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Nonperturbative time-dependent theory of helium in a strong laser field
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We present a nonperturbative theory of the behavior of He in a strong pulsed laser. We address the
question of the validity of frozen-core or single-active-electron approximations by providing direct
quantitative comparisons with calculations including the complete two-electron behavior with correla-
tion. Our results are illustrated with examples of nonlinear susceptibilities and ionization.

PACS number(s): 32.80.Rm, 32.80.Fb

In a previous paper [1], we introduced a different
method for the nonperturbative solution of the time-
dependent (TD) Schrodinger equation governing the in-
teraction of an atom with strong, pulsed radiation (la-
sers). In that paper, the potential and effectiveness of the
method was tested in hydrogen with the promise that re-
sults on the application of the method to atoms beyond
single-electron H would follow. This problem represents
uncharted territory as far as the nonperturbative behavior
is concerned. It is the purpose of this Rapid Communica-
tion to report our results on He, which come at a rather
opportune time, in view of a recent paper by Pindzola,
Gri%n, and Bottcher [2], who raised and explored, even if
only within the confines of a one-dimensional (ID) soft-
core model, the question of the validity of TD methods
when more than one electron is involved.

Two additional reasons make this paper particularly
relevant at this time. First, Kulander [3] has performed
TD calculations based on a single-active-electron (SAE)
model of He, while recently we provided a theoretical in-
terpretation [4] of an experiment at fairly high intensity
(up to -5X10' W/cm ) by Perry, Szoke, and Kulander
[5] using a semiperturbative theory based also on a SAE
model; although we did explore the effects of electron
correlation on at least some aspects of the problem. These
papers seem to suggest that even at high intensity He
responds as if only one electron is excited and/or ionized.
Traditional single-photon absorption [6], on the other
hand, has taught us that correlation is very important in
He. As we shall see below, these apparently contradictory
aspects are perfectly reconcilable and their explanation
provides a clue as to what to expect from other two-
electron atoms. To provide the resolution of this paradox,
however, we must solve nonperturbatively the complete
3D problem for the real He atom and compare the result
with a frozen-core (FC) calculation (similar in spirit to
Kulander's SAE model) within the same representation
and solution of the TD problem. At the same time, this
paper represents (to the best of our knowledge) the only
completely nonperturbative solution of the TD Schro-
dinger equation for a two-electron atom.

The essential steps of the technique have been presented
in Ref. [1],while a somewhat more detailed expose is to
appear in [7]. As a brief reminder and summary of the
steps necessary for the problem at hand, we recall that we

solve the equation

subject to the initial condition +(rl, r2, 0) =g(rl, r2), with

g being the ground state of He. The TD Hamiltonian
is H(t) =H + V(t) where, within the dipole approxima-
tion, the interaction V(t) is for a two-electron atom writ-
ten as V(t) = —ee (rl+r2)E(t)sincot, with e being the
unit polarization vector of the radiation, co its frequency,
and rl, r2 the position operators of the two electrons. The
time evolution of the amplitude E(t) of the pulse is repre-
sented as E(t) =Ef(t/z), where f(t) =1/cosh(t/z) or

, depending on which form corresponds more
closely to the experimental conditions. We refer to z as
the width of the pulse, but the integration of the
differential equations is carried out from —T to +T,
where ~T( ~ 2.5z so that the end result is insensitive to
the further increase of ~T~.

In analogy with the approach we presented in Ref. [1],
generalized now to two active electrons, we construct a set
of two-particle wave functions p„LM (r l, r2) which satisfy
the Schrodinger equation

gnLM(rl r2) EnLtllnLM(rl r2)

with the atomic Hamiltonian H and the boundary condi-
tions

lt LM (0 0) lit LM(rl r2) tl' LM (r l r2

and where n is an abbreviation for the pair nln2 of the
principal quantum numbers for the single-particle wave
functions p„,t,„„(rl) and p„,t, ,(r2) which enter in the an-
tisymmetrized, linear combinations of products in terms
of which the two-particle wave functions are constructed.
The single-particle wave functions are constructed in
terms of 8 splines in the manner we have discussed else-
where [1]. With the wave functions p„LM in hand, we
write the TD wave function as

+(rl r2 t) Z b LM(t)tll LM(rl r2)
nI M

which upon substitution into the TD Schrodinger equation
leads to a set of coupled linear diff'erential equations for
the coe%cients b„IM, which can be written in the form
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bnLM (t ) 2 (FnLkl ~nn'~LL'~MM' (fnLM I I (t ) I
Pn'L'M') )bn'L'M' ~

. d
dt n'L'M'

(2)

where the dipole form of V(t) leads only to matrix ele-
ments of r between the single-particle functions p„t . The
results of this paper have been obtained with light linearly
polarized which limits the summation over M' only to
terms M'=0 due to the selection rule M'=M and the fact
that our initial (ground) state of He has M =0.

The probability of ionization after time t can be ex-
pressed as

P«) = Z Ib„L(t)I',
nL(E ~ 0)

(3)

~here the summation is extended over all states of positive
energy of a given basis set. A result for P(t) is deemed
converged when it becomes insensitive to the further in-
crease of the size of the box (i.e., the value of r '"), the
number of basis functions per angular momentum, as well
as the number of angular momenta. For each basis em-
ployed in a calculation, it is checked that a number of neg-
ative energy states match the experimentally known val-
ues of the respective excited states of the atom below the
first ionization threshold, which lies at 24.58 eV above the
ground state. The second threshold (at 78.98 eV above
the ground state) corresponds to doubly ionized helium.
Those states of a given basis whose (positive) energies lie
between the two thresholds represent doubly excited
configurations, as well as singly ionized states. The basis
does, of course, extend well above the double-ionization
threshold. By increasing the number of configurations
(nl) entering in the linear combination expressing the
state InLM) we obtain a description that includes the
correlation between the two electrons. Depending on the
number of configurations included in a calculation, we
refer to the result as simply CI (configuration interaction)
or ECI (extended CI) as indicated in each case below. To
give an idea of the size of our TD calculations, we note
that CI results such as those shown later on have been ob-
tained with a basis that includes 10 total angular momen-
ta (L), 12 orbital angular momenta (I), and 300 states for
each l.

In order to investigate the diA'erence between a CI and
a FC calculation, we change the basis in terms of which
we expand the wave function +(r~, r2, t) in Eq. (1). Oth-
erwise, the TD calculation does not change. This is one of
the advantages of implementing the TD calculation in

terms of a basis set; another advantage being that one can
follow rather conveniently the role of the underlying
atomic structure on the atom-field interaction. A FC cal-
culation is not uniquely defined, as it depends on the
manner and the state in which one of the electrons is
frozen. In fact, it may be desirable to freeze the electron
in diA'erent states, depending on the problem at hand.
Given that our objective is to describe multiphoton ioniza-
tion, which implies that the excited atomic states may
play a more or less significant role (depending on whether
they may be or come in near resonance), the electron is
frozen in the ionic ls (with Z =2) state. This is what we
mean by FC in this paper. In implementing the FC calcu-
lation, we construct a basis with one electron frozen as

TABLE I. Energies (Ry) of a sample of representative states
of He.

State Expt. ECI CI FC

1s 2 —5.807 088
1s 2s —4.291 909
152p —4.247 645
1 s 3s —4.122 528
1s 3d —4.111227
1s 3p —4.110276
1s4s —4.067 165
1s4d —4.062 552
1 s4f —4.062 493
1s4p —4.062 131
1s Ss —4.042 349
1s 5d —4.040027
1s 5p —4.039 806
l s 5f —4.040011

—5.802624
—4.291 531
—4.247084
—4.122426
—4. 111230
—4.110086
—4.067 125
—4.062 552
—4.062492
—4.062048
—4.042 330
—4.040027
—4.039 764
—4.040010

—5.769 211
—4.288 411
—4.246 507
—4. 121 584
—4. 111 154
—4.109915
—4.066783
—4.062 520
—4.062 507
—4.061 976
—4.042 158
-4.040 01 1

—4.039 727
—4.040004

—5.745 014
—4.286 899
—4.244912
—4.121 146
—4.111092
—4.109483
—4.066 601
—4.062489
—4.062499
—4.061 797
—4.042066
—4.039994
—4.039637
—4.040000

mentioned above, which means that all atomic states are
calculated consistently within this basis, and then we em-

ploy this basis in the TD calculation. Thus the CI and FC
calculations are performed with the same TD method, but
each is cast in terms of a different L basis set consistently
calculated so as to represent adequately the atom.

The first concern in constructing a basis set is to repro-
duce with sufficient accuracy the known energy spectrum
of the atom. A sample of results illustrating the level of
accuracy we obtain is shown in Table I. Clearly, all three
models do very well for the excited states. As expected,
the ground state where correlation is most important re-
quires the ECI calculation (with more than 1000 con-
figurations) to obtain agreeinent through the second de-
cimal. For the same reason, the 1s2s exhibits the same
behavior to a lesser degree. Good values for the energies
of the basis states are not suflicient to guarantee equally
good values for the transition moments entering the TD
calculation. Their accuracy must be tested separately. A
sample of the level of accuracy, in the sense of how well

the diff'erent models agree with each other, is shown in

Table II, where in addition to numbers for the three mod-
els in the L basis, we also show a column we have ob-
tained through single-channel quantum-defect theory
(QDT). Again, dipole moments involving the ground
state are most sensitive to correlation. That is why the re-
spective numbers corresponding to QDT are significantly
different from those of the other models. It should be not-
ed, on the other hand, that dipole moments involving only
excited states are represented fairly well even by QDT.
One of the reasons for showing QDT results next to the
much more sophisticated CI numbers is to provide a cali-
bration for the importance of configuration interaction
(channel couplings} in the excited states. When single-
channel QDT provides a reasonably accurate number,
correlation is not very important; a point to which we re-
turn later on. The message emerging from Tables I and II
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States

Is2 to Is2p
Is to Is3p
ls2 to ls4p
I s2s to I s 2p
Is2s to Is3p
Is2s to ls4p
Is2p to Is3d
Is2p to Is4d
Is3p to ls3d
Is3p to Is4d
ls3d to ls4f
ls4f to ls5g

CI

0.4252
—0.2102
—0.1322
—2.944
—0.945
—0.475
—2.521
—0.885
—5.168
—4.085
—5.179
—8.928

FC

0.4336
—0.2150
—0.1354
—2.970
—0.939
—0.473
—2.548
—0.889
—5.167
—4.133
—5.189
—8.930

QDT

0.2786
—0.1375
—0.0864
—2.905
—0.9024
—0.4571
—2.494
—0.881
—5.172
—4.034
—5.163

ECI

0.4192
—0.2073
—0.1304
—2.9242
—0.9072
—0.4601
—2.511
—0.884
—5. 168
—4.064

5

FC
——— CI

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Photon energy (a.u. )

TABLE II. Transition moments between representative
states of He in a.u.

is that the importance of correlation in calculating single-
electron transitions in He is concentrated mostly in the
ground state. It should not be too surprising, therefore, if
the FC approximation gives a reasonable approximation
to single-electron multiphoton transitions or even to a TD
calculation at high intensity.

Now we present some examples of calculations of non-
linear (multiphoton) transitions perturbatively as well as
nonperturbatively. The perturbative examples shown in
Figs. 1(a) and 1(b) represent values for the nonlinear sus-
ceptibilities g(3) and g(5) for third- and fifth-harmonic
generation over a range of photon frequencies. The calcu-
lation here involves the well-known partial summations
over complete sets of intermediate states. As we have dis-
cussed elsewhere [8], an L basis provides a convenient
way of performing such summations quite accurately.
The curves in Figs. 1(a) and 1(b) represent the results for
both FC and CI, which agree to within the thickness of
the line of the drawing. The range of values spanned by
g(3) and g(5) are in good agreement with earlier calcula-
tions by Mizuno [9] and the experimental result at the
Nd-YAG (where YAG denotes yttrium aluminum gar-
net) laser frequency [10].

As an example of TD calculation, we present in Fig. 2
the ionization probability as a function of photon frequen-
cy and at high intensity. The pronounced peak corre-
sponds to the contribution to ionization through a reso-
nance created by the state 1s2p shifted into multiphoton
resonance sometime during the pulse. This behavior is
reminiscent of a similar feature obtained in our earlier pa-
per [1] on the TD theory of H. The position of the pro-
nounced peak can be related to the shift of the state 1s2p.
From its position at 4X 10' Wcm, we deduce a shift of
about 1.31 eV, while we calculate 1.43 eV for the lowest-
order perturbation theory (linear in laser intensity) value.
Therefore, there is a small departure from the linear shift.
The behavior of the 1s2p under these circumstances is not

510 '

10 7

I

CO
0.1 :

0.00 0.05 0.10 0.15 0.20

0
65

0

0.01

Photon energy (a.u. )
FIG. I. Nonlinear susceptibilities g(3) and g(5) [(a) and

(b), respectively] of He as a function of photon energy as given

by FC and CI calculations. The peaks correspond to resonances
with atomic bound states. Since FC and CI give somewhat
different ground-state energies, we have shifted the FC results

by that difference so as to provide a visually direct comparison
of the susceptibilities.

0.001

0.23 0.25 0.27 0.29
Photon Energy (a.u. )

0.31

FIG. 2. Ionization probability for two different intensities as
a function of photon energy at the end of a pulse with r =10 op-
tical cycles integrated from —2.5r to 2.5r. The curves for FC
have been shifted as in Fig. 1.
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much different from that of the 2p in H reported in our
earlier paper.

The diA'erent aspect here is the comparison between FC
and CI. Again, as was the case with the susceptibilities,
the agreement between FC and CI is within the thickness
of the line of the drawing. We have thus demonstrated
that, as long as correlation is included in the ground state,
transitions in helium —from low to very high intensity
(where total ionization occurs within a few cycles) —occur
as if one electron is frozen in the ionic 1s state.

What are the conditions of validity of this picture and
what does it say about the expected behavior of other
two-electron atoms such as the alkaline earths? First of
all, we should keep in mind that the photon frequencies
employed in our examples here are considerably smaller
than the energy of the first doubly excited state. This
combined with the fact that the doubly excited states are
energetically well separated from the singly excited ones
(which entails the absence of perturbation in the spectrum
of the Rydberg states) provides the basic physical justi-
fication for the success of the FC model. If we were to
raise the photon energy, making it comparable to that of
the doubly excited states, additional channels leading to
double (electron) excitation and ionization will open.
These processes cannot be described by any FC approxi-
mation and that represents one of the limits of validity of
the FC model. Thus if we were to consider photons of
about 28 eV, which would lead to two-photon excitation of
states of the type 2s or 2p, then a complete CI calcula-
tion including the autoionization widths of such states is
necessary as we have discussed elsewhere [11].

Helium is a rather special two-electron atom, however,
in that its doubly excited states are well separated from

the first ionization threshold. The alkaline earths, on the
other hand, have considerably different structure in that
the doubly excited states begin very close to the first
threshold, while for Ca, Sr, Ba, and Eu they begin well
below the threshold, as a result of which the quantum de-
fects of certain Rydberg series are seriously perturbed.
We have already given examples [8] in perturbation the-
ory (corroborated by experiment), showing that certain
aspects of multiphoton absorption are then poorly de-
scribed by FC approximations even if correlation is in-
cluded in the ground state; correlation in the manifold of
(even singly) excited states is then equally important.
Note that one does not need a resonance with an excited
state for this to be the case. Correlation plays its role
through the summation over the manifold of the virtual
intermediate states. On the basis of evidence that we have
presented briel]y elsewhere [12], we expect that TD non-
perturbative calculations will exhibit much more severe
CI effects on all aspects of strong-field transitions, even if
one electron is ejected in the final state. We will report
soon on this question.

In closing, we will venture a rule of thumb: If a multi-
photon transition is described well by a FC approximation
within perturbation theory, we expect the same to be true
in the nonperturbative regime; with the usual exceptions
that every good rule should possess.
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