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Exact scaling function of interface growth dynamics

15 DECEMBER 1991

Terence Hwa and Erwin Frey
Department of Physics, Harvard University, Cambridge, Massachusetts 02I38

(Received 4 October 1991)

Strong-coupling properties of the Burgers-Kardar-Parisi-Zhang equation describing nonequilibrium
interface growth are studied. A physical coupling constant is defined and related to the height-height
correlation function for arbitrary substrate dimension. In 1+1 dimensions, the exact universal cou-
pling constant and scaling function are computed using a mode-coupling theory. It is found that a
finite surface tension is generated from zero, suggesting that macroscopic properties are not aA'ected by
the absence of microscopic surface tension.
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The problem of nonequilibrium interface growth has at-
tracted much attention in the past several years [1]. Basic
knowledge of the roughness of growing crystalline facets
has obvious technological applications [2], while the
scale-invariant aspect of surface morphologies share simi-
larities to fractal landscapes in nature and continue to
generate curiosity [3]. A widely accepted description of
the macroscopic aspects of these growth processes is a
simple Langevin equation due to Kardar, Parisi, and
Zhang [4] (KPZ). Because the KPZ equation is the sim-
plest nonlinear generalization of the ubiquitous diffusion
equation, it also appears in many other problems of non-
equilibrium dynamics such as the randomly-stirred fluid
[5] (Burgers equation), dissipative transport [6] (the
driven-diffusion equation), and flame-front propagation
[7] (Kuramoto-Sivashinski equation). Through a simple
transformation, the KPZ equation also describes the fluc-
tuation of directed paths in random environment [8], a
simplified spin-glass problem which contains much of the
essential physics of disordered systems [9]. Needless to
say, any advances in understanding the behavior of the
KPZ equation may have a broad impact in both the fields
of nonequilibrium dynamics and disordered systems.

Assuming that a coarse-grained interface of a d
dimensional substrate may be described by a height func-
tion h(r, t) with r 6 IR", KPZ proposed that the following
Langevin equation,

tlh = vV h+ —(Vh) +rl(r, t),j
governs the macroscopic (large distance, long time) be-
havior of the interface. The first term in Eq. (1) repre-
sents surface tension which prefers a smooth surface. The
second term originates from the tendency of the surface to
(locally) grow normal to itself and is nonequilibrium in

origin. The last term is a Langevin noise to mimic the sto-
chastic nature of any growth process. In Eq. (I), the aver-
age growth velocity has been subtracted so that the noise
has zero mean, i.e., (rl(r, t)) =0. The stochasticity is then
described in the simplest case by an uncorrelated Gauss-
ian noise with the second moment (rI(r, t ) rI (r', t ') )
=2DB (r —r')b(t —t'), where D characterizes the noise
amplitude. Note that the continuum description (1) con-

tains an effective length scale a=(v3/X D)'I " but
does not have an expII ci t microscopic cutoff. This
description is valid as long as a is large compared to the
actual lattice cutoff ao present in a real system.

The subject of interest is the steady-state surface
profile, which is characterized by the steady-state distri-
bution function P(fh (r, t )j ) (after suflicient time to in-
sure the decay of any transient behaviors due to initial
conditions). A somewhat less ambitious goal is the lead-
ing (second) moment of P, the truncated two-point corre-
lation function

C(r, t) —=([h(ro+r, to+t) —h(ro, to)] ),, (2)

Since the equation of motion (1) is scale invariant in the
limit of long distance and time (a consequence of a
translational symmetry h ~ &+const in the growth direc-
tion) [4], the correlation function satisfies the scaling
form C(r, t) =r2 F(t/r'), where r= (r~))a, g describes
the scaling of the interface width, and z characterizes the
spread of surface disturbances. The scaling function F
has the usual limits to give the correlation function the
following asymptotic scaling form [10],

C(r, t 0) Ar ~, C(r O, t) =Bt ~'. (3)

Much of the work comes down to obtaining the numeri-
cal values of the two exponents g and z. Due to a Galilean
invariance [4], the exponents are linked by an identity
g+z 2. In 1+1 dimensions (d-l), Eq. (1) also sat-
isfies a fluctuation-dissipation theorem [11] (FDT) from
which both exponents are obtained exactly, g= 2 and
z = —'. . A more systematic approach is via a dynamic re-
normalization group [12] (DRG). In a typical DRG
analysis, one obtains the RG flow (or the beta function) of
a dimensionless coupling constant which provides a mea-
sure of the effective nonlinearity present in the system. In
this problem, the cou ling constant is g(b) = [A, (b)
&D(b)/v (b)] 'I bt, where b is the scale of coarse
graining, and X(b), D(b), and v(b) are renormalized pa-
rameters. The scaling exponents are then evaluated at the
fixed point of RG flows using the fixed point value of the
coupling constant g g(b~ ~). Physically, the univer-
sal coupling constant g* gives the crossover scale to
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~i (vt ) = —, ~(va)'. (4)

We would like to express the definition in terms of observ-
ables such as the measured asymptotic correlation func-
tion Eq. (3). For a large system of size L, we pick a pair
of points a distance b apart with L »b » 1. We uniformly
tilt the surface by an angle Ol, =/C(r =b, t =0)] '

/I«, ac-
cording to the typical height fluctuation. Next, the result-
ing growth velocity increment needs to be put in terms of'

physical units. We choose to normalize it in units of

asymptotic scaling behavior [131. It is also related to the
crossover point of the correlation function C(r, t) as will
be shown shortly. A systematic solution is possible if g*
can be accessed perturbatively. However, such a scheme
has not been found for the KPZ equation, and, instead,
one encounters a strong-coupling fixed point: Naive RG
calculations [4] failed to produce a controlled stable fixed
point which describes the rough interface.

This problem persists even in d=1 where the exponents
themselves are already well known. We reemphasize that
the exact knowledge of exponents in 1+ 1 dimensions are
due to "coincidences" (FDT and Galilean invariance),
rather then the success of a systematic renormalization-
group theory. For instance, it is not known whether the
RG flow takes the system to finite or infinite coupling in
d =1. Many numerical studies of interface growth models
[1,14] are performed without any microscopic surface ten-
sion v, corresponding to an infinite bare coupling constant.
Since the eAective length scale a —v' in 1+1 dimen-
sions, v =0 implies the breakdown of the continuum
description (1). Therefore, one does not even know a
priori whether the behavior of interfaces with zero and
finite surface tension are controlled by the same fixed
point. One possibility as recently suggested by Golubovic
and Bruinsma [15] is that the interface may undergo a
phase transition to some unstable region at a small but
positive value of v.

In this paper we address the properties of the strong-
coupling fixed point, e.g. , the value of the universal cou-
pling constant and the form of the scaling function. We
start with a physical definition of the coupling constant
and explain how it may be measured numerically or ex-
perimentally. We explore the connection to the dynamic
correlation function (2) and derive the dimensionless form
of the universal scaling function for arbitrary spatial di-
mension d. The procedure is explicitly demonstrated in
d=1. There, a self-consistent mode-coupling theory be-
comes exact due to a FDT and Galilean invariance. From
the numerical solution of the self-consistent equation, we
obtain the exact universal scaling function and the dimen-
sionless coupling constant. Furthermore, this method al-
lows a nonperturbative analysis of the exact RG flow of
various renormalized quantities, including the case of a
zero microscopic surface tension where the usual (pertur-
bative) methods breakdown.

We first propose a numerically useful definition of the
universal coupling constant g*. Since the main eAect of
the nonlinear term in Eq. (1) is to introduce an inclina-
tion-dependent growth rate, we can get a measure of the
nonlinearity present by looking at the incremental growth
velocity upon a small uniform tilt of the substrate,

vI, =[C(r =O, t =rq)] ' /ri„where ri, is the associated
correlation time. We can take ib to be the time scale at
which C(b, t) crosses over from being b dependent and i
dependent. For correlation functions given by Eq. (3),
this corresponds to rb =(A/8)' «O'. Putting the above
together, we give the following definition for the physical
coupling constant,

g(b) =6v (O—b)/vb .

Universality of the KPZ equation and the growth process-
es it describes necessarily implies that the above quantity
is universal. If we compute g(b) defined in Eq. (5) using
the equation of motion (1), we will find that it is precisely
the dimensionless coupling constant used in DRG analysis
[13].

We now relate the universal coupling constant more
directly to the correlation function C(r, r ). Using Eq. (5)
and the exponent identity, the temporal correlation func-
tion in Eq. (3) is rewritten as

C(o, i) =(Zg*) "'-[XA '"i]'"-

where 2 is the amplitude of the equal-time correlation
function in (3). This gives the following form of the full
correlation function,

C(r, t ) =Ar «F (A, JA t/r'),

which is valid in arbitrary substrate dimension d. The ar-
gument of the scaling function is now dimensionless, and
the scaling function itself is universal. It has the asymp-
totic form F(g 0) =1 and F(g ~) =((/2g*) «'.
Here we see that g* plays the role of the crossover scale
between the correlation function's space-dependent and
time-dependent regimes. It may also be expressed in
terms of a universal ratio of the amplitudes of Eq. (3) as

(7)

The above relation can be readily used to find the univer-
sal values of phase transition and strong-coupling fixed
points in numerical studies of the KPZ equation above
2+1 dimensions. We also note that although our analysis
is carried out in the context of the KPZ equation, the con-
nection between g* and the crossover scale of the dynamic
correlation function is a much more general result for sys-
tems obeying dynamic scaling of the form Eq. (3).
[Though of course g* would generally take on a form
more complicated than Eq. (7) in the absence of an ex-
ponent identity. ]

In the remainder of this paper, we make the above dis-
cussion concrete by explicitly solving the scaling function
in d= 1. As already discussed, the (1+1)-dimensional
growth problem is greatly simplified due to a FDT and
Galilean invariance. In this case, one can prove that a
self-consistent mode-coupling theory is exact in the mac-
roscopic limit [131. The self-consistent equations for the
correlation function C(k, cu) and the response function
G(k, co) in Fourier space are
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2
IC(k, tu) =Cp(k, tp)+2lG(k, tu) l

— dq dpk+k —C(k+, co+)C(k —,tu —),(2') ' "
f+ oo t/s// Qo

G '(k, to) =Gp '(k, rii) +4 — dq dpk+kk-C(k+, co+)G(k-, rii —),
(2 )2 ~ —oo J —oo

(8)
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FIG. I. The exact universal scaling function F(g). The
dashed line indicates the asymptotic scaling form: F(( ~)
=0.69$' '. The crossover point is g, =2g* =1.74. Numerical
error is + 2%.

where k+- =k/2+'q, pi~ =co/2 ~p, and Cp and Gp are
the bare functions with A, =0.

The mode-coupling equations have been previously used
[6,16] to obtain the scaling exponents g and z. Here we
show that it can be used to obtain the entire scaling func-
tion [17]. To solve these equations, we define G(k, tu)
=[v(k, co)k' itp] —', C( kco) =2D(k, pi)IG(k, to)l',
and look for solution of the form D(k, co) =k(Dp/vp) i

xk ' f(ru), and v(k, tu) =X(Dp/vp)'i k 'i f(pi), where
tu =co/k(Dp/vp) ' k i is a dimensionless variable, and Dp
and vp are related to the bare parameters. In the macro-
scopic limit k, m 0, the bare terms GO, CO can be
neglected. We find that the self-consistent equations be-
come reduced to a one-variable integral equation that is
straightforwardly solved numerically. From the solution,
we find the truncated correlation function in real space to
be

(9)

where F(g) is the universal scaling function and is shown
in Fig. 1. The dimensionless argument of F has the form
demanded by Eq. (6) with z =

3 . The dimensionless cou-
pling constant can be read oA from the crossover point of
F(g) (see Fig. 1). We obtain g* =0.87. This result can
be checked more precisely in simulations by directly look-
ing at the scaling amplitudes. Our work thus predicts that
if C(r, t =0) =dr, then C(r =O, t) =0.69(XA t) i, with k
defined by Eq. (4). The numerical error is +'2%. Note
that the above result is valid for very large systems in

steady state. Transient behaviors [14] such as the growth
of interfacial width starting from Oat initial conditions
may be more complicated but can be computed in the
same spirit.

This completes the description of the system's asymp-
totic scaling behavior at the RG fixed point. The mode-

coupling theory is next extended to include the approach
to fixed point starting from a microscopic theory. In ac-
cordance with the spirit of the renormalization group, we
only allow a portion of modes to interact by including a
cutoff factor exp[ —(qL) ] in the integrands of the self-
consistent equations. This also approximates studying
finite systems of size L. The correlation function and
response function are now explicitly L dependent. They
may be described in terms of

DL(k, co) —v (tk, t)p-L 'i'f(co,kL), (10)

where f now satisfies a two-variable integral equation.
The exact functiona/ RG of D(k, tu) and v(k, t/3) can be
obtained from the full solution of the integral equation;
the How behavior of D and v are recovered at k, m=O.
The asymptotic form DI —vt —L ' is, of course, the ex-
pected one given the exponents g and z, and can be direct-
ly measured [18]. Here we want to emphasize that the
self-consistent equations provide a connection between the
microscopic and macroscopic (renormalized) theory.

The foregoing analysis is valid as long as the microscop-
ic surface tension v is finite. As already mentioned, the
continuum equation of motion (1) breaks down in the ab-
sence of surface tension, and one does not know whether
systems with zero and finite surface tension are controlled
by the same fixed point. To understand this better, we
take a closer look at the RG How in the vicinity of v=0.
%'e use a discrete description by imposing a lattice cutoA'
ao. The self-consistent equations are then integrated to
the edge of the first Brillouin zone (2n/ap) and take on the
boundary conditions vs =„(k,co) =0 and Db =„(k,co)
=D, where b is the scale of coarse graining. At the onset
of Aow, we can hold Ds constant and solve for vb. We find
that a surface tension of the order vs —(A, Dap) ' is gen-
erated upon a very small amount of coarse graining
[In(b/ap) —1]. This indicates that a finite surface tension
is immediately generated starting from zero [19]. Hence
interfaces with or without bare surface tension are indeed
controlled by the same RG fixed point and therefore share
the same universal behaviors. This conclusion is in direct
contradiction with the suggestion of a phase transition
[15] at small v. Our result can be explicitly checked nu-
merically by comparing the values of the universal fixed
point g* for models with zero and finite microscopic sur-
face tension.

Finally, we note that if systems with zero and finite bare
v liow to the same fixed point, then the basin of attraction
of the fixed point must also include systems with a small
but negative bare v. Equation (1) with v(0 is essentially
the Kuromoto-Sivashinski (KS) equation [7] with noise.
If we take the hypothesis [20] that an effective noise can
be generated by the deterministic KS equation (since ran-
dom initial conditions are amplified by linear instabili-
ties), then our result suggests that the deterministic KS
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equation can also Aow to the fixed point describing the
noisy KPZ equation. Numerical evidences in support of
such possibilities can be found in Ref. [21].

In summary, we have analyzed the steady-state behav-
ior of growth dynamics described by the KPZ equation.
We provide a physical definition of the dimensionless cou-
pling constant g*. We then relate g* to the dynamic
correlation function and give the dimensionless form of
the universal scaling function for arbitrary substrate di
mension d. We solve this function explicitly in d =1 using
an exact mode-coupling theory. The predicted value of
the universal coupling constant is g* =0.87. The theory is
extended to provide a link between the microscopic and
macroscopic growth dynamics. We find that a finite sur-
face tension can be generated from zero, suggesting that
interfaces with and without microscopic surface tension
exhibit the same macroscopic behavior (rather than being
separated by a phase transition as suggested in Ref. [15]).
We also observe the logical implication of our result to the
behavior of the Kuromoto-Sivashinski equation. This
knowledge should help towards developing a deeper un-
derstanding of many subtle issues encountered in the stud-
ies of nonequilibrium dynamics and disordered systems,

particularly in the active and controversial field of direct-
ed random paths.

Note added. After this work was completed, we re-
ceived from Amar and Family a related numerical study
of the scaling functions for the width Auctuation of
(1+1)-dimensional interfaces. They reported values of a
universal amplitude ratio R ranging from R =3.5+ 0.2
from simulation of three diA'erent models to R = 3.2 from
a direct simulation of the KPZ equation. For a similar
(i.e., global) scaling function, our theory yields R =3.6
+ 0.1, in good agreement with the numerical result of
Amar and Family. Our result is also superior to the one
(R = 3.9) obtained by Amar and Family from integration
of the uncontrolled one-loop RG equation as expected.
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