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Free polymer in a colloidal solution
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We provide a statistical-mechanical theory for a system of free polymer molecules in a colloidal
solution. It is shown that three-body terms are required to obtain the shape of the polymer and the
depletion-layer profile even when the dispersion medium is a good solvent for the polymer molecule. A
semiquantitative analysis based on the density profile suggests that the addition of trace amounts (di-
lute) of free polymer induces the formation of weak flocs.
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The interaction between colloidal particles in a disper-
sion medium is important in many diverse areas [1-3].
Since the colloidal particles (assumed to be spherical
here) are typically large, the long-range van der Waals in-
teraction can be strong enough to lead to Aocculation even
when the volume fraction of the macroparticle is small
[I]. The two most commonly accepted methods for
achieving stability between colloids are through electro-
static stabilization and steric stabilization [I]. In the
former case ionizable groups in the colloidal particle yield
a large surface charge when suspended in an appropriate
dispersion medium and the resultant electrostatic repul-
sion between the colloidal particles (well described by the
Derjaguin-Landau-Verwey-Overbeek theory) prevents
Aocculation. In the case of steric stabilization the col-
loidal particles are either coated with an adsorbed poly-
mer or polymer molecules are grafted onto them. The ad-
sorbed polymers or the grafted polymers act as steric
"bumpers" and hence give rise to the required repulsive
interaction.

In addition to the above-mentioned mechanisms, Feigin
and Napper [4,5] suggested that colloidal solution can, in

principle, be stabilized by dissolving nonionic polymer
molecules into the colloidal solution. They used a com-
bination of Monte Carlo method and Flory-Huggins
theory of polymer solution to argue that stability arises
because of depletion of the concentration of free polymer
at the surface of particles when they approach one anoth-
er. Feigin and Napper find that for values of r, which is
the distance between colloidal particles, such that
RF & r & 2RF (RF being the Flory radius of the added
free polymer molecule) the interaction between the parti-
cles is purely repulsive. At smaller values of r there is an
attractive force [6].

Most of the theoretical work has focused on the proper-
ties of adsorbed polymer solutions confined between two
parallel plates under both equilibrium and nonequilibrium
conditions [7-10]. In this Rapid Communication we
present a complete statistical-mechanical theory of a free
polymer in the presence of colloidal solution consisting of
spherical particles as a step towards a microscopic theory
of polymer-colloid interaction in semidilute solution. The
theory represents a unification of the techniques used in

Z(L) =„d[r(s)]„d[R;]exp(—H) . (2)

After performing the trace over the coordinates of the col-
loidal particles using the standard Ursell-Meyer expan-
sion techniques Z(L) becomes [15]

I r(U r()
Z(L) cc drp D[r(s)]exp( —H,1r), (3)

polymer physics [11,12] as well as methods familiar in the
description of molecular liquids [13,14]. In order to ex-
pose the salient features of the theory we confine ourselves
to the effect of one long polymer on the colloidal solution.
The theory for semidilute solution, which is most directly
related to the description of depletion stabilization, is
treated in detail elsewhere [15]. Nevertheless, we argue
that the essential physics leading to the lack of depletion
stabilization is already found in the current analysis.

The polymer-colloid mixture is a ternary system con-
sisting of the polymer molecule, the colloidal particles,
and the continuous solvent phase. In our theory we ap-
proximate this as a binary system in which the interaction
potentials are assumed to be renormalized by the solvent.
The effective Hamiltonian for the system can be written
as

H =H, , ([R })+H„(r (s) )+Uz, (r (s), [R ]),. (1)
where H„(r(s)) is the Hamiltonian corresponding to the
polymer molecule which is taken to be the Edwards [14]
model including three-body interactions. The first term in
Eq. (1) represents the Hamiltonian for the colloidal parti-
cles. Here we assume that the interaction between col-
loidal particles can be modeled using hard-sphere poten-
tial. It should be emphasized that our theory is not re-
stricted to colloidal particles that behave like hard-sphere
systems. The input to the theory is the excess density-
density correlation function, g, , (r), in the absence of the
polymer molecules. Thus if the eff'ective interaction be-
tween the colloidal particles is not hard-sphere like the ap-
propriate g, ,(r) for the given potential has to be comput-
ed. The last term in Eq. (1) represents the interaction be-
tween the polymer molecule and the colloidal particles
suitably renormalized by the solvent.

The partition function for the polymer-colloid system is
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where

~L
H„rr= dsr' (s)+p, c(0.)+ —,

'
„~ ds~ ds2W'(r(s~) —r(s2))2l« ~ Jo ~0

~L r L ~L
+ ds ~

ds 2 ds 3 b (r (s ~ ) —r (s 2 ) )8(r (s 2 ) —r (s 3 ) ) (4a)

where co2 is the strength of the excluded volume interac-
tion. We assume that e(r) can be obtained using the
reference interaction-site (RISM) integral equation
which for the homopolymer case considered here is given

by [13,14,16]

p, hl, , (I r R~ ) = —dR
~

dr
~

m (r r~ )e (r ~

—R—
~ )

xg, . , (R) —R), (sa)

where gp, (r) =hz, (r)+ I is the polymer-colloid site-site
radial distribution function, and co(r) is the intromolecu-
lar polymer structure factor which represents connectivity

I

with m3 being the coefficient of the threebody term. In
Eq. (4) L is the length of the polymer, l is the effective
Kuhn length of the monomer units, p, is the number den-
sity of colloidal particles, c(k) is the Fourier transform of
a direct correlation function c(r) (a renormalized poten-
tial) between the polymer and the colloidal particle and

fO

W(r) =co2b(r) — dR i dRzc(R ~ )g,. „((R~

—Rz()

x c(R2 —r) (4b)

and other constraints. The Percus- Yevick-like closure re-
lations are for the integral equation in Eq. (5) are [13,16]

g„, (r & cr/2) =0, c(r & cr/2) =0, (sb)

where o/2 is the radius of the colloidal particles. Thus
once p, . (density of colloids), L (or molecular weight of
the polymer), g. ... and the parameters F02 and co3 are
specified the partition may be obtained using Eqs. (4) and
(5). However, the calculation of the path integral for the
theory given by Eqs. (4) and (5) is difficult, and one has to
resort to approximate methods. In this paper we use the
variational treatment of Edwards and Singh [11] to pro-
vide a simplified treatment. This basic methodology has
been successful in providing qualitative treatment of
several problems. The technical difficulty associated with
this variational method for polymer problems is well
recognized, and a proper treatment will require
renormalization-group methods [15(b),17]. Assuming
that the reference Hamiltonian is given by a Gaussian
theory with an eAective step length l

~
it can be shown that

the variational equation satisfied by l ~
is given by [15(a)]

i i/2

Ll~ ———= ——— L dkc(k)k F(k Ll~/6)+Lco3/l/l1 1 2 24L 1 I ) 4 2 3

I I) 1 el 9
(6a)

where

F(x)= e " 1+—+4 6 6
X X

(6b)

and co3 is a renormalized value of co3. The approximate
theory for the polymer-colloidal system is given by Eq. (6)
together with the RISM equation for hp „(r) [cf. Eq. (5)].

We have solved Eqs. (5) and (6) numerically for a
variety of situations. The natural parameters in the prob-
lems are L, p, (or equivalently the scaling variable,
R,.—p, . ', the mean distance between the colloidal parti-
cles), and temperature T which can be related to the
strength of binary interaction between monomers by,
co&a-(T —6)/e, e being the Flory temperature. For a
given set of parameters the theory predicts the size of the
polymer molecule R„=(LI ~ ) '~, h„,(r) which can be
used to obtain the thickness of the depletion layer. The
numerical results have been obtained for values of
f02 030 f03 022o. , L =6.1 & 10 a, and a = 1651. No-
tice that in this case a/RF (1 and therefore theories for
polymer molecules confined between two parallel plates
are not applicable. The value of co2 was estimated from
the experimental measurement of the second virial
coefficient for poly(ethylene-oxide). In order to use the
experimental results the osmotic pressure was expressed in

powers of the mass density of monomers. The usual ex-

pression for the osmotic pressure given in Flory-Huggins
theory is in terms of the number density of monomers. It
is this diA'erence that makes the value of m2 seem large.
For this and other choices of the parameters R~ =Ll] was
obtained from Eqs. (5) and (6). Physically it is clear that
for R, » RF the colloidal particles do not affect the size of
the polymer chain. In the opposite limit there is a reduc-
tion in the entropy of the chain due to the volume occu-
pied by the colloidal particles. This effectively induces an
attractive interaction between the monomers. For
sufficiently high colloid densities one expects a coil-
globule-like transition where the polymer globule can be
treated as an eA'ective hard sphere. The results of the cal-
culation are consistent with this physical picture and we
find that R~ can be represented fairly adequately by the
scaling function [18],

Rp —RFf(R, /Rf) . (7a)

R, -W '"(R„/I )4". (7b)

The function f(x) is unity for large x but behaves like a
power law for small x (high densities), i.e., limx 0
f(x) =x"'. The exponent m can be obtained from the re-
quirement that the polymer molecule collapses into a com-
pact globule at high enough densities with R a:N ' and it
turnsout tobe 9. Thus
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F16. 1. Plots of polymer-colloid radial distribution function,

g.. . (r), as a function of r/o. The parameters for all the plots are
given in the text. The plot labeled by CI corresponds to co3=0.
The colloid density expressed as p, .a' for the plots are the fol-
lowing: ~—10;0—10 '; H —0.1; and O—0.1.

The numerical values of R~ obtained using our self-
consistent mean-field theory are consistent with the tenta-
tive scaling picture presented above. It should be noted
that even if the dispersion medium acts as a good solvent
the presence of colloidal particles at high enough densities
can render the solvent poor thus inducing the collapse of
the polymer. It appears that when Eq. (7b) is obeyed
(R,. «RF) one expects effective attraction between the
colloidal particles. This would render the colloidal solu-
tion unstable leading to Aocculation.

The most significant aspect of our calculation is the
direct computation of the polymer-colloid radial distribu-
tion function, gz, (r), the Fourier transforin of which can,
in principle, be measured by light-scattering techniques.
In Fig. I a plot of g„,(r) as a function of r/cr is presented.
This figure clearly shows the depletion effect, i.e., the
probability of finding the monomers near the surface of
colloids is considerably less than at distances greater than
a certain depletion length, g. For all densities the de-
pletion length is of the order of the size of the polymer
molecules, i.e., g —R„. This prediction is consistent with
experiments [19) and with previous RIS Monte Carlo
analysis [4l. It appears that when the three-body interac-
tion among the polymer molecule is taken into account,
then the concentration profile of the polymer with respect
to the colloidal particles can be adequately described by
the usual van der Waals description of the interface
profile between coexisting Auid phase of a binary mixture.
However, this is not the case when &3=0. This is clearly
seen from Fig. 1 which also shows g~, (r) for co3 0 (c.or-
responding to the symbol a) as a function of (r/cr) for
p, .o =0.1. For the highest densities where R„/RF« I

there is evidence for the formation of a colloid shell struc-
ture around the polymer molecule. This result can be un-
derstood by noting that at these high densities the polymer
is in a globule-like state with the eA'ective dimension
RF—a. Thus the system can be represented as a collec-
tion of P+1 hard spheres (P is the number of colloidal

particles corresponding to the density p, ), which for
p, . o =0.1 shows a mild solvent shell.

The computation of the potential of mean force between
the colloidal particles mediated by the free polymer is, in

principle, possible using theory advanced here. This, how-
ever, requires the development of an additional self-
consistency equation to account for the renormalization of
the bare colloid-colloid structure factor, g, ,(r). Never-
theless the depletion profiles presented in Fig. I can be
used to develop a qualitative picture of the effect of free
polymer in inducing depletion Aocculation as the density
of colloidal particles is varied. The arguments leading to
this conclusion go as follows: At the densities considered
here the polymer-colloid radial distribution function
g„,(r) for the case when ro3&0 can be approximately rep-
resented as

(r) (I e (r —a/2)/&)

for r & o/2 with ( being dependent on the colloid den-
sity. A potential of mean force between the polymer
and the colloidal particle can be inferred by writing

gp, (r) —e """. The resulting potential UM p(r) is
weakly attractive for all values of r, and in particular
UMF(r) ——In(r/g) as r a+/2. Since ( is a decreasing
function of R,. in the density region considered here (see
Fig. 1) it follows that at higher values of R„ there is
suIIicient attraction for r —cr/2 that the colloidal particles
crowd the polymer molecule, and consequently the mean
distance between the colloidal particles would be less than
R„. This leads to the formation of weak foes (weak be-
cause the strength of the driving force for this transition is
mild). When co3=0 there is a primary minimum in

UMi:(r) at large colloidal densities as can be seen from the
curve in Fig. 1. Consequently weak Aoc formation, in this
case, would be even more pronounced. The determination
of the structure of the weak flocs requires the direct com-
putation of the renormalized potential of mean force,
U, ,(r), between the colloidal particles. If
U, , (r), which is attractive for r & a/2, is stronger than
UMF(r) the system will phase separate. However, if re-
verse is the case then the weak Aocs would have the struc-
ture of a "loose necklace" in which several colloidal parti-
cles are mildly attracted to the polymer chain. The pre-
cise situation will depend upon the parameters of the sys-
tem. In either case it appears that when the concentration
of the polymer is small then one can infer that free poly-
mer induces the formation of weak flocs. The depletion
stabilization picture of Feigin and Napper [4] only applies
when the concentration of free polymer molecules is in the
semidilute regime. The theory here has to be extended to
this case before the notion of depletion stabilization can be
completely ruled out.

The above analysis, based on the quantitative results of
our theory can be used to provide a scenario for depletion
stabilization in semidilute solutions. A complete descrip-
tion would require the calculation of the free energy of the
ternary system. For colloid densities, such that R, & („
(=lpp / where y„ is the volume fraction of the free po-
lymer molecules) the free polymer induces the formation
of weak flocs in analogy with the picture presented above.
When R, starts becoming comparable to g~ the interac-
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tion with the colloidal particles modifies the size of the po-
lymer and for R,/gp —I the polymers may render stability
to colloidal particles [4]. However, for R,/g~ && I the po-
lymers should collapse into a compact structure and the
system can then be adequately described as a binary mix-
ture of hard spheres dispersed in a continuous solvent
phase. It is well known that such a system will phase
separate under appropriate conditions [20,21].

The major qualitative conclusion of the study is that the
addition of trace amounts of free polymer to the colloidal
solution induces the formation of weak I[ocs. This can be
tested experimentally by adding free polymer to a suspen-

sion of hard-sphere-like colloidal particle-like polymethyl
methacrylate in an inert organic solvent. From a theoreti-
cal point the complete description of the colloid-polymer
mixture requires the inclusion of three-body interaction
between polymer segments even when the dispersion
medium is a gaod solvent for the polymer.
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