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Switching from a stable state to a periodic attractor in optical bistability
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The dynamics of a bistable optical system suddenly brought in a domain of multimode instability is

studied both experimentally and numerically. The sine-wave self-pulsing is shown to start with an ini-

tial amplitude dramatically depending on the switching conditions.

PACS number(s): 42.65.—k, 33.80.—b, 42.50.—p

Instabilities in nonlinear optical systems are usually
studied in the framework of linear stability analysis. The
system being in an unstable steady state, these instabilities
are evidenced by applying some noise or a small adiabatic
perturbation (see, e.g., Fig. 3 of Ref. [1]). Quite different
situations occur when a control parameter is subjected to
a large and abrupt change. New attractors, inaccessible
by adiabatic sweeping techniques, can be revealed [2,3]
but, even in their absence, interesting dynamical eAects
are expected. Such an experimental situation is con-
sidered in this paper where the sudden change of the con-
trol parameter induces a transition from a fixed point to a
periodic attractor, both adiabatically reachable. The
self-pulsing is then triggered by the switching (not by the
noise) and its establishment actually characterizes the
system itself instead of its shortcomings (technical noise).
The device under consideration is an optical bistable sys-
tem subjected to an abrupt switching of the input power
bringing it in a domain of multimode instability. The
more interesting features occur when critical slowing
down [4,5] and self-pulsing are observed simultaneously.
The corresponding conditions are resumed in the diagram
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FIG. 1. Schematic drawing of the S-shaped curve of the bi-
stable device locating the domain of instability and the corre-
sponding Hopf bifurcation. Bottom: Input step pulse bringing
the bistable system in the domain of instability.

of Fig. 1. The bistable device is characterized by the ex-
istence of a supercritical Hopf bifurcation (0) [6] giving
rise to a sine-wave instability. This bifurcation, located on
the upper branch of the bistability cycle, occurs in the bi-
stability domain. A stepwise pulse switches the input
power from zero to a value P~, slightly larger than the
critical power P, corresponding to the upper turning point
A. The bi-stable system initially in a stable state of the
lower branch of the hysteresis cycle then can jump to the
unstable upper branch where self-pulsing will appear.

Experiments were carried out at millimetric wavelength
(A, =3.5 mm) in a 182-m-long Fabry-Perot cavity filled
with a gas of hydrogen cyanide HC' N at low pressure
(0.5-1 mTorr). The experimental setup is extensively de-
scribed in a previous paper [7]. Briefiy, the optical cavity
is characterized by a free spectral range of 830 kHz and a
modewidth of about 50 kHz (half width at half max-
imum) leading to a photon lifetime of 3.3 ps. The bistable
is driven at a frequency close to that of the 0-1 rotational
line of HC ' N which behaves as a homogeneously
broadened, two-level system in the experimental condi-
tions. As usual, in the millimetric domain, the relaxation
mechanism, mainly collision al, is characterized by a
unique relaxation time in inverse ratio to the gas pressure
(T~ =T2=7 ps at 1 mTorr). The input power delivered
by a phase-locked high-power klystron (500 mW) is
switched by a p i ndiode mo-d-ulator with a rise time of 10
ns, i.e., 3 orders of magnitude shorter than the time con-
stant of the bistable components.

This bistable device exhibits multimode instability
which manifests itself by the appearance of sine-wave
self-pulsing on the high transmission branch of its bista-
bility cycle [7]. As indicated before, in all our experimen-
tal conditions, the Hopf bifurcation always occurs in the
domain of bistability.

Figure 2 shows three typical records of the time evolu-
tion of the power transmitted by the bistable device in the
conditions of Fig. 1. In all cases, the switching to the high
transmission branch is followed by a strongly damped os-
cillation at low frequency (90 kHz) related to the relaxa-
tion oscillations of the bistable system. On recording [Fig.
2(a)l, the sine-wave oscillations at a frequency of about
600 kHz appear almost immediately after the step pulse
switching and superimpose themselves on the relaxation
oscillations. On the contrary, in Fig. 2(b) and 2(c) the
system jumps to the upper branch after a time delay relat-
ed to the critical slowing down (critical delay) and the in-
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stability slowly grows and reaches its maximum amplitude
at a time which increases with the critical delay.

Numerical simulations were performed in order to ana-
lyze these behaviors and, in particular, to precise the
inAuence of the dynamics in the vicinity of the turning
point responsible for the critical slowing down. The
Fabry-Perot cavity is modeled by an equivalent ring cavity
of double length and the evolution of the bistable device is
described by the well-known Bloch-Maxwell equations in
the plane-wave approximation with the boundary corre-
sponding to the ring cavity [8l. Figure 3 displays the time
dependence of the transmitted power obtained for input
powers P~ larger than but closer and closer [recordings
3(a)-3(c)] to the critical power P„. The similarity with
the experimental pictures is remarkable. A detailed study
of expanded views of the bistable dynamics following the
relaxation oscillations shows that the instability exponen-
tially increases at least before the saturation of the corre-
sponding amplifying process. Whatever the input power
P~, the corresponding time constant remains approximate-
ly constant (25 ps+. 10%). In fact, this time constant
characterizes the unstable state of the stationary solution
as shown by numerical simulations performed when the
bistable system initially located at this unstable state is
subjected to a small perturbation. So, the instability am-
plitude reaches its half maximum after a time duration
(here after growing duration) which only depends on its
initial value. The growing duration of the oscillations ini-
tially increases with the critical delay and becomes practi-
cally constant when this delay is larger than 120 ps (i.e.,
about IOTz, T2=12.7 ps). In this later case the growing
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I.IG. 2. Experimental time evolution of the power transmit-

ted by the bistable device brought in its self-pulsing domain by
an input power switching. The maximum input power corre-
sponds to a Rabi frequency of about 1.3 MHz. Other parame-
ters: (a) pressure p =—0.6 mTorr, molecular and cavity detuning
Av=314 kHz; (b) p—=0.5 mTorr, hv=315 kHz; (c) p=—0.7,
h, v=291 kHz.

100 200 300 400 500

TZNE t.'ps 0

FIG. 3. Numerical results corresponding to the drawings of
Fig. 2. Parameters: pressure p =0.6 mTorr, molecular and cav-

ity detuning hv 314 kHz, and Rabi frequency is (a) 1.378
MHz, (b) 1.338 MHz, (c) 1.309 MHz.

duration is comparable to that obtained when the starting
of the instability, from the unstable state, is only induced
by numerical Auctuations due to the finite resolution of
the computer. For long critical delays, the noise then
seems to be mainly responsible for the appearance of the
self-pulsing regime. Note that all these behaviors are also
observed on all the variables describing the system (field,
polarization, and population).

This dynamics is rather surprising since after the criti-
cal delay the bistable system is far from any equilibrium.
The self-pulsing is then expected to accompany the transi-
tion to the upper branch as on recording 3(a). On the
contrary, the system appears to be stabilized on the upper
unstable branch before the destabilization process occurs.
All works as if the dynamical eigenvariables involved in

the self-pulsing are decoupled from those involved in the
transition from the lower branch of the bistability curve to
the upper one. This peculiar behavior is illustrated by us-

ing a representation in the phase space. Figure 4 gives the
projection of the orbit in the plane defined by the real and
imaginary parts of the intracavity field. The spirals corre-
sponding to the relaxation oscillations and to the self-
pulsing actually appear as located in diAerent subspaces.
The self-pulsing regime is then expected to be triggered
not by the transition from the lower branch to the upper
one but by a transient generated by the propagation of the
initial switching in the cavity at a frequency equal to the
free spectral range (830 kHz), actually close to that of the
self-pulsing. The amplitude of such a transient falls down
with time and any delay, such as that due to the critical
slowing down, significantly reduces its e%ciency to excite
the self-pulsing. For very long critical delays this ampli-
tude vanishes and the instability start from noise Auctua-
tions. The amplitude of the transient can also be lowered
by lengthening the switching rise time. Dynamics compa-
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FIG. 4. Projection on a plane of the orbit in the phase space
corresponding to Fig. 3(c). Re (Field) and Im (Field) are the
components of the output field, respectively, in-phase and in

phase quadrature with respect to the input field. The field is

measured by the corresponding Rabi frequency.
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rable to that of recordings 3(a) and 3(b) are indeed ob-
tained in this case. This result is illustrated in Fig. 5,
where the time evolution of the transmitted power calcu-
lated with a 20-ps rise time [5(a)] is compared to that ob-
tained with an instantaneous switching [5(b)1. In 5(a),
the finite rise time of the switching obviously introduces
an extra delay in the transition to the upper branch. This
has been compensated by slightly adjusting the power
used in the calculation of 5(b), so that the transition
occurs at the same time for both. As expected the vanish-
ing of the transient generated by the input power switch-
ing entails a strong reduction of the initial amplitude of
the self-pulsing. This confirms the above-mentioned
analysis.

In conclusion, the switching of a bistable device from a
stable state to a multimode self-pulsing domain has been
investigated. In the presence of critical slowing down, this
system seems to be stabilized in its instable state before

FIG. 5. Starting of the self-pulsing from the input power
switching (a) finite-time switching (rise time=20 ms), (b) in-

stantaneous switching. Same parameters as in Fig. 3 except for
the input Rabi frequency (a) 1.38 MHz, (b) 1.363 MHz.

the appearance of the instability. A phenomenological
model is proposed to describe the rising of this instability,
but a detailed interpretation of the whole dynamics is an
open challenge.
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