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Selberg's g function and the quantization of chaos
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We study Artin's billiard, an extremely chaotic system defined on the fundamental domain of the
modular group PSL(2,Z), and show that its quantum energy levels are given exactly by the nontrivial
zeros of a certain Selberg g function expressed as an Euler product over the classical periodic orbits.
We demonstrate that at least the first 73 energy levels can be determined by using only a finite num-

ber of periodic orbits.

PACS number(s): 05.45.+b, 03.65.—w

A beautiful application of Gutzwiller's semiclassical
trace formula for chaotic systems [1,2] consists in rewrit-
ing it in terms of a g function, defined by an Euler product
over the classical periodic orbits, whose nontrivial zeros
approximate the quantum energy levels. In a recent paper
it has been shown [3), in the case of the hyperbola billiard
[4], that it is possible to compute the dynamical g function
on the critical line and thus to determine semiclassically
the quantum energy levels of this strongly chaotic system.

In this paper we study Artin's billiard [5] for which
Gutzwiller's trace formula is exact, since it is identical to
the Selberg trace formula [6], and for which the associat-
ed g function leads to an exact rather than semiclassical
quantization rule for chaos. The system is a non-Eu-
clidean billiard realized by a point particle sliding freely
on a hyperbolic triangle given by the fundamental domain
of the modular group PSL(2,Z). On the Poincare upper
half-plane 8 = [z =x+iy, y & 0] endowed with the mea-
sure dxdy/y, the triangle is identical to the modular
domain D = j[z) & 1 for ——,

' & x &OA(z( ~ 1 for O~x
~ —,

' j. With the correct identification of the boundaries,
the noncompact triangle (with finite area A =tr/3) be-
comes a Riemannian surface of constant negative curva-
ture with the topology of a sphere containing an open end

I

(cusp) at infinity. The model has a long history; in fact, it
was the first system where ergodicity could be demonstrat-
ed and where symbolic dynamics has been introduced [5].
The corresponding quantum system is governed by the
Hamiltonian H —6, where 6 y (t)„+|I~) is the non-
Euclidean Laplacian (h 2m 1). The eigenfunctions of
H have to be invariant under the modular group, i.e., they
have to satisfy periodic boundary conditions. In this paper
we are interested only in the desymmetrized system,
where only the "odd" eigenfunctions satisfying
ltt„( —z) —y„(z ) are considered, and which can be
viewed as a quantum billiard defined on the halved
domain D [(z (

& 1, 0 ~ x ~ —,
' }. For this system the

eigenfunctions vanish on 8D (Dirichlet problem). While
the full system has both a discrete and continuous spec-
trum [7), the desymmetrized billiard possesses only a
discrete spectrum with —,

' &E~ ~ E2~, since the
Eisenstein series that are related to the continuous spec-
trum are even [8]. The first 73 odd eigenvalues with
E„&2500 have been computed by Hejhal [9]. The
ground-state energy is E i 91.141 34.

Our starting point is Selberg's trace formula [6] for the
odd eigenvalues as derived by Venkov [8],which plays the
role of Gutzwiller's periodic-orbit sum for our system:

+ + OO 2 trp h(p)g h(p„) =,'4
~ dph(p)ptanh(trp)+ 4 dp —+—OO 3 3 3 cosh trp

g(kl„) —g g " " g((k+ I/2)l„) )
3 /( = ] 4 sinh(kl„/2) n 3 k 0 4 cosh((k + 1/2)l„/2)

+- r'(I/2+ip) h( )—4g(0)ln2 —
4 J dp (/ . )

h p

Here all series and integrals converge absolutely under the
following conditions on the smoothing function h(p): (i)
h ( —p) =h (p), (ii) h (p) is holomorphic in the strip
)Imp) ~ 2 +e, e&0, and (iii) h(p) O()p~ ') as
(p~~ ~. The function g(x) is the Fourier transform of
h(p): g(x) =(I/2tr) f— dpe'~"h(p). On the left-hand
side of (1) the sum runs over the odd eigenvalues
parametrized by the momenta p„&0, E„=4 +p„. The
two series on the right-hand side of (1) are the contribu-

tions from the periodic orbits whose primitive lengths on
the full billiard are exactly given by l„-2arccosh(n/2),
n 3,4,5, . . . . In the first series g„E N denotes the total
multiplicity of the primitive periodic orbits on D having
length l„. The quantity j„ENp gives the multiplicity of
those primitive periodic orbits with length l„which are
symmetric with respect to the line x-0 (j,=—0 unless
n m +2, mEN).

To calculate the regularized trace of the Green's func-
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tion of H, we insert h(p) =[p2+(s ——,
' ) 2] ' —[p2

+ (o —
—, ) ] ' in (1) yielding (Res, Rea & 1)

Here Z(s) denotes the usual Selberg g function [6,7]

1

E„+s(s—1)
1

E„+o(cr . 1—)
=F(s) —F(~),

(2)

Z( ) = + + (1 — """")'",R»,
n=3 k =0

(4)

z'(s)
2 2s —1 Z(s)

""+G(.) .
Y(s)

(3)
while Y(s) is a Selberg g function which was introduced
in [10]

(
—l„[k+ ( I/2)s[ i s —l„[k+ ( I /2) (s+ I )1)1 —e j L. 1+e

Q Q —l„[k+(I/2)(s+ I )1 —l„[k+(I/2)sln=3k=o, (1 —e " ' )(1+e " ' ), (5)

G(s) is a meromorphic function in s whose only poles are
in the left half-plane Res ~ 0. Since the left-hand side of
(2) is a meromorphic function in s, Eq. (2) defines a
meromorphic continuation of F(s) and thus of the ratio
Z(s)/Y(s) to all s E IL. Introducing yet another Selberg g
function

I

small-t asymptotics of the trace of the heat kernel derived
in [8], we obtain by using Theorem 6 of [12] the asymp-
totic expansion (E ~)

N (E) = E JE lnE JE + Iss . (9)

- ]/2

( )
Z(s)
Y(s)

(6)
We are then led to define the real function
[p=(E —

—,
' )'"&o]

(p) —= Re[Z (1/2 —ip)e (lo)
and letting the regulator o. in (2) go to 1+, we arrive at
the following representation for the logarithmic derivative
of Z (s) (Res & 1)

1 d 1Z () H(s)
2s —

1 ds 2s —
1

+g E„+s(s—1)
(7)

Here H(s) is meromorphic, but has no poles for Res & 0.
From (6), (4), and (5) one can derive the following Euler
product representation

Z-()=H U(I-&," " """»-,
y k=0

(8)

where g„=—1, /r=!„/2, and m~=j„ for the symmetric
periodic orbits, and g„=+I, !„=l„,and m~=(g„—j„)/2
for the remaining ones. While (8) converges absolutely
only for Res & 1, we infer from (7) that Z (s) has an an-
alytic continuation to all s C I[:. In fact, sZ (s) is an en-
tire function of s whose only zeros in the half-plane
Res &0 are located at s =

& +ip„, i.e., they lie on the
"critical line" Res =

2 and the Riemann hypothesis is
valid for Z (s). Notice that the zero at s=l which is
present in both Z(s) and Y(s), and which is due to the
ground-state energy Eo=o of the full billiard, cancels out
in Z (s) [10]. This has led to the conjecture [11] that
the "entropy barrier" at Res =1, which we are forced to
cross if we want to calculate the zeros on the critical line,
and which is a serious obstruction in the Euler product
(4), is "transparent" in the Euler product (8), allowing us
in the most favorable case to compute Z (s) on the criti-
cal line.

With the help of the functional equation for Z (s) we
deduce that the combination Z ( 2 ip)e ' — is
real on the critical line, where N (E) is the mean value
of the spectral staircase N (E) which counts the number
of energy levels E„smaller than or equal to F.. From the

whose zeros as a function of p are located exactly at the
momenta p„, and thus the condition ( (p) =0 constitutes
an exact quantization rule for the quantum energy levels
En =pn+ 4 of our billiard system.

For an evaluation of product (8) the multiplicities g„
and j„are needed as an input. Recently, Schleicher [13]
has calculated the first primitive hyperbolic conjugacy
classes of SL(2,Z), i.e., g„, for 3 ~ n ~ 32767. The mul-
tiplicity j„,i.e., the number of conjugacy classes of involu-
tion elements [8], has been calculated by us for
n =m + 2, I ~ I~ 32000. In Fig. 1 we show g (p) for
8.5 ~ p ~ 60, where the triangles mark the momenta p„
(n =1, . . . , 73) which are taken from Hejhal [9]. The
solid lines have been obtained by evaluating (8), taking
into account all periodic orbits with length ly ~ I„
=19.360. . ., n „. „=16000, while the dotted lines corre-
spond to the rather low cutoA n „. „=12. The solid lines
show the expected oscillations, exhibiting zeros which are
in very good agreement with the true eigenvalues. The
dotted curves are similar, but the agreement with the true
zeros becomes worse at higher energies. It is easy to see
that all the information on the nontrivial zeros of Z (s)
is already contained in the k=0 term in Eq. (8), which
might be called (the reciprocal of) a Ruelle-type g func-
tion. We have repeated the above calculations, keeping
only the k =0 term. As expected, the results are nearly
identical to the curves sho~n in Fig. 1. We conclude that
it is indeed possible to cross the entropy barrier, as conjec-
tured some time ago [11],and that our quantization con-
dition based on (10) works also from a practical point of
view.

To obtain a better understanding of the convergence
properties, we transform [14] the Euler product (8) into
the Dirichlet series

Z (s) =1+ g A„e (11)
n=l

Here the sum runs over all pseudo-orbits [15] whose
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FIG. 2. The sequences in Eq. (13) for o., (upper solid symbols) and o, (lower open symbols).

lengths L, (L, ~ L„+)) are given by L„=g;"=)a;l„,
(k ~ 1, a; G N). For the coefficients A„one obtains

a (a /2)(a + ) ) (Iai/Z)(aai ) )tr.
k ( —I 7l

U I —g„",e

The abscissas of absolute convergence a, and of conver-
gence a, of the Dirichlet series (11)are determined by

N
1

N

o, = lim In+ ~A„~, o, = lim ln gA„
&—~ Ljv n t N —~L~ n=)

(I 3)
In Fig. 2 we have plotted the two sequences which appear
in Eq. (13) for lV =10 to 8X 10, where the last figure is
identical to the number of all pseudo-orbits with length
L„~ 17.034. . . . The solid symbols, which belong to o.„
seem to approach 1 for N ~ in agreement with the ex-
act value a =1 for the entropy barrier. The lower open
symbols lie belo~ 2, which may serve to indicate that

a, & —,
' and thus that the Dirichlet series (11) converges

for Res ~ 2, i.e., on the critical line. Of course, we can-
not exclude the possibility that the true limit is a, = 2, for
example, in which case the series (11) would converge
only for Res ~

2 +e, e & 0. In any case, Fig. 2 strongly
suggests that (11) converges for —,

' & Res & I, which im-
plies that we can cross the entropy barrier. We have also
calculated g (p) by inserting the Dirichlet series (11)
into (10) using a cutoff L ,„=17.034. .. . for the pseudo-
lengths. The result is practically indistinguishable from
the solid curves shown in Fig. 1.

Finally, let us note that one can estimate from Fig. 1

the eigenvalues in the range 50 ~ p ~ 60, which is beyond
Hejhal's computation [9].
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