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High-precision variational calculations using multiple basis sets in Hylleraas coordinates are present-
ed for the ls 2s 2S state of lithium. The variational bound of —7.478060326(10) a.u. for the nonrel-

ativistic energy is in good agreement with our revised experimental value of —7.47806034(20) a.u. ,

thereby resolving a long-standing discrepancy. Two-electron calculations of the QED corrections are
extended to three-electron systems and compared with other results. The comparison for Li-like ions

up to U" + suggests a simple interpretation for the "screening of the Lamb shift" recently calculated

by Cheng, Johnson, and Sapirstein [Phys. Rev. Lett. 66, 2960 (1991)J.

PACS number(s): 31.20.Di, 31.30.3v

Lithium is one of the fundamental few-body problems
of atomic physics. However, theoretical calculations for
the nonrelativistic energy of the ground state appear to lie
substantially above the experimental value (corrected for
relativistic and QED effects), despite the efforts of a long
sequence of authors to obtain improved variational upper
bounds [1-5]. The discrepancy was most recently dis-
cussed by Chung [4], but no resolution to the problem was
suggested.

The purpose of this paper is twofold. The first is to
present a variational method employing multiple basis sets
in Hylleraas coordinates. Unlike previous variational cal-
culations with large basis sets, a systematic procedure for
enlarging the basis set is imposed so that the convergence
of the results and their extrapolation to larger basis sets
have a well-defined meaning. The method yields a sub-
stantial improvement in the variational bound to the non-
relativistic energy. The second is to show that a revised
analysis of the relativistic and QED corrections removes
the discrepancy of about 10 pa. u. between theory and ex-
periment. The accuracy of the QED correction is checked
by comparison with other experimental and theoretical re-
sults up to U" +, and a simple interpretation of the
"screening of the Lamb shift" is suggested.

Past high-precision calculations for lithium have been
based on variational calculations in Hylleraas coordinates

[2,3], the superposition of correlated configurations
(SCC) method [I], or multiconfiguration-interaction
wave functions [4,5]. The present method developed as a
natural extension of the double-basis-set calculations for
helium [6], which have been found to yield a dramatic im-
provement in accuracy for a given number of terms. It
can be thought of as a hybrid between a pure Hylleraas
calculation and the SCC method.

In the present calculation, the wave function for the
ls 2s 5 state is written in the form

=r~ "r2"r3 r23'r3[ r[2'exp( —a,r~ p,r2 —y,r3), —

(2)
where p, denotes a sextuple of integer powers (m~, m2,
m3, n23, n3~, n32) and the spin function g~ is

g/ =a(1)P(2)a(3) —P(I )a(2) a(3) . (3)

As shown by Larsson [7], the second linearly independent

V [ PV

where the spatial part of the wave function, p, „„,is of the
form

p, ,„,(r~, r2, r3 /23 r3[ r]2)
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TABLE I. Nonrelativistic eigenvalues for the 1s 2s 5 state
of Li.

K No. of terms

18
48
108
216
396
690
1134

Extrapolation

E (K) (a.u. )
—7.476 946 306 762
—7.477 866 720 377 8
—7.478 041 912521
—7.478 058 843 95
—7.478 060 126 5
—7.478 060 266 1

—7.478 060 312
—7.478 060 326(10)

E(K) —E(K—1)

—0.000 920 41 3 626
—0.000 175 192 133
—0.000016931 43
—0.000001 282 5
—0.000000 1396
—0.000000046
—0.000000014(10)

spin function need not be explicitly included, provided
that none of the electrons is constrained to be equivalent.
A represents the three-particle antisymmetrizer, and v la-
bels different sets of exponential parameters a„, p„and y„
used with the combinations of powers labeled by p, .

In order to keep the basis set reasonably compact, the
combinations of powers associated with each of the six
values of v were determined by the inequalities

m t + PPl 2 + )Pl 3 + P1 23 + P1 3 I + Pl [ 2 K (5)

and then progressively increasing the integer K. As with
the two-electron case [6], the optimization of the non-
linear parameters leads to a natural partition of the basis
set into parts representing the asymptotic, intermediate
range, and inner correlation parts of the wave function. It
is important to continue reoptimizing as K increases in or-
der to avoid problems of near linear dependence in the
basis set. The results presented here are for a series of
calculations for K up to seven, producing a basis set of
1134 terms.

The results of the calculations are shown in Table I.
The best variational upper bound to the nonrelativistic en-

ergy is —7.478060312 a.u. , with an extrapolated energy

Pyg( Pygj ~I( gIJ Pgl J( Pgj/(

for the six permutations of the labels (i,j,k) =(1,2, 3).
Thus, for example, the term (0,0,0,0,0,0,0) was included
six times with different values for a„, p„and y, in each
case. The latter were determined by calculating analyti-
cally [6] the eighteen derivatives BE/Ba„BE/Bp„and
BE/By„v=1, . . . , 6, and locating the zeros on the mul-
tidirnensional energy surface. Finally, the basis set was
systematically enlarged by including all combinations of
powers consistent with (4) such that

of —7.478060326(10) a.u. The extrapolated value was
obtained from ratios of successive diAerences. These re-
sults represent an improvement in accuracy of two sig-
nificant figures over the previous calculations listed in
Table II. As an example of the improvement gained with
our multiple basis sets, the 216-term result in Table I is
comparable in accuracy to the 602-term result of King
[2]. The best previous bound of King and Bergsbaken [3]
was obtained by individually optimizing the exponents for
each basis-set member as it was added. The configura-
tion-interaction result of 3itrik and Bunge [51 was ob-
tained by a large ( —149.373 pa. u. ) extrapolation of their
K-shell energies. The lower value they obtain is probably
an artifact of this extrapolation.

Our present result still lies 12.7 pa. u. below the esti-
mate —7.478073 a.u. obtained by Bunge [8] from the ex-
perimental ionization energy [9] and used by most other
authors since then. In order to resolve this discrepancy,
we present in Table III a revised estimate. The contribu-
tions from relativistic, mass polarization, and QED effects
to the ionization energy are subtracted, and then the accu-
rately known Is 'S energy of Li+ [10] is added to obtain—7.47806034(20) a.u. , in agreement with our calcula-
tion. The principal reason for Bunge's lower value is that
he counted twice the K-shell mass polarization correction
of 22.60 pa. u. , which was already included in the K-shell
correction used by him. This is partially offset by our
larger value for the QED correction, as further discussed
below.

Our calculation of the one- and two-electron QED
corrections hEI [, AEI, and GAEL 2 in Table III is an ex-
tension of a method developed previously for two-electron
ions [11,12]. It differs substantially from previous esti-
mates for the lithium isoelectronic sequence, except for re-
cent work by Indelicato and Desclaux [13]. AEI ~ is given
(in a.u. ) by

hEI, )
=a Z

xF(1s)g)+F(nij )/n

x+ A, o/n
'

—F 1s)(2 8 r(

(6)
where x = I or 2 is the number of Is electrons and F(nl~)
is the one-electron QED function tabulated by Johnson
and Soff [14]. The above follows rigorously from the as-
surnption that the two- or three-electron QED shift is the
same as the one-electron QED shift corrected for the elec-

TABLE II. Comparison with other recent calculations for the nonrelativistic ground-state energy of
Li.

Author

Kleindienst and Beutner [1]
King [2I
King and Bergsbaken [31
Chung [4]
Present work
3itrik and Bunge [5l

Method

310-term SCC
602-term Hylleraas
296-term Hylleraas

Extrapolated CI
1134-term Hylleraas

Extrapolated CI

E (a.u. )
—7.478 058 24
—7.478 059
—7.478 059 528
—7.478 059 7
—7.478 060 326 (10)
—7.478 062 41 (72)
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Contribution Value (a.u. )

TABLE III. Nonrelativistic energy for the ground state of
lithium. Corrections are relative to Li+(Is 2 'S).

TABLE IV. Calculated QED corrections (excluding finite-
nuclear-size effects) for the Is 2s S~y2 and Is 2p P~n states of
Li-like ions (in 10 a.u. ), relative to Is 'S.

E(ls'2s S) —E(ls 'S)
~EBreit

~~ Mass pol.

~~L, I

—NFL 2

ENR(Is 'S)

Total

—0.198 157 53(2) '"

0.000012 58(10)
—0.000001 00
—0.000001 39 '

0.00000021(5) '
0.000000 20(10) '

—7.279913412 669 3

—7.478 060 34(20)
'

From the experimental ionization energy [9], using R~
= 109728.7340 cm
"Chung, in Ref. [4].
'Present work.
Freund, Huxtable, and Morgan [10] and G. W. F. Drake (un-

published).

7
8
9

10
11
13
15
17
20
22
24
26
28
36

22+ a

0.105
0.186
0.303
0.466
0.681
1.31
2.26
3.62
6.51
9.34

12.8
17.1

22.3
54.5

2 P]/2

—0.0283
—0.0429
—0.0617
—0.0851
—0.114
—0.189
—0.290
—0.421
—0.708
—0.896
—1.15
—1.44
—1.77
—3.35

Difference

0.133
0.229
0.365
0.551
0.795
1.50
2.55
4.04
7.21

10.24
14.0
18.5
24. 1

57.9

Experiment

0.14(1)
0.22(1)
O.36(2)
O.52(1)
0.76(2)
1.42(2)
2.52(6)
3.89(6)
7.06(4)
9.83 (4)

13.4(1)
18.O(1)
23.4(4)
56.8(4)

"The 2 S[/2 values for Z=4, 5, and 6 are 0.0068, 0.0221, and
0.0526 a.u. , respectively.
"The difference between the MBPT result [20], which includes
finite-nuclear-size corrections, and the measured transition fre-
quency.

~ = —(A i Bo—AoB i)/(2Bo) '
for a given 1 s nl configuration. It follows from the two-particle coefficients of fractional parentage [15] that

tron density at the nucleus. This is exactly correct for the
vacuum-polarization term, at least to lowest order in a,
because this term is the expectation value of a short-range
potential at the nucleus. The above also gives correctly
the leading term in a 1/Z expansion of the Bethe loga-
rithm [12]. The next to leading term, GAEL, is [12]

2 2

4 3Z 1
Z a(ls nl) ~&( ) 1

Z —a(ls")
Z l s"nI Z i 1sx

with o(ls ') =0. The o.'s are screening constants related to the 1/Z expansion coefficients A; and B; for the numerator
and denominator of the Bethe logarithm [12] by

Ao(ls nl L) = —,
' [Ao(ls 'S)+ —,

' Ao(lsnl 'L)+ —', Ao(lsnl L)],
A ~(ls nl L) =[A~(1s 'S)+ 2 A ~(lsnl 'L)+ 2 A~(lsnl L)],

(9)

(10)

= —'„' Z (1 —0.8438476Z '+0.345Z ),
=2Z (1 —0.7266416Z '+0.297Z ) .

(14)

where Q =(I/4n)lim, o(r; J (a)+4ir(y+[na)8(r; ~)), y is Euler's constant, a is the radius of a sphere about r; ~
=0 ex-

cluded from the integration, and a summation over i & j from 1 to 3 is assumed. Combining the two-electron results from
Ref. [11]results in

Q(ls 2s) = —(8(r; ~))(lnZ+ —,
' In3+ —,', ln2 —1)+0.01446Z +O(Z ),

Q(ls 2p) = —(8(r; ~))(lnZ+ —, ln3+ —,', ln2 —1)+0.01762Z +O(Z ),
Q(ls ) = —(8'(r~ 2))(lnZ+ln2 —I)+0.01326Z +O(Z ) .

and similarly for Bo and B~. Numerical values for the two-electron states [12] then give immediately
cr(l s 2s S) = —0.00842(1), and cr(ls 2p P) =0.00165(1). These are direct perturbation calculations, not empirical
fits to data. For the b-function matrix elements, the above analysis gives the 1/Z expansions

n +8(r;) =2Z (1 —0.6676396Z '+0.177Z 2), (»)
i

m(g b(r;) ) (12).(x.(., )) (13)

The l~~di~g two terms are the numerical values for Bo/2 and B~/2. The last term in Eqs. (11) and (12) were obtained by
fitting to high-precision calculations [2,16] used for Z ~ 10. Equations (11)-(13)become essentially exact for Z ~ 7,
and are useful for extrapolating to higher Z.

The remaining explicit two-electron QED correction is

AEL 2=a ( —', lna+ ~g )[(B(r j))~ 2 i (8'(r~ 2))[ 2] 3 a [Q(ls nl) —Q(ls )],
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Accurate values of (8(r; l )) were obtained from (8(r; J ))
=H3/tra, where H3 is the spin-spin term tabulated by
Chung [4]. Although this term increases only in propor-
tion to Z, it is a dominant source of uncertainty for neu-
tral Li, and accurate values of Q will be required in order
to make further progress in the comparison with experi-
ment.

The total QED correction shown in Table III is about
three times larger than that used by Chung [4] because
his eA'ective nuclear charge Z,g=Z —1.6, obtained from
the ionization energy, overestimates the screening of the
electron density at the nucleus. His smaller value would
produce a serious disagreement between theory and exper-
iment for the total nonrelativistic energy. For the high-
er-Z ions, our values are about twice as large as Chung's.
They are listed in Table IV. This more than compensates
for the discrepancies he found, and produces a somewhat
larger discrepancy in the reverse direction. For example,
at Z =10, replacing Chung's QED correction by the one
given in Table IV yields a predicted ionization potential of
1928436 cm, in comparison with the experimental
value 1928462 cm

The accuracy of our calculated QED term can be tested
in several ways. First, the above terms for the case x =1
predict Lamb shifts for the 1s2s1S and S states of heli-
umlike ions to an accuracy of + 5% or better over a wide
range of nuclear charge [11,17,18]. Second, many-body
perturbation theory (MBPT) calculations of the self-
energy and vacuum-polarization terms for three-electron
U" + have recently been performed [19]. Applying Eqs.
(6) and (7) to this case, together with (11)-(13),for &
function matrix elements results in GAEL ~+ (ls 2s S~t2)
=1.730 a.u. , and iJEt. i+ (ls 2p Pll2) =0.224 a.u. for
the sum of the self-energy and vacuum-polarization parts,
including their finite-nuclear-size corrections as tabulated
in Ref. [14]. This is in excellent agreement with the
MBPT values of 1.724(2) and 0.220(2) a.u. , respectively,

for the same terms. Including the other higher-order
terms in Ref. [19] results in a total P~t2 Stl2 Lamb shift
of —41.62(15) eV, in agreement with the experimental
value —41.65(10) eV [20]. The above shows that the
"screening of the Lamb shift" calculated by MBPT [19]
can be largely understood as a renormalization of the non-
relativistic electron density at the nucleus relative to the
one-electron value, together with a small contribution
from the AFI term. Finally, Table IV compares the cal-
culated 2 P ltq-2 5 lt2 QED correction with the "experi-
mental" values obtained by Johnson, Blundell, and Sapir-
stein [21]. The calculated values are systematically
larger, but the differences are only about 3.5%. For
Z & 15, our values are systematically larger than those of
Indelicato and Desclaux [13] by about 1.5%. The results
depend sensitively on (8(r;)) and estimates from Eq. (13)
for the 2 P~i2 state are not reliable for Z & 7.

In summary, the results of this paper show that the ion-
ization energy of lithium is now understood at the 0.2
pa. u. level of accuracy. A much improved variational
bound for the nonrelativistic energy has been obtained,
and a long-standing discrepancy with experiment has been
resolved. However, discrepancies remain for the ioniza-
tion potentials of the Li-like ions which require further
study.

Note added. After completion of this work, we learned
of an SCC calculation by J. Pipin and D. M. Bishop (un-
published). Their ground-state energy for Li is
—7.4780601 a.u.
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