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Multiphoton resonances in e +H + scattering in a linearly polarized radiation field
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We report a solution of the Gavrila-Kaminski coupled-channel system of equations describing the
continuum states of an electron in the combined field of a Coulomb potential and a linearly polarized
intense radiation field. Convergence was achieved in the number of Floquet states and partial waves
for intensities up to 3&10' W/cm' at a photon energy of 7.35 eV. In addition, we observed the one-
and two-photon capture-escape resonances.

PACS number(s): 32.80.Rm

The approach of Gavrila and Kaminski [1] for deter-
mining the bound and continuum states of atomic (ionic)
systems in the presence of an intense radiation field has
provided [2-8] valuable insights into various phenomena
associated with strong laser-matter interactions. In this
formulation, a coupled system of differential equations for
the Fourier components of the time-dependent wave func-
tion in the Kramers-Henneberger gauge [9,10] describes
electron scattering by a potential in the presence of a
monochromatic laser field. Reliance is made only on a
few hypotheses common to many other theories [11],
namely, the dipole approximation, a nonrelativistic treat-
ment, and a monochromatic radiation field. Within these
limits, the approach is completely general, provided that
the solution of the coupled-channel system is carried to
convergence. In the high-frequency and high-intensity
limit, this system uncouples [I], leading to a description in
terms of a single component, which represents elastic
scattering. In the past, most applications have dealt with
the uncoupled case, and thus represent physical results
only under very restricted conditions. Several calculations
have been extended to the energetically coupled channels,
including the pioneering work of Dimou and Faisal [2], of
Franz et al. [7], and of Zoller and co-workers [4,8] who
employed a multichannel quantum-defect (MCQD)
theoretical scheme. However, all of these endeavors have
been restricted to circularly polarized radiation fields or to
one-dimensional models [12]. This may be a serious re-
striction since, in the case of circularly polarized field, the
one-electron Schrodinger equation can immediately be re-
duced to a time-independent form in a rotating frame,
which is not the typical case. In addition, the system can
reach a very limited set of intermediate (virtual) states
due to angular momentum conservation requirements.
Therefore, in order to exhibit the full power of this tech-
nique, we have extended calculations in the coupled-
channel formulation to a linearly polarized external field.
In this paper, we report the solution of the Gavrila-
Kaminski coupled-channel problem for linearly polarized
external radiation field. We observe the one- and two-
photon capture-escape resonances in the elastic-scattering
cross section of an electron by a proton (i.e., for a
Coulomb potential) in the presence of a strong, linearly
polarized radiation field, similar to those explored for cir-
cularly polarized light. These resonances arise from the
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where a(t) is the classical radius vector of the electron
under the influence of only the radiation field, and V(x)
represents the Coulomb interaction, —I/~x~. By choosing
A =asincot for the vector potential of the radiation field,
we obtain,

a(t) =—cos(rot) —=aocos(cot) .—a
CO

We conveniently select the polar axis to lie along the ra-
dius vector (an=aoz). We invoke the usual Floquet an-
satz and expand the periodic part of the wave function in
a Fourier series. In addition, we make a single-center ex-
pansion of the spatial function as
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with E serving as the quasienergy and r" representing the
angular coordinates (8,&), 8 referring to the angle be-
tween ao and r. Substituting Eq. (3) into (1), multiplying
through by a specific Fourier and angular component
exp(in'tot) Yt,„, ,(r), and integrating over a period of the
field (T=2ir/to) as well as angle, we derive a set of cou-
pled second-order differential equations,
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formation of a temporary bound state of the electron-
proton system in the presence of the laser field accom-
panied by the emission and subsequent absorption of one
or two photons.

We follow the basic formulation of Gavrila and co-
workers [1,3,6] and Pont [5] and use the Kramers-
Henneberger gauge for the time-dependent Schrodinger
equation that describes the interaction of an electron with
a proton in the presence of an oscillating electric field.
The results of these manipulations in atomic units (a.u. )
yield
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And
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with u —=cos(cot), v=—cos(8), and Tt. (u) [Pt. (v)], the Che-
byshev [Legendre] polynomial of order k. The Clebsch-
Gordan coefficients are given by C(lil2l3!mimqm3), and
the channels I =(n, l„) are labeled by a Floquet-state
quantum number n and its associated angular momentum
quantum number I„. We extract the scattering informa-
tion by matching the asymptotic form of these radial com-
ponents to the usual K-matrix conditions from which we
also calculate the S and T matrices. We associate several
important properties with these equations. First, they are
block diagonal in the azimuthal quantum number
(m„=m„—=m) although all Fourier components couple.
Therefore, the coupled equations may be solved indepen-
dently for each value of m. Second, only those channels
with the same parity, determined by whether n+ /„ is even
or odd, couple. Third, the equations bear a striking simi-
larity to those for electron scattering from a linear ionic
diatomic molecule in the static approximation for elec-
tronic transitions between alternating og and a„states.
We have used this resemblance to check many of the pro-
gramming details.

We solve Eq. (4) numerically in the close-coupling
(CC) approximation in which the expansion is truncated
at a finite number of channels, N. In the inner region
(r ~ ao), we convert Eq. (4) to a system of coupled in-

tegral equations and eAect a solution by means of a linear
algebraic (LA) prescription [13]. In the outer region, we

employ an R-matrix propagation scheme [14] to extend
the solution into the asymptotic regime. For electron-
proton scattering, the potential is local, and we could em-
ploy the R-matrix propagation for all radial values. How-
ever, we have utilized the LA method in the inner region
to demonstrate the versatility of our approach. As has
been demonstrated for electron-molecule collisions
[13,14], this technique can just as easily handle mul-
tielectron and nonlocal eAects. In addition, the formula-
tion admits the use of diferent gauges in various spatial
regimes [12]. A direct correlation exists between the dis-
placement ao and the size of the expansion basis in Eq. (3)
needed for convergence. In close analogy to the inter-
nuclear separation in electron-molecule collisions, the
displacement represents the separation of "eff'ective
charges" —the more extended this separation, the larger
the corresponding basis required to span the regime. Dis-
placements of the order of 5 bohrs (5ao) are easily tract-
able on most supercomputers such as a Cray Y-MP with
single symmetries requiring a few minutes. Removing the
single-center expansion should allow the exploration of a
more extensive range of ao. We recall that the restriction
rests with a ratio of the intensity to frequency (Eo/ru )
Therefore, we can treat very intense fields as long as the
frequency is high. We have checked the programs in
several ways. First, for the elastic scattering (n —n'=0),
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FIG. 1. The magnitude of the elastic-scattering T-matrix ele-
ment (0,2) (0,2) as a function of the quasienergy E for
EO=0 0207 a u. (1.5x10'' W/cm2) and r0=0 27 a u. (7 35 eV)
for n ~ I5I and N =33.

we have closed all channels and solved for the bound
eigenstates of U„„. For a selection of values of ao, we ob-
tain excellent agreement with the results of other investi-
gators [3] for the ground as state. Second, we have em-
ployed the e +H&+ paradigm to examine an analogous
multistate coupling scheme, obtaining agreement for all
scattering quantities with earlier molecular collision pro-
grams [15]. We have in all cases assiduously checked the
convergence of the scattering quantities as a function of
the number of channels W, the number of mesh points,
and the matching radius, pushing the convergence to
better than a few percent. For the parameters considered,
we generally found that at least a nine-state (n ~ I4I ) CC
calculation was required with three to four (I ~ 5 or 7)
partial waves for each state (27~ % ~ 33) for this level
of convergence.

One of the most interesting phenomena predicted by the
circular-polarized calculations is the capture-escape reso-
nance in which the electron emits a specific number of
photons, becomes temporarily trapped in one of the bound
states, and then absorbs an equivalent number of photons
to escape. Therefore we expect such a situation to arise
when the energy diA'erence between the electron and n
photons approximately equals the binding energy of a
bound state. The "binding potential" (Vt-r', n =n'=0)
determines to a large extent the location of the resonance
energy while the strength of the coupling matrix elements
(Vt-i-) to the decay states establishes the width. Since
both of these quantites depend strongly on laser intensity,
the resonance wi11 exhibit a position shifted relative to the
hydrogenic bound state and a variable width as the field
strength increases. In Fig. 1, we present the magnitude of
the elastic-scattering T-matrix element [(0,2) (0,2)]
as a function of the quasienergy E for an electric field Eo
of 0.0207 a.u. (I = 1.5x 10' W/cm ) and a frequency of
ro =0.27 a.u. (7.35 eV) with m =0 and even parity. This
case, which yields a displacement of 0.284ao, has been ex-
tensively studied for circularly polarized light [7,8]. We
note immediately the presence of the capture-escape reso-
nances. The lowest peak corresponds to the temporary
capture of the incident electron into the ground Is state of
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FIG. 2. Same as Fig. 1 for solid line but with Eo =0.0952 a.u.
(3&10' W/cm'-) for the dashed curve.

H by two-photon emission. The expected position is 0.04
a.u. , and we notice a distinct downward shift. For the
five-state case (n ~ ~2~), the lowest coupling order at
which double-photon processes can appear, we observed
an upward shift. However, as more states are included
(N 11), the position moves below 0.04 a.u. , demon-
strating the great importance of the inclusion of a large
CC basis. The remaining series of resonances are associ-
ated with single-photon transitions to the excited states of
H with principal quantum numbers equal to 2, 3, and 4,
respectively. The positions of these resonances shift to
higher energies than expected from pure energy conserva-
tion, indicating the strong interaction among the various

channels. This series, of course, converges on the ioniza-
tion limit at 0.27 a.u. and forms an ideal candidate for a
MCQD approach suggested by Marte and Zoller [8]. In
Fig. 2, we examine the eAects of increasing field strength
on the resonance parameters. For the same frequency, we
increase the field to 0.0926 a.u. (1=3X 10' W/cm ) and
observe that the position of the two-photon resonance
shifts down and the width considerably broadens. The
one-photon resonances for this intensity also broaden but
shift to higher energies. We note that the eigenphase sum
also reveals the resonance structure described above and
can be used to determine widths and shifts. Finally, for
the frequency considered, we have not reached the intensi-
ty regime where stabilization [16] begins for the low-lying
states of hydrogen. However, with this approach such
phenomena can be investigated, which we shall pursue in
future studies.

We have extended the approach of Gavrila and Kamin-
ski to the solution of the Schrodinger equation in the
Kramers-Henneberger gauge for electron-proton scatter-
ing in an intense linearly polarized radiation field using a
Floquet-Fourier expansion and solving the resulting set of
coupled diAerential equations. We observed the one- and
two-photon capture-escape resonances and examined their
behavior as a function of field strength.
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