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Cellular-automaton approach to a surface reaction
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A cellular-automaton model for a surface reaction is introduced that describes the chemical reac-
tions correctly. The phase-transition points and the order of the phase transitions agree well with the
results of Ziff, Gulari, and Barshad via a Monte Carlo simulation [Phys. Rev. Lett. 56, 2553 (1986)].
The high performance of the cellular automaton leads to a more precise determination of the critical
exponent P at the second-order phase transition (P =0.58), which thus appears to belong to the univer-

sality class of Reggeon field theory.

PACS number(s): 05.70.Fh, 68.35.Rh, 82.65.Jv

INTRODUCTION

02(gas) 20(ads), (2)

(3)CO(ads)+O(ads) COq(gas) .

Ziff, Gulari, and Barshad found in their simulations two
kinetic phase transitions with regard to yco. For low

Cellular automata (CA) are a very powerful tool to de-
scribe complex physical properties. They thus give the
possibility to obtain more detailed insight into the dynam-
ics of such systems. Many different systems such as crys-
tal growth or magnetic systems (Ising model) have been
studied with the help of CA models. A very important
and different aspect is the modeling of surface reactions
which in a Monte Carlo (MC) simulation exhibit kinetic
or nonequilibrium phase transitions [1]. But these reac-
tion systems have so far eluded a correct treatment via the
CA approach because if the CA rules are obeyed the
stoichiometry of the reaction is treated incorrectly. The
study of the universality class of these systems is also of
great importance for the basic understanding of dynami-
cal phenomena. A study of systems such as the Schlogl
model [2], the directed percolation [3], and the Reggeon
field theory [4] has revealed that these systems belong to
the same universality class: the universality class of Reg-
geon field theory. There are also suggestions that surface
reactions may belong to this universality class [5,6].

An example of a surface reaction is the reaction of CO
and 0 over a Pt surface. Ziff, Gulari, and Barshad [I] in-
troduced a MC simulation which takes only a few impor-
tant steps into account. In their simulation the surface is
represented as a two-dimensional square lattice with
periodic boundary conditions. A gas phase containing CO
and 02 with the mole fraction of yco and yo=l —y(Q,
respectively, sits above this surface. Adsorption can occur
if a randomly selected site on the surface is vacant. Be-
cause the adsorption of Oq is dissociative an 02 molecule
requires two adjacent vacant sites. If a CO molecule is a
nearest neighbor of an 0 atom reaction occurs and the
product molecule desorbs immediately after formation.
The three basic steps are

CO(gas) CO(ads), (1)

values of yco the surface is completely covered with 0
(y( Q ~ y ~

=0.395) and for higher values with CO
(yco ~ y2 =0.525). A reactive phase exists only in the in-
terval y] &yap &yq. The phase transition at y] is of
second order and at y2 of first order.

The CA is a model which is discrete in time and space.
The transition rules for all cells are the same and the up-
date is simultaneous. During this fully parallel procedure
diSculties can arise. A well-known problem is the Ising
model [7]. Simultaneous update of all spins (or cells)
leads to the feedback catastrophe. To get the correct
physical behavior one must divide the lattice like a check-
erboard on which white and black cells are updated in al-
ternate order. In a reaction system this technique does
not work, however.

Chopard and Droz [8] introduced a CA approach for
the system CO+02 on a metal surface. In order to obey
the CA laws they were forced to disobey the laws of
stoichiometry in the reaction: A particle may take part
simultaneously in the formation of several reactive pairs.
Therefore the values of y~ and yq are shifted to higher
values (y~ =0.5761 and y2 =0.6515) and both phase tran-
sitions are of second order.

Berryman and Franceschetti [9] have developed a CA
model for the reversible A+B=C reaction which involves
the Margolus block rotation to describe diff'usion and re-
action. They studied anticorrelations in this reaction. In
contrast to their work we have source terms and dissocia-
tion, but we neglect diA'usion so far. In a MC simulation
we studied diffusion in the CO+Oq reaction [10].

Here we present a CA approach which describes the
steps of adsorption and reaction correctly. We obtain the
value of y ~ and y2 and the character of the phase transi-
tion in good agreement with the MC simulation. We
found that the results of the sequential and of the parallel
approach are numerically nearly identical but we cannot
show the identity of these models analytically. Beney,
Droz, and Frachebourg [11]studied similar models and in
one dimension they found no difference in the values of
the critical exponents obtained by a sequential and by a
parallel model but they observed small changes in the
values of the critical points. These observations are
confirmed by our results.
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The performance of the parallel CA approach is very
good, so that the simulation can be performed on large
lattices because the large number of unsuccessful at-
tempts (which are unavoidable in a MC simulation) does
not appear. Therefore a lot of computer time is saved in
the CA model. Moreover the fully parallel approach can
be implemented on special purpose computers (such as the
CAM-6) or better on a computer with full parallel archi-
tecture (e.g. , the Connection Machine) which offers a
magnitude of computational resources.

Therefore the CA approach off'ers a way to follow the
temporal evolution of the system. Near y~ (the second-
order phase transition) long-range correlations and fluc-
tuations play a crucial role. Because of the critical slow-
ing down at this point many iterations are necessary to de-
scribe the behavior of the system correctly.

THE SIMULATION

Above we mentioned that the trick with the Ising model
does not work with chemical reactions. The lattice must
thus be divided in another way as in the Ising model to get
the correct stoichiometry for the system. We divide the
lattice into Margolus blocks [12] containing 2x2 cells as
elementary cells. Thus the neighborhood here is the cells
in a Margolus block; and any cell in a Margolus block is a
neighbor of the three other cells. The definition of the
neighborhood is clearly diff'erent from the neighborhood
used by Ziff, Gulari, and Barshad: All Margolus blocks
are updated simultaneously. The transition rules are
shown in Fig. 1. The probability for each transition de-
pends on the mole fraction yco, on the statistical weights
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FIG. 1. CA transition rules for the CO+02 reaction.
denotes a CO molecule, B an 0 atom, and X any occupied site.
ygo is the mole fraction of CO molecules in the gas phase. The
probability of adsorption depends on y&o and on the number of
diAerent adsorption configurations in a Margolus block.

of the individual configurations, which are taken as classi-
cal, and on the initial state of the cell. Similarly to the
MC approach two vacant cells are necessary to adsorb an
02 molecule. For example, the probability for the adsorp-
tion of one CO molecule into an empty Margolus block
depends on the probability of selecting a CO molecule
from the gas phase (yco) and on the number of vacant
cells in the Margolus block which determines the number
of diff'erent adsorption states. In an empty Margolus
block there exists four different possibilities. Therefore
the (unnormalized) probability for this event is 4yco.
Only one of the possible configurations is shown in Fig. l.
The same comment applies to the other rules. The proba-
bility for simultaneous adsorption of two CO molecules
depends on yco (probability that both selected particles
are CO molecules) and on the number of adsorption
configurations (there are 12 possibilities for a classical
particle). A last example: the probability for adsorbing
an 02 molecule in an empty Margolus block depends on
the probability that the selected gas phase molecule is an
02. This is yo ( 1

—ygo), and the distinct number of
configurations for adsorbing a classical 02 is 12. Each
Margolus block is changed during a sweep through the
lattice. The probability for a block to remain in its previ-
ous state is zero if it is not fully occupied. If we would use
other rules which allow a Margolus block to remain un-
changed we would have to introduce an arbitrary parame-
ter, namely, the probability that a Margolus block
remains unchanged. This cannot be determined from any
physical or plausible model. But this parameter has to be
fixed in order to normalize the probabilities. We have
avoided this unphysical approach. If the lattice is com-
pletely covered by one or the other species (which means
poisoning of the catalyst surface) the system remains in
this state with unit probability (this transition is not
shown in Fig. 1), which is in agreement with the original
model of Ziff; Gulari, and Barshad. This rule that no
block remains unchanged unless it is fully occupied by
only one species is rather different from Monte Carlo
simulations in which at each time step only a single cell is
updated and most cells consequently remain unchanged.
CA and Monte Carlo approaches are thus extreme cases.
It should be pointed out that the adsorption on a surface
in an experiment occurs on many sites essentially simul-
taneously but not on all. Yet the Monte Carlo simulations
of Ziff; Gulari, and Barshad describe in a simplified way
certain aspects of the experiment and we are going to see
that the CA approach does so too.

After the calculation of the transition probability a ran-
dom number is generated and a transition for the current
initial state is selected. For a particular initial state the
sum of all transition probabilities is normalized to 1. Such
a CA is called a probabilistic or stochastic CA. After one
sweep through the lattice, the Margolus block (the win-
dow in which transitions take place) is shifted by one cell
to the right, then down, then left, and then up to get all
different configurations inside a Margolus block. In the
simulation we use a lattice of 256x256 sites with cyclic
boundary conditions. One independent run consists of
10000 updates for the lattice (consisting of adsorption,
Margolus block shifting). For each value of yco many in-
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dependent runs are performed (near y~ 10000 and for
yco) y~ only a few hundred runs are made). To test the
system for relaxation to the steady state we enlarge the
number of lattice updates up to 50000. We find no
significant change in the values of the coverages compared
to the simulations with 10000 lattice updates. During the
simulation many random numbers must be generated. To
be sure that no recurrences occur we use two diff'erent
random number generators: (1) a random number gen-
erator from the numerical algorithms group (NAG) li-
brary and (2) a very fast random number generator intro-
duced by Kirkpatrick and Stoll [13]. The recurrence cy-
cle for the random number generator (1), e.g., is 10' .
For a 256X256 lattice with 50000 updates and 10000 in-
dependent runs we need 3 x 10' random numbers. This is
well below the recurrence of the numbers from the ran-
dom number generator. In addition no significant
difference in the results occur using these two different
random number generators.

RESULTS

In Fig. 2 the coverage of the surface by CO and 0 and
the reaction rate R are shown as a function of yco. The
jump in the reaction rate R at y ~ arises due to the phase
transition, because for yp~ &y] the lattice is completely
covered by 0 (which means poisoning) and therefore the
reaction comes to a stop. In this irreversible model no fur-
ther change can occur and the reaction rate R is lowered
to zero.

Near y~ hundreds of data points were collected with
many independent runs. Because of the scale of the figure
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these have not been plotted. The error bars in the neigh-
borhood of y~ and y2 are so small that they cannot be rep-
resented on the scale. In the interval y ~

& y~~ & y2 which
is of less interest the data are less accurate because of a
smaller number of independent runs. We obtain the criti-
cal values y~ =0.3915 ~ 5x10 and y2=0.514~0.001,
which are in very good agreement with the results of the
MC procedure of Ziff, Gulari, and Barshad. The values
for the critical points obtained by the sequential model of
Ziff, Gulari, and Barshad and by our parallel approach
are not identical. Similar differences were also found by
Beney, Droz, and Frachebourg [11] for one-dimensional
systems with sequential and parallel updating. One
reason for the discrepancy may be the use of larger lat-
tices in the CA simulations which gives more accurate re-
sults. But other explanations of an intrinsic type cannot
be ruled out. The character of the kinetic phase transi-
tions is also conserved in the CA approach; it is second or-
der at y~ and first order at yq. The fact that the transition
at y2 takes place in a finite interval has solely to do with
the finite lattice. It has been shown that at y2 a mean-
field theory is valid [14] and in a mean-field theory the 0
coverage becomes imaginary demonstrating first-order be-
havior. The phase diagram is very similar to the figure
obtained by Ziff; Gulari, and Barshad [1].

Near the second-order phase transition at y ~
the cover-

age e of CO and 0 scale as

eo-(J'co J'i) and eco-(J'co J'i) (4)

Meakin and Scalapino [15] found Po = 0.61 and
Pco=0.69 via a MC approach. Within the uncertainty
of their simulations they believed that their results indi-
cate that Po=Pco. A mean-field ansatz [16] predicts
PQ Pco 1, showing that the behavior of the system near
the second-order phase transition is not of mean-field
character but is dominated by long-range correlations and
fluctuations. Grinstein, Lai, and Browne [5] and Jensen,
Fogedby, and Dickman [6] argued that the second-order
phase transition belongs to the universality class of
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FIG. 2. Phase diagram for the occupation of the surface by
CO and 0 and the reaction velocity R (in arbitrary units) as a
function of the mole fraction ygo in the gas phase. The error
bars show the uncertainty in the values of eo. Near the phase-
transition points y I and y2 no error bars are plotted because they
are so small that they cannot be represented on the scale. The
same holds for the error bars of ego and R. For more details
see the text.
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FIG. 3. Log-log plot for eo in the vicinity of the phase-
transition point y i.
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Reggeon field theory, for which the critical exponent
is P=0.58. Chopard and Droz [8] obtained P=0.55
+ 0.05, which is in agreement with the value of the Reg-
geon model, but this has to be regarded with some skepti-
cism because the stoichiometry is not correct and there-
fore this model describes another reaction systetn and is
not equivalent to the model of ZiA', Gulari, and Barshad.

It is thus required to arrive at a more precise value of P
to clarify this point. But to this end it is necessary to
determine the value of the phase-transition point, y &, more
accurately than it was possible so far. This has turned out
to be difficult because of the critical slowing down at y~.
Therefore many iterations (10000 to 50000) and many
independent runs (10000) must be performed to obtain
the correct value of P. From the simulation it was found
that if y ~ is known with an accuracy of 2x 10 then the
error of P is obtained to be 0.06 in a small interval near y ~.

We attempted to achieve an accuracy of 5 x 10 in y ~.

This results (via a log-log plot) in a value of Po=0.58
+ 0.02 and Pro=0.58~0.03 in the interval y(Q=[10,10 ] (see Fig. 3). It should be apparent that at
such a precision one should control the dependence of y~
and thus P on the system size beyond the present
256&256 for the cellular automaton. Because the main
goal of this paper is to show a CA model which fulfills the

rules of a surface reaction correctly, calculations with a
512 & 512 matrix with many time steps and many indepen-
dent runs which would be time consuming have not been
performed. The result for P is in good agreement with the
result predicted by the Reggeon field theory. Within the
accuracy of the calculations both values of P, i.e., Pzo and

Po are equal.

CONCLUSIONS

We conclude that the CA approach can also be applied
to surface chemical reactions that so far have proved to be
rather difficult to treat correctly. Thus the CA approach
can be set up to be equivalent to the MC simulation, but it
is much faster. Thus larger systems can be treated and
critical exponents estimated more reliably. We expect
that the cellular-automaton presented here is generally
applicable to surface chemical reactions.
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