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Velocity-fluctuation spectra are proposed as a probe of the dynamic scaling of moving interfaces.
Using the theory of Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889 (1986)] it is shown that the

spectrum of the spatially averaged displacement velocity diverges as 1/f' at low frequencies, where
a= —, (a=0.7) for a one- (two-) dimensional interface. This implies superdiA'usive motion of the aver-

age interface position, which is verified numerically. The fluctuation spectrum of the stationary inter-

face width diverges as 1/f +'. Simulations of interfaces driven by non-Gaussian noise are also

presented.

Power-law divergencies in the low-frequency fluctuation
spectra of macroscopic quantities, often referred to as 1/f
noise, are a common characteristic of nonequilibrium
steady states [1-4]. Despite the apparent universality of
the phenomenon, however, its dynamical origins are quite
diverse and a detailed analysis of the relevant mechanisms
is required in each case [3,4]. When successful, such
studies can turn 1/f noise into a useful probe of the physi-
cal system at hand [4].

Recently it has been suggested [5] that the ubiquity of
1/f noise could be traced back to the generic occurrence of
power-law spatiotemporal correlations in noisy nonequili-
brium systems [6]. However, in general, this plausible as-
sertion does not stand closer scrutiny, since it is not
guaranteed that the internal dynamics of the system actu-
ally shows up in the time evolution of spatially averaged
quantities [7,8]. Hence further clarification of the condi-
tions under which these systems show nontrivial fluctua-
tion spectra is needed.

The present paper addresses these questions for the case
of a steadily moving interface with local noisy dynamics
[9,10]. Here the natural macroscopic observable is the
displacement velocity v averaged over a region of linear
size L which is large compared to microscopic length

Q= 3
2+4

Z
(2)

in terms of the dynamic exponent [12] z of the interfacial
Auctuations. The power-law (1) holds down to a cutoff'
frequency coo —1/L' where the spectrum becomes con-
stant. The numerical value of z is known [10,12] to de-
pend on the dimensionality d and the nature of the micro-
scopic noise driving the Auctuations. For Gaussian noise
with short-range correlations, z= —', for d=l and [13]
z=1.62 for d =2, leading to the noise exponents a =

3

and a =0.7, respectively [14].
Apart from the general questions alluded to above, this

work was motivated by recent experiments on the motion
of Auid interfaces in porous media, where the interfacial
fluctuations were investigated by directly imaging the po-
sition of the interface during the displacement process
[15]. Unfortunately this technique appears to lead to
somewhat ambiguous results [16], and the comparison

scales. I show that the fluctuation spectrum of U diverges
as

(
~
v (ro )

~
)=L "ro

for a d-dimensional interface, where [11]

R801 @1991The American Physical Society



R802 JOACHIM KRUG

with theoretical predictions has remained controversial. I
therefore propose to use the fluctuation spectrum of the
average flow velocity, or equivalently the pressure in the
fluid, as a probe for the interfacial dynamics. In the
high-frequency range where fluctuations are dominated
by the microscopic pore structure, an experiment was re-
ported by Stokes, Kushnick, and Robbins [17].

The noisy interface motion is described by the Kardar-
Parisi-Zhang (KPZ) equation for the interface position
h(x, t) relative to some d-dimensional reference plane
[12],

h(x, t) =vp+ —(Vh) +oV h+rt.
t 2

(3)

The first two terms on the right-hand side describe the in-
clination dependence of the local displacement velocity
[18], the Laplacian reflects local smoothening due to an
effective interfacial tension o, and the noise term ri(x, t ) is
at this point only assumed to have short-range temporal
correlations. We consider a finite system of linear exten-
sion L in the d transverse directions, and decompose
h (x, t ) into discrete Fourier modes hq(t ). The instantane-
ous, spatially averaged velocity is then v(t) =8hz-p/8t.
The nonlinear term in (3) couples v(t) to the internal de-
grees of freedom of the interface,

v(t) =vp+ —gq'~h&(t)~ +riq p(t) .
2 Q

(4)

Note that this implies a renormalization of the bare
growth velocity vp which has been shown [19] to generate
universal finite-size corrections to the average velocity &v).

Here we wish to compute the stationary velocity correla-
tion function &v(t)v(s)) —

&v& and its Fourier transform.
Apart from the trivial short-range contribution of the
noise this involves a sum over four point correlation func-
tions of the h~. We make the conventional assumption
that the four point functions are dominated by products of
two point functions and use the scaling form [10,12] for
the latter,

&h (t )h — (0))=L —
dq

—
(d+2«)g(qzt ) (5)

for small q =(q~ and long times. Here /=2 —z is the
static roughness exponent [10,12] of the interface and the
scaling function g decays rapidly for large arguments.
Within this approximation it follows from (4) that

g2
&Iv(co)['&=

d dqq" " 'g(to/q'), (6)

where g is the Fourier transform of g and the cutoffs
Ap=0(1/L), A~ =O(1). Clearly for to&&A& —L ' the
spectrum becomes constant. To evaluate the integral in
the opposite limit 1/L « to«1 we require some informa-
tion about the scaling function g. We expect that
g(to/q') —(ro/q') ' for q««o' ', where the exponent v
will be determined later. If v & (d+4)/z —3 the integral
converges at the lower cutoff', the limit A0 0 can be tak-
en and Eqs. (1) and (2) follow. We shall see below that
the fluctuation spectra of other quantities can nevertheless
be dominated by the lower cutoff.

To determine v we note that the velocity fluctuations
can also be obtained from the q 0 limit of the height

g'(t, L) =D(t/L')L (8)

where the function D saturates for t»L' and D(x)-x'
for small x[D(x)-x if a&1]. Numerical support for
(8) from simulations of one- and two-dimensional inter-
faces is shown in Fig. 1. Note that at the crossover time
t -L' the center-of-mass fluctuations are comparable to
the interface width [10,12] g =&[h(x,t) —h(t)] ),-L4 '=L «-(, and g, »( at later times [21].

I have directly simulated velocity-fluctuation spectra
for a one-dimensional model recently introduced by
Zhang [22] where the noise in (3) is taken from a power-
law distribution P(rI) —ri "+'l, p &2. This kind of
noise, which appears to be present [22] in the fluid dis-
placement experiments referred to above, can be shown
[23] to produce scaling exponents which vary continuously
with p. A lower bound [23] on a, which is expected to be-
come exact in the limit p. 2, is given by a=(8 —p)/

1Q '

I
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FIG. 1. Center-of-mass Auctuations scaled according to Eq.
(8&. The upper set of curves was obtained from simulations of
the one-dimensional single-step model [28] on lattices of size
L 26-400. The lower set of curves shows data for the two-
dimensional restricted solid-on-solid model [29) for lattice sizes
L 10-40. Averages were taken over typically 1000 indepen-
dent runs.

fluctuations,

&Iv(ro) )'& = lim to'&(h(q, to) I'&. (7)
q 0

Using the scaling form (5) for the height fluctuations and
the postulated behavior of the scaling function for small q
we see that the existence of the limit requires the relation
v=(d+4)/z —1=2+a. Hence v& a is always true and
my main result is established.

The long-range temporal velocity correlations imply
anomalous diffusion for the center of mass h (t ) =
h q -p(t ). For short times (t «L') the motion is super-
difl'usive, (, (t ) =

& [h (s+ t ) —h (s) —vt] )=L "t '+' for
a &1 and g, (t)=L ' ' t for [20] a& 1. At long
times the fluctuations are diffusive, however with an
anomalous size dependence, g, (t)=L ' t The. two
regimes are combined in the scaling form
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(2p —1). The results presented in Fig. 2 are clearly con-
sistent with this prediction.

I now turn to the fluctuations of the interface width g
in the stationary regime t »L'. We have

10o

Up to a factor q this is identical to the expression (4) for
the velocity, hence the temporal correlations of g can be
computed as described above. However the different q-
dependence implies that the integral corresponding to (6)
is now dominated by the lower cutoff Ao, and consequently
the fluctuation spectrum reflects the behavior of the scal-
ing function g at large arguments. The general result is
then

1Q-'—

—4

(lg 2( )l2) L4(—(v —1)z —v (IO)
10-4 10 1Q

td/2vr

1Q ' 10o

I have shown above that v =2+ a and hence I predict that
(l( (co)

l
) —co (co ) for interfaces driven by

Gaussian noise in one (two) dimensions. This agrees with
recent numerical work of Sander and Yan [24], who find
the spectral exponents to be 2.25 and 2.6 in the two cases.

It is instructive to consider the linear model

FIG. 2. Velocity-fluctuation spectra for a one-dimensional
growth model with a power-law noise distribution. From top to
bottom the spectra were obtained with power-law exponents

p =3, 4, and 5. The lattice size was L =1000 and 100 time
series of length 2048 were used for each spectrum. The theoret-
ical prediction for the spectral exponent is a=1 for p =3 and
a= 3 for p =5.

where the width fluctuations can be easily calculated. For
z =2 this is the Edwards-Wilkinson model [25] [the
linearized version of (3)] while for z =1 it describes inter-
face fluctuations in diA'usion-limited erosion [261. The
roughness exponent for (11) is g=(z —d)/2, so the inter-
face is rough in dimensions d ~ z. Here the fluctuation
spectrum turns out to be dominated by the lower cutoA'

whenever the interface is rough. Since the scaling func-
tion g is Lorentzian in this case, v=2 and (lg (co)l )
=L' 2dco 2 for d ~z with logarithmic corrections in
d =z. Nontrivial spectra appear in the range z (d ( 3z,
where (lg (co) l ) =L "co ' . In particular, a I/co
spectrum is expected for two-dimensional diA'usion-

limited erosion. For d & 3z the spectrum becomes flat.
To conclude, it is worth noting that the velocity fluctua-

tions are always trivial, (lv(co)l ) =const, for a class of

models recently introduced in the contexts of molecular-
beam epitaxy [27] and evolving sandpiles [6]. These mod-
els are characterized by a relaxation dynamics conserving
the height, and a nonconserving noise modeling the ran-
dom flux onto the surface. The linear model (11) is a par-
ticular example of this class. The conservation law decou-
ples the center-of-mass motion from the internal dynamics
of the interface and hence (l U(co) l ) =(lrlq-0(co) l ). This
can be exploited by reexpressing the velocity fluctuations
through (7) to yield the exact scaling relations v =2 and
[27] z =d+2g. The width fluctuations behave as de-
scribed above for the linear model (11).

I have benefited from discussions with M. P. A. Fisher,
G. Grinstein, J. M. Kosterlitz, and H. Spohn.
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