermore, although the integral given by Eq. (Cl) is
independent of path, the one appearing in Eq. (C4) and
consequently in Eq. (C8) may conceivably be path depen-
dent once the approximation given by Eq. (C2) is made
because the curl of the integrand in Eqs. (C4) and (C8) is
not manifestly zero except for systems in which the po-
tential is a function of only r, i.e., spherically symmetric
atoms, or only of x, i.e., jellium bounded by a surface in
the yz plane [18]. On the other hand, the calculation of
the potential V„does not require any path integrals and
thus is well defined for any system.

As discussed in Sec. IV, the application of 8'„as an
approximate V,

' yields total energy E, which is a
significant improvement over the LSD results for atoms
listed in Table I. However, the V„results obtained by
employing Eq. (48) were significantly closer to those ob-
tained by employing the OEP. Similarly, for the same ten
atoms, the single-particle-energy eigen values of the
highest occupied states, calculated by Li et al. [21] by
employing W„, are within =3% of s "and s' (with the
exception of Zn and Cd), whereas the s obtained by em-

ploying V„deviate on the average from the HF and
OEP results by approximately an order of magnitude less.
For Zn and Cd, the W calculations yield c which are
=10% deeper than either the corresponding HF or the
OEP results, whereas the energy eigenvalues obtained for
these atoms by employing V„have a deviation of only
=0.2%. A similar difficulty in the accurate calculation
of c. for Zn and Cd exists when the LSDSIC exchange-
only approximation is employed [35], which is probably
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due to a significant overestimate of the exchange interac-
tion with the lower-lying filled d states.

Thus we Snd that W„, considered as an approxima-
tion to V„or V„', is a good approximation for integral

occupancy, except in those cases in which the next
lowest-lying orbitals are d states. A di8'erent interpreta-
tion of the physical signi6cance of W„has been given by
Sahni and Harbola [34].
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