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Diffusion-limited reactions: El'ect of strong space disorder on segregation
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The effect of strong space disorder in a one-dimensional medium on the macroscopic segrega-
tion of A and B in the A+B 0 reaction is studied via an effective-medium approximation. The
strongest disorder (percolative medium) shows an increase of the segregation due to the existence
of isolated diffusive regions. Poisson strong disorder shows a slowing down both in the extinction
and segregation. In the presence of sources a disorder-induced transition from bounded to un-

bounded growth is observed.

Quite recently the nonclassical kinetics of the diffu-
sion-limited reaction processes for two-species annihila-
tion 2+8 C (where C is the inert species), has attract-
ed considerable attention. ' Such a process has been
studied as a model of several different physical and chemi-
cal systems (ionic, electron-hole, and defect recombina-
tion, matter-antimatter annihilation, etc.). An aspect
pointed out over a decade ago by Orchinnikov and Zeldo-
vich was the possibility of macroscopic segregation.
Several recent reviews have analyzed this and related as-
pects of such systems. ' Among other problems, work-
ers have been concerned with the influence of dimen-
sionality, initial conditions, sources, conservation laws,
etc. ' ' ' The form of the kinetic or rate equations has
also received some attention.

In this paper we would like to address the effect of spa-
tial disorder on the diffusive properties of the above-
mentioned systems and consequently its effect on the
macroscopic-segregation characteristics. Basically two
mechanisms, reaction and diA'usion, govern the evolution
of the system. The reaction process alone, in our case an-
nihilation, already produces segregation. The diffusion
process leads to homogenization of species and in this way
reduces segregation. However, when diA'usion stirring is
inefficient, as in low-dimensional systems, macroscopic
segregation occurs. ' In this framework the effect of dis-
order can be understood by considering changes in the
diffusive behavior of particles. A direct method of anal-
ysis can be achieved by considering an eA'ective-medium
approximation (EMA). Such an approximation gives an
equivalent time-dependent diAusion coefficient calculated
from the statistical properties of the random disordered
field. Then we can use a standard analysis of the reaction
diA'usion equation with an effective diffusion coefficient
that takes into account the eAect of disorder.

The EMA has been used only for discrete systems. In

(la)y(x, r) =ti,-t)(x) B„y(x,r)+R, (x,t),
p(x, t ) = ti „g(x) 8,p(x, t ) —k (p —

y ) +R (x, t ), ( 1 b)

where R, and R~ are the associated source terms, k is the
rate coefficient, and the diffusion coefficient tl(x) is a ran-
dom field. Applying the continuous version of the EMA
(Ref. 15) to (la) we arrive at

(2)

where the overbar indicates average over field configu-
rations. The effective time-dependent diAusion coefficient
is given in the Laplace-transformed space, r s (hereaf-

this case, and based on operator projection techniques and
ordered cumulants, a systematic way of obtaining an
EMA and perturbations around it has been developed in
Ref. 14. Although it is usually thought that EMA is only
valid for discrete models, it is possible to generalize such
approximation to a continuous medium. This generaliza-
tion has been made in the case of weak disorder ' and can
be extrapolated, in general, to strong disorder. ' We will

apply here this procedure discussing only the one-di-
mensional problem. The higher-dimensional situation will
be considered in the future.

From Ref. 15, it is clear that the effect of weak disorder
will not alter the conclusions of Refs. 6 and 12, since the
resulting effective diffusion constant only implies a change
in its magnitude but not a time dependence. We then con-
centrate on the most interesting case of strong disor-
der. ' ' ' We follow the approach of Refs. 6 and 12.
Then we assume the reaction diffusion equations for the
sum and difference variables p(x, t) =

2 [p~(x, t)+pg(x,
t) j and y(x, t) = —, [pg(x, t) pq(x, t)j to be—valid, where

p~ and pB are the local densities of the A and 8 reactants,
respectively. The equations are
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ter Laplace-transformed functions are written as the same
functions with argument s instead of t), but the self-
consistent condition'

rt
—D(s)

1+ 1j[D(s)][rt —D(s)] [I —IG (O,s)] (3)

where [j indicates average over field configurations, l is
the correlation length of the field g(x), and G ~ is the one-
point Green function of the ordered case. This condition
is equivalent to the EMA condition in a discrete medium

I

with statistically independent sites separated a distance l.
This is a very useful condition because in this way it is
easy to generalize known results from the equivalent
discrete medium.

As shown in Refs. 6 and 12 one way to obtain infor-
mation regarding the degree of segregation is through
the analysis of the correlation function C(x x—', t )
=&y(x, t)y(x', t)). From the knowledge of the initial
correlation &y(x, O)y(x', 0)) and correlation of sources
&R,(x, t)R, (x', t)) we can obtain C(x —x', t) as

C(x x',—t) = dx) dx2G2(x, x', t/x), x2, 0)&y(x~, 0)y(x2, 0))

+ dt dx) dx2G2(x x tjx( xi t )&Ry(x) t )Rr(x2 t ))

&) means average over all possible randomness. We have
assuined that disorder is independent of initial conditions
and sources. G2(x, x', t jx~,x2,0) is the disorder-averaged
two-point Green function. Here we make the following
ansatz for such a Green function:

G2(x, x', t/x(, x2, 0) =Gi(x, t jx~,0)G~(x', t jx2,0),
where G~( x', t /x, 0) is the one-point averaged Green-
function solution of (2) with R, =O and 6'(x —x') as ini-
tial conditions. A thorough discussion of this ansatz and
other related aspects will be given elsewhere. ' We will
next consider two kinds of strong disorder given by a per-
colative and a generalized Poisson models of disorder. In
both cases we study the inAuence of initial random condi-
tions and of random source terms.

We first analyze the percolative disorder. In this case
the random field g is defined by a two-level process with
values rt =4 and @=0 with probability a and 1

—a, re-
spectively. For the sake of simplicity we take an exponen-
tial correlated field with a correlation length /:

&rt(x) rt(x')) =A'a(1 —a)exp( —lx —x'l/l)+ (aa) '.

The field can be thought of as regions that are exponen-
tially distributed in which diffusion is possible or not pos-
sible. This field has the strongest disoraer. The stationary
solution of (la) is trivially obtained for a given realiza-
tion. In the case of R =0 we have

t a
y(x, O)dx, if x E (a, b) where tt =A,

yt x =' a —b4b
y(x, 0), if x C (c,d) where q =0.

(7)
Other exact calculations are also possible. In particular
it is not difficult to obtain the long-time limit of the
equivalent diffusion coefficient defined, in terms of the La-
place variables, as D =

2 s &x (s)). It reads

D(s) = —,
' al s.

This exact result can be compared with the one obtained
with the EMA condition (3). As in the discrete case, the
EMA deals with the correct time dependence but does not

x & y(k, O) y(k', 0)) . (io)
Following Refs. 6 and 12 we can choose uncorrelated (u)
or correlated (c) initial conditions. In the first case

&y(k, O) y(k', 0))„=—,
' N(bk+k', o ~k, o ~k', o)

which leads to

lim &y(x, t) y(0, t))„=
I~OO

from which results

n

2D 1/2
, + lxl

D 1/2

xlx exp
D 1/2

1

lim &[y(x, t)]')„=
2D~'"

(i2)

%'e remark that our analysis follows the method of Refs. 6
and 12, thus the density n appearing in (11) and (12) is
obtained as N/V in the thermodynamic limit.

From the stationary solution of Eq. (lb), we arrive at
&[p,t(x)] ) =&[y,t(x)] ). Then the segregation parameter
introduced in Refs. 6 and 12 turns out to be

& y')
lim S(t) =

z
=1.

&p')

The result (12) clearly indicates that the subdiA'usive be-
havior due to the percolative disorder increases the segre-
gation with respect to the ordered case. In this last case,
segregation is only reached in the extinction limit. On the
other hand, if we consider a correlated initial condition,
with c the geminate correlated placement, ' we have for
the initial correlations

&y(k, O) y(k', 0)) =
& NSk+k', o(1 —cos(kc) ) . (i3)

I

lead to a correct coefficient. '

Inserting D(s) from (8) into (2) and Fourier trans-
forming we obtain for 6~

1im G ( (k, t /0)— 1 (9)
OO I+D(k

with D
~

= —,
' al . Then the ansatz of Eq. (5) gives

(neglecting sources)

&y(k, t)y(k', t)) = G~(k, t/0)G~(k', t/0)
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This leads to

C, (x,t) =C„(x,t) —
—,
' [C„(x—c,t)+C„(x+c,t)]

so that

(i4)

&[y(t)]'), =C, (O, t) — 1 — 1+ exp( c/D —'/')
2D /' D 1/2 (is)

and

l

21-(1 —Xl)

' 2/(1 —
A,l)

(2~ ) 2kl/(1+xI)l 2(1 —2kl)/(I+XI)

(19)

indicating a reduction of the segregation due to the initial
correlation. We find a kind of competition between the
effective diffusion length D('/ and the initial geminate
placement c. If c» D 1'/ correlated particles are in
different diffusive regions and this is equivalent to the un-
correlated situation, so we recover the previous result
(12). In the opposite case, c & D('/, the probability of ex-
tinction of the correlated particles is larger and conse-
quently the number of segregated particles is reduced.

From (11) and (14) it is possible to do an estimation of
a segregation length. In the uncorrelated case it is clear
that a length scale given by l, =D('/2 exists. In the corre-
lated case a possible estimation can be given by the length
in which the correlation is zero. When DI/ &c, this
length is given by

l = c [exp(c/ DI/') —exp( c/D1' ')]—
(16)

exp(c/D 1'/') +exp( —c/D 1'/') —2
'

which tends to 2D 1'/ if D 1'/ »c. In the case c & D 1'/ it is
evident that the correlations in the correlated and un-
correlated initial condition cases are very similar.

Now we consider Poisson disorder. In this case the ran-
dom field q(x) is given by a spatial distribution of random
pulses separated by an exponentially distributed random
distance of mean A, . For the sake of simplicity we take ex-
ponential pulses with a height to and decay parameter 1/l
being co a random variable exponentially distributed with
mean (00. Strong disorder appears when U & I, so that
the mean distance between pulses is greater than its
width. ' Poisson strong disorder is weaker than percola-
tive disorder because the space remains connected. This
corresponds to a disorder of class c, ' i.e., with a probabil-
ity distribution, P(rl) - rl

' ', for rl close to zero.
Diffusive regions (exponential pulses) are only connected
by an exponentially small diffusion coefficient. This is the
cause of the subdiffusive behavior found with this kind of
disorder. Applying the EMA condition (3) to this case we
obtain an equivalent diffusion coefficient for small s (long
time) given by

D(s) =D2s',

where

1
—Xl

1+XI '

I

With this coefficient in Eq. (2) we obtain

n 0 (v+ 1/2) (1 —v)/2

4D,'"r(v+ i/2)

for the uncorrelated initial condition and

2nc A(v) —3(1 — )/2

8D2 I (3v —1/2)

for the correlated case. 0 is the function

1
'"+'" [u(1 —u)]ti(z) = . du.

2lrl 4 v —loo ( 1 u ) (1 —v)/2 + u (1 —v)/2

(20)

(2i)

(22)

For the segregation parameter an analysis similar to the
one of the percolative case gives for the long-time limit
S 1, so the segregation is reached in the limit of extinc-
tion. The difference with the ordered case is that segrega-
tion and extinction are slowed down due to the subdif-
fusive behavior induced by the disorder. This slowing
down is more intense when disorder is stronger, i.e., when
U 0.

Finally we study the case of strictly conservative
sources in the correlated and uncorrelated cases. The
correlation of sources are'

4R
CR(x, t) „C(x,t )dt .

n ~0 (24)

From the asymptotic expressions of (y (t)) given in Eqs.
(12), (15), (18), and (19), we can deduce immediately
whether (y (t))R remains finite or not in the t ~ limit.
It grows without bound in the correlated and uncorrelated
percolative cases [(12) and (15)] and in the correlated
Poisson disorder with v& 3, that is, A, l & 2. (y (t))R
remains finite in the uncorrelated Poisson case (20) and
also in the correlated one with Xl & —,

' . Here we observe a
kind of transition induced by disorder. When Xl ) —,

' dif-
fusion is large enough to connect the correlated sources
and a similar behavior to the one observed in the ordered
situation occurs. If Xl & 2 the subdiffusive behavior is so
strong that correlated sources appear as isolated, the
recombination time of the particles is long enough to pro-
duce an infinite growth. In the percolative case the
sources are actually disconnected and this is the cause of
the infinite growth.

Let us summarize the effect of disorder on the time evo-

(R,(x, t)R„(x',t'))„,= 8(t t')—
n

)( & y(x, O) y(x', 0))... (23)

which leads to the following relation between correlation
with sources, CR(x, t), and without sources, C(x, t), given
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lution and segregation of the diffusing particles. When
disorder is weak only a quantitative change of the dif-
fusion coefftcient is possible and no important changes
with respect to the ordered situation appear. When the
disorder is so strong that it produces subdiffusive behavior
but not strong enough to disconnect diffusive regions, we
obtain a slowing down of the reaction process and also of
the segregation (Poisson disorder). In the percolative
case, where disorder is so strong that it produces isolated
diffusive regions, extinction is not possible and a segregat-
ed steady state appears. The effect of disorder in the case

with sources is similar. We observe an infinite growth if
disorder is able to isolate correlated sources. In the Pois-
son case a transition from bounded to unbounded growth
is observed at I = I/2A, .
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