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Wetting in a confined geometry: A Monte Carlo study
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Binary liquid mixtures are expected to display two interfacial transitions when confined in small pores.
One is a wetting transition, similar to such transitions on planar substrates. The other is an interfacial
shape transition. We use Monte Carlo simulations to show that an Ising system displays both transi-
tions. We find a wetting phase diagram similar to that of a model with a long-ranged wetting potential,
proving that the existence of both transitions is insensitive to the wetting potential shape.

PACS number(s): 68.45.Gd, 64.60.—i, 47.55.Mh

Binary liquid mixtures display radically altered phase
behavior when imbibed into porous media. In bulk,
binary liquids separate into two phases below the critical
mixing point. By contrast, in porous glasses the two
phases form many small domains, even far below the crit-
ical point [1-3]. It is well accepted that preferential at-
traction of one phase to the pore surface plays a major
role in preventing macroscopic phase separation. It is
also clear that the geometry of the porous medium must
affect the phase behavior. Whether the observed small-
domain structure is due to the randomness of the pore
structure or to the confinement of the liquids in small
pores is, however, controversial. One possibility is that
randomness of the pore structure causes random-field
Ising-like behavior, which leads to small domains [4]. An
alternate suggestion is that confinement in small pores
slows down domain growth in certain regions of the wet-
ting phase diagram; thus, macroscopic phase separation
is not observed because the kinetics are too slow [5]. Liu
et al. [5] argue that the kinetics are strongly influenced
by the wetting behavior. Therefore, knowledge of the
wetting phase diagram is essential for understanding
domain growth in confined geometries.

In this paper, we use Monte Carlo (MC) simulations to
study the wetting phase diagram of an Ising model
confined in a pore. Such simulations have proven invalu-
able in the study of wetting on planar surfaces [6,7], be-
cause theoretical studies of wetting phase diagrams have
mainly been limited either to mean-field theory [8-10] or
to phenomenological treatments based on the effective in-
terface potential approximation [11,12]. In the case of
wetting in a cylindrical pore, the phenomenological
theory described in Ref. [5] required assumptions beyond
those normally employed for a planar substrate. Finite-
size shifts of the critical point were ignored and assump-
tions were made about the structure of the complete and
partial wetting configurations. The MC results test the
sensitivity of the wetting phase diagram to the shape of
the effective interface potential, because the wetting
forces are short ranged for the Ising model and long
ranged in the phenomenological theory.

The results of Ref. [5] are summarized by the phase di-
agram in Fig. 1 for a cylindrical pore of diameter L, and
length L, >>L | filled with a binary liquid mixture of fixed
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critical composition. There are three distinct phases.
The partial-wetting “plug” consists of a region of phase a
separated from a region of phase 3 by the af3 interface
stretching across the pore. The complete wetting ““‘cap-
sule” consists of a single long bubble of the nonwetting
phase B suspended in the center of the pore and sur-
rounded by the wetting phase a. The “tube” is a capsule
of minimum radius, corresponding to r =L, /2V'2 when
the B phase occupies half of the volume.

Our aim is to test the results in Fig. 1 using MC tech-
niques. We exploit the standard mapping of a binary
liquid mixture onto a lattice-gas model, where 4 and B
molecules correspond to S; ==1, respectively; S; denotes
the orientation of the spin at site i in the lattice. The wet-
ting forces are purely short ranged; we assume that a field
H, acts on the first layer only, and interactions between
spins are limited to nearest neighbors. We study an
L, XL, XL,, parallelopiped. Our system sizes are
L,=14,20,28 and L, ranging from L, =40 to 320. (For
L, <14, the wetting layer should be less than two layers
thick for equal composition of 4 and B [5]. Since the
wetting transition is difficult to locate if the wetting layer
is too thin, we choose L, = 14.) Periodic boundary condi-
tions are imposed in the long (L,) direction, and surface
fields and couplings are imposed along the four surfaces.
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FIG. 1. Phenomenological wetting phase diagram for a
binary liquid mixture confined in a cylindrical pore of diameter
L,, showing the three configurations of tubes, capsules, and
plugs (with the nonwetting phase hatched in) and their corre-
sponding transition lines (solid). The reduced temperature
t=(T2—T)/T? is positive in the two-phase region, and a is a
molecular length. The model assumes a van der Waals effective
interface potential.
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The Hamiltonian is

H=—J 3 S8S;—J, ¥ S;S;—H; ¥ S;, (1

bulk surfaces surfaces
where S;==1, J is the coupling between bulk spins, J; is
the coupling between surface spins, and H, >0 is the sur-
face field. The three-dimensional Ising model on a simple
cubic lattice has a critical point at J/kpT?
~0.22163[13]. In these simulations, the temperature T
always satisfies T < T?.

In order to study wetting, we fix the magnetization in-
side the pore [5,14] by using Kawasaki spin-exchange dy-
namics. In all runs, we choose equal numbers of up and
down spins so that the total magnetization is zero. To
avoid long diffusion times associated with exchanging
spins on nearest neighbors, we allow spin exchange be-
tween pairs of spins located arbitrarily far apart. This en-
ables the system to equilibrate more quickly.

Most of the analysis is based on the magnetization
profile, obtained as follows. For each square cross sec-
tion along the pore length, we average over square rings.
The four spins in the innermost ring are averaged to ob-
tain m (r =1,z) for each z. Similarly, the 4(2n —1) spins
in the nth ring are averaged to obtain m (r =n,z), etc.
The resulting m (r,z) is then averaged over 50 Monte
Carlo exchanges per spin (MCS). Contour plots of mag-
netization profiles are shown for several temperatures in
Fig. 2. The profiles were reflected around the center axis.
m=++1 is red while m =—1 is violet; intermediate
values are given by the spectrum. At low 7, we obtain
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the partial wetting plug, shown in Fig. 2(a). The
difference between the a (red) and S (violet) phases is pro-
nounced and the aff interface is sharp. At higher T, the
system undergoes a wetting transition and we obtain the
capsule, shown in Figs. 2(b) and 2(c). The capsule shape
is approximately a cylinder with spherical endcaps, as as-
sumed in Ref. [5]. At still higher T we obtain the tube,
shown in Fig. 2(d). Thus, the assumption of plug, cap-
sule, and tube configurations in Ref. [5] is well justified;
the contour plots clearly confirm their existence.

The widths of the interfaces shown in Figs. 2(b)-2(d)
appear thicker than the correlation length, which is
about one lattice spacing. This is due to capillary wave
fluctuations which are averaged over 50 MCS.

We turn now to transitions between the plug, capsule,
and tube configurations. The initial configuration was al-
ways a plug with the af3 interface running across the pore
(initial contact angle of 90°). To locate the transitions,
we first made a temperature sweep, raising T by
kgAT =0.1J and running for 10000 MCS at each T to
approximately locate the transitions. We found no
change in the variance or mean of the energy after rough-
ly the first 7500 steps. The transitions were then deter-
mined more carefully by using the configuration saved at
T just below the transition region, and warming in small-
er jumps. After increasing 7, we sometimes waited for
up to 25000 MCS to make sure the system had reached
equilibrium.

The plug-capsule or wetting transition is determined as
follows. Since the surface field H; is positive, the
nonwetting phase 8 has m <0. Below the wetting transi-

(c)

(d)

i

FIG. 2. Magnetization profiles showing the (a) plug, (b) and (c) capsule, and (d) tube configurations for a 28 X28 X 160 system.
Magnetization m = + 1 is red and m = — 1 is violet; intermediate values are given by the spectrum.
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tion, the B phase touches the wall, so the magnetization
of the outermost shell m (L, /2,z) is negative for some
values of z. We defined the wetting transition T, as the
lowest T above which the magnetization of the outermost
shell satisfies m(L,/2,z)>0 for all z. By contrast,
Binder and Landau [7] used the surface excess magnetiza-
tion and energy to locate the wetting transition on planar
substrates. Thermodynamic criteria fail in our case be-
cause of the constraint of fixed magnetization. We found
the transition was sufficiently broad that our criterion
sufficed. Different criteria, such as the 7 dependence of
the average surface magnetization, or the condition
m (L, /2,z)>my, yield different estimates which lie
within the error bars; the qualitative trends we present
should be reliable.

The transition from capsule to tube is an interfacial
shape transition, as shown in Figs. 2(b)-2(d). The capsule
in Fig. 2(b) is at T well below the capsule-tube boundary.
At higher T, the capsule grows longer and thinner, as
shown in Fig. 2(c) and predicted in Liu et al. [5]. As Tis
raised further, the capsule grows long enough for the two
ends to meet and becomes the tube shown in Fig. 2(d).
Thus, the capsule-tube boundary, or interfacial shape
transition T, is defined as the lowest T above which the
magnetization of the innermost shell satisfies m (1,z) <0
for all z. The transition is very sharp.

The wetting phase diagram is shown as a function of
L, in Fig. 3(a). We studied the wetting transition and
capsule-tube boundary for L, =14,20,28 for H,/J=0.7
and J,/J=1. Figure 3(a) shows that the wetting transi-
tion moves closer to the critical point as the pore size de-
creases. This behavior is qualitatively similar to phenom-
enological results as shown in Fig. 1. Note that in our
simulation, the wetting forces are short-ranged contact
forces, the wetting transition for these parameter values
is second order (see discussion below), and the pore has a
square cross section. By contrast, in the theory of Ref.
[5], the wetting forces are long-ranged van der Waals
forces, the wetting transition is first order, and the pore
has a circular cross section. The similarity between Figs.
1 and 3(a) demonstrates that the results of Ref. [5] are re-
markably robust: the topology of the phase diagram is
not affected by the specific nature of the interface wetting
potential, the order of the wetting transition, or the shape
of the pore cross section.

The surface field H,/J was varied for L, =14 and
J,/J=1 to locate the phase boundaries shown in Fig.
3(b). As expected, the wetting transition moves closer to
the critical point as the surface field decreases. The tube
disappears entirely for H, /J 2 0.3. In contrast, the tube
exists for any nonzero value of the surface field when the
wetting potential is van der Waals [5]. We believe that
the difference lies in the range of interactions; when the
range is finite, the tube phase can disappear at a nonzero
value of H,/J. Experimentally, H, can be varied by
altering the pore surface chemistry [15].

Finally, we varied J,/J at fixed H,/J=0.3, 0.5, and
0.7. As J,/J increases, T, and T, move further away
from the critical point and the capsule region shrinks. At
H,/J=0.5 and J, /J =1.2, the capsule disappears; there
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FIG. 3. Phase diagrams for (a) reduced temperature

t=(T2—T)/T? vs a /L, where a is the lattice spacing and L, is
the pore diameter, and (b) ¢ vs H; /J. Plot (a) should be com-
pared to Fig. 1. J,/J=1 in both plots, H, /J=0.7 in (a), and
L,=14in (b). Lines are to guide the eye. The inset in (b) shows
finite-size shifts in the interfacial shape transition T, (L,); the
line is a least-squares fit.

is a direct transition from plug to tube. This is similar to
the “triple point” predicted in Ref. [5] as shown in Fig. 1.

The phase diagrams shown in Fig. 3 show the transi-
tion temperatures in the limit L,—> «. T, is not sensi-
tive to L, within the error bars. The error bars are large
because of finite-size rounding of the transition, and
shrink rapidly as the pore diameter L, increases. The in-
terfacial shape transition, on the other hand, depends
strongly on L,. The inset of Fig. 3(b) is a finite-size scal-
ing plot of the reduced transition temperature
t=[T?—T,(L,)]/T? as a function of 1/L, for L, =14.
The linear relationship can be understood by assuming
that the capsule endcaps contribute a constant term to
the free energy, or a 1/L, term to the free energy per unit
length. If we expand the transition temperature around
T,(L,—~>»), then T,(L,)—T,(x) is proportional to
the difference in free energy per unit length, which is pro-
portional to 1/L,.

The order of the transitions was studied by performing
warming and cooling runs. All of the runs previously de-
scribed were warming runs, starting with a plug and rais-
ing T in steps, then running for 10000 MCS t each T.
We also performed cooling runs, starting with a tube and
lowering T in a similar fashion. The tube remains meta-
stable far below T,. This is demonstrated in Fig. 4,
where we plot energy U /J per spin versus T. The energy
is averaged over the last 2500 out of the 10000 MCS run
at each T. The energies from warming and cooling runs
are plotted as open and solid squares, respectively. The
warming and cooling runs coincide above T, where the
tube is stable. Below T, however, where the capsule
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phase is stable, the results differ [16]. In order to trans-
form from the tube to a capsule, the tube must pinch
off—the wetting phase must nucleate in the center of the
pore. When the tube pinches off to form a capsule, the
energy drops to the lower branch. The hysteresis at T,
implies that the interfacial shape transition is first order.
By contrast, there is no observable hysteresis at T,
(marked by an arrow in Fig. 4), indicating that the wet-
ting transition is second order for these values of H,, J,,
and L,.

We believe that the wetting transition is second order
for all parameters values in Fig. 3. According to the wet-
ting phase diagrams obtained by Nakanishi and Fisher
[9] for planar substrates, there should be a wetting tricrit-
ical point for some H{ when J, /J $1.5. For H, <H} the
wetting transition is second order and for H,> H| the
transition is first order. Moreover, Nakanishi and Fisher
predicted that H| decreases as J, increases. This was
verified by Binder and Landau [7] for the planar case (see
their Fig. 10). Our results for the confined geometry are
similar; this was established by studying the average sur-
face magnetization as a function of H, /J for fixed J,/J
at several 7. We find that the transitions are first order
for J,/J=1.2 and H,/J%0.7. For J,/J=1.0, the wet-
ting transition is second order for H,/J <1.0; we have
not studied larger values of H,;. These results show that
the wetting transition lines are second order in Fig. 3.
They also show that H! exists and decreases as J, in-
creases, as predicted in the planar case.

In summary, the simulations show that wetting phase
diagrams are richer for confined geometries than for a
planar surface. There are, however, many qualitative
similarities between wetting in a pore and on a plane,
such as the wetting tricritical point. This agrees well
with recent work of Swift et al. [14], which shows that
similar wetting transitions occur between two plates, and
that the transitions approach the usual planar transitions
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FIG. 4. Plot of average energy U/J vs kpT/J for warming
runs (open squares) and cooling runs (solid squares) on a
20X20X 80 system. The wetting transition 7, and interfacial
shape transition T, are marked by arrows. There is hysteresis
at the first-order interfacial shape transition, but not at the
second-order wetting transition.

as the plate spacing diverges. Thus, the wetting phase di-
agrams for confined geometries should be describable by
adding another axis, corresponding to 1/L |, to the phase
diagrams of Nakanishi and Fisher [9].

In addition, this work verifies the assumptions underly-
ing Ref. [S]. The plug, capsule, and tube configurations
clearly exist, and the wetting phase diagram is qualita-
tively consistent with the predicted one in Fig. 1. Al-
though the interface wetting potential was assumed to be
long ranged in Ref. [S] and is short ranged in this simula-
tion, the qualitative picture is the same. Finite-size shifts
of the critical temperature do not appear to substantially
alter the picture, either. Thus, the phenomenological
theory is quite insensitive to the details of the model.

We appreciate useful discussions with W. Klein, M. W.
Fisher, and L. Monette.
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FIG. 2. Magnetization profiles showing the (a) plug, (b) and (c) capsule, and (d) tube configurations for a 28 X28X 160 system.
Magnetization m = + 1 is red and m = — 1 is violet; intermediate values are given by the spectrum.



