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Finite-temperature directed polymers in a random potential
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The phase transition of directed polymers in a random potential has been studied by both weak-
disorder expansions and numerical simulations. In dimension d=2+1, no evidence for a finite-
temperature phase transition was found. . Instead, the crossover length t' is very large at high
temperature 7 and has been found to vary as lnt' ~ 7 . In d=3+1, transfer-matrix studies show
the existence of a phase transition and some of the critical exponents have been determined.

PACS number(s): 05.20.—y

The directed polymer in a random potential represents
one of the simplest problems involving disorder [1]. It is
related to a wide variety of other apparently diA'erent

systems such as the growth of an interface in the Eden
model [2], ballistic aggregation [3], randomly stirred flu-
ids [4], domain walls in the two-dimensional random bond
Ising model [5], and Burgers's equation [6]. Further-
more it shares many common characteristics with the
spin-glass problem. Most recent work concentrates on
determining the exponents which characterize the low-
temperature (strong-coupling) phase and looking for a
phase transition between a high-temperature phase and
a low-temperature phase [7]. In dimension d=2 there is
no phase transition and only the strong-coupling phase
exists. (We shall usually write d=2 as d=l+1 to indi-
cate that there is one transverse and one longitudinal
direction. ) However, there is a controversy about the ex-
istence of a phase transition in d=2+1 [8—13]. Recent
simulations on ballistic growth models [9, 10] have been
interpreted in terms of a finite-temperature phase tran-
sition and this result was supported by other numerical
simulations on directed polymers [11]and a driven solid-
on-solid model [12]. However, a renormalization-group
(RG) analysis of the related I&ardar-Parisi-Zhang (I&PZ)
equation shows that the infinite-temperature fixed point
is unstable implying no phase transition [14, 8]. Here,
we study the directed polymer in a random potential
by both weak-disorder expansions and numerical simu-
lations. We find no evidence of a phase transition in
d=2+1. Instead, there is an extremely large crossover
length t*, viz. lnt* T for high temperature T such
that a polymer of length t, follows a random walk in the
transverse direction when t (& 5* but crosses over to the
strong-coupling (zero-temperature) characteristics when
t &) t*. In d=3+1, it is generally believed that there
is a phase transition between high-temperature and low-
temperature phases. We find the transition temperature
T„and show that the fluctuations of free energy AI'" grow
as (AF) lnt at T, We also measu. re the longitudinal
correlation length exponent P —4, viz. t* ~T —T,

~

by finite-size scaling. In d=1+1, the crossover length t*
grows as t* ~ j4 at high temperature and, as expected,
no phase transition was found.

p(z —1, t —1)+ p+Z(z —1, t —1) exp

p(z+ l, t —1) + y~
+Z(z ~ l, t —1)exp T )

where T is the temperature and the (p(x, t)) are uncor-
related random variables which satisfy

(p(x, t)p(x', t')) = 2D6„„.6, , (2)

If we consider all the walks starting from (0, 0), we can
define the total partition function Z(t) as

Z(t) = ) Z(x, t)

and the free energy F(t) as F(t) = T ln Z(t). In co—n-

sidering the polymer at finite temperature, we take the
symbol (A) as the thermal average of a quantity A by

) AZ(x, t)

(A) = ) Z(x, t)
(4)

and A as the sample average of A.
There are two commonly studied quantities in the di-

rected polymer problem. One is the free-energy fiuctua-
tion AF(t):

Consider a directed polymer on a discrete "hyperpyra-
mid" structure with random potential p(x, t) assigned to
each site (x, t) where x is the (d-1)-dimensional trans-
verse vector and t is the longitudinal length of the poly-
mer in the direction for which no reverse step is allowed.
The walk starts from x(t = 0) = 0 and its path is re-
stricted by ~x(t) —x(t + 1)

~

= 0 or 1 . There is a bending
energy y against a transverse jump ~x(t) —x(t+ 1)~ = 1.
We shall study the partition function Z(x, t) for the poly-
mer ending at (x, t), which can be obtained recursively.
For example, in d=1+1

I (»t —1)
Z(z, t) = Z(z, t —1)exp ~—
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The other is a measure of the transverse fluctuation of
the polymer such as (x)2 or (x2). These quantities are
characterized by the scaling exponents ~ and z defined
as
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There is a scaling relation 2/z —cu = 1 in the low-
temperature phase [15]. The values of z and ~ in di-
mensions higher than d=l+1 are under debate [7, 16].

At infinite temperature the disorder plays no role: the
polymer follows a random walk with z=2 and (x) is zero
by symmetry. At low temperature, the walk is attracted
by the local potentials such that it becomes superdiA'u-
sive. To see the transition between these two phases, we
define a dimensionless quantity
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FIG. 1. g(T, t) as a function of 1/T for polymer length
t=10, 20, 40, 80, and 160 in d=1+1.

which depends on T and t. It is similar to Binder's g
factor defined in spin systems [17]. At T = oo, g = 0.
On the other hand, when T = 0, (x2) = (x)2 and g is
unity. If there is a phase transition at T„ the variation
of g near T, can be written in the Rnite-size scaling form

(8)

where P is a longitudinal correlation length exponent and
g* is a scaling function. This implies that g is indepen-
dent of the length t at T, and the longitudinal correlation
length t" diverges as t' ~IT

—T,
~

At high temperature, the calculation of g is straight-
forward and to first order in D/T~ gives

where n = D[e'r/+ + 2(d —1)]&" i&/ . Eq. (9) indicates
that d = 2+ 1 is a critical dimension. Below the criti-
cal dimension, g increases with t for fixed T showing no
stable high-temperature phase, For d ) 2+ 1, since g
approaches zero with t at high temperature, there exists
a stable high-temperature phase. At d=2+1, the value of
g is independent of length t in the first-order calculation.
If we add the second-order correction, g becomes

g(T, t) 2 1+ C'
2 I, d = 2+. 1 (10)

D D ln(t/to) 5
T2 T2

where C is a positive constant and to is a cutoA'
length. Since g grows logarithmically with t, the infinite-
temperature fixed point is unstable, and the crossover
length t* to the low-temperature phase is very big, ln t*
T . The same conclusion has eA'ectively been reached in
the RG analysis of the KPZ equation [18].

From the transfer-matrix method as described in Eq.
(1), we also calculated g numerically for systems of
length i=200 (d=l+1), 100 (d=2+1) and 32 (d=3+1).
Uniformly distributed random numbers in the interval
(—2, z) were used for the {p(x,t)) and 20000 differ-
ent random configurations were collected to take a sam-
ple average, with p=0.5. In d=l+1, g(T, t) is given in
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FIG. 2. Scaling plot of g(T, t) as a function of gt/t'(T)
in d=1+1 for T=0.6, 0.7, 0.8, 1.0, 2.0, and 3.0. The inset
shows a plot of ln t'(T) vs ln T whose slope is 4.0 6 0.2.

Fig. 1 as a function of 1/T2 for fixed t=10, 20, 40, 80,
and 160. Since the curves for different lengths do not
cross each other, we infer that there is no phase transi-
tion. At high temperature, the curves are very straight
and their slopes are 0.0099'!t in good agreement with
0.0096+$ from Eq. (9) with p « T This i.ndicates that
the crossover length t"(T) grows as T4. This is consis-
tent with the renormalization-group analysis of the IZPZ
equation but disagrees with previous numerical results
[12]. To check this further, we assume a scaling form

g = f(gt/t'(T)) in d=l+1 and adjust t*(T) to collapse
the data. As shown in Fig. 2, the data collapse is reason-
ably good for a wide range of temperatures. From the
plot of ln t' versus ln T, we get a slope P = 4.0 + 0.2 in
good agreement with t'(T) —T4.

In d=2+1, g(T, t) versus 1/T~ is shown in Fig. 3 for
t=6, 12, 24, 48, and 96. The slope s of g s/T~ in
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FIG. 3. g(T, t) a.s a function of 1/T for length t=6, 12,
24, 48, and 96 in d=2+1.

FIG. 5. g(T, t) as a function of T for t=8, 16, and 32 in
d=3+1. The inset shows a scaling plot of g vs (T —T, )t'
with T, = 0.23 and P = 4.0.

the high-temperature regime is 0.0086 which is in good
agreement with the value 0.0083 of Eq. (9) with p « T.
One may argue that there is a phase transition, because
all the curves for the diferent lengths seem to meet each
other near T=l and then stick together up to infinite
temperature with g(T = 1) g g(T ~ oo). However,
our data show that g(T = 1, t) is increasing very slowly
with t, being consistent with Eq. (10) with the (lnt)/T
term included. Figure 4 shows the data collapse of T2g
versus [ln(t /t o)] /T where to is a cutoff length the value
of which is around 3.7 for the best data collapse. We
conclude therefore that there is no phase transition. In-
stead, the crossover length t' is extremely large, following
ln t' T~.

This large crossover length in d = 2+ 1 probably ac-
counts for the discrepancy between our results and t,hose

of Derrida and C~olinelli [ll], who interpreted their data
in d = 2+ 1 in terms of a phase transition, on the ba-
sis that the size dependence of the data at the higher
temperatures was consistent with the behavior expected
in the weak-coupling phase, In our view, however, it
is very likely that, due to the existence of the large
crossover length from weak- to strong-coupling behavior,
the higher-temperature data had not yet accessed (for the
system widths studied) the strong coupling regime. Ac-
tually, the same is true of our data, as is clear from Fig. 3
where the values of g are much smaller than unity for all
temperatures and times displayed: in the strong-coupling
phase g —+ 1 for t ~ oo. From Fig. 3, however, it is clear
that g is systematically increasing with time for nearly all
temperatures studied, indicating that, these temperatures
are certainly in the strong coupling phase. Furthermore,
at the highest temperatures, where no trend is discernible
in Fig. 3, the data are well described (see the scaling plot
of Fig. 4) by the weak-disorder expansion (10), which it-
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FIG. 4. Scaling plot of T g(T, t) as a function of
Pn (t/to)]/T for 10 & t & 100 in d=2+1 The cutoff len. gth
tq 3.7 is chosen for the best data collapse.

FIG. 6. (AE) as a function of ln t for different tempera-
tures in d=3+1. For T = T, (- 0.23), (AI") grows as int
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self indicates Bow to strong coupling at very large times,
in agreement with the renormalization-group predictions
[5,8]. By contrast we note that no finite-size scaling plot
was attempted in Ref. [11] for d = 2+ l.

In d=3+1, g(T, t) is calculated for f=8, 16, and 32 as
shown in Fig. 5 for p = 0.5 and uniform p(x, t). Near
T, = 0.23 + 0.01, all the curves cross each other implying
that there is a phase transition at this temperature. From
the finite-size scaling plot g versus (T —T,)t'l& we get a
nice data collapse with P = 4.0 6 0.7. This longitudinal
correlation exponent P is inconsistent with a previous
numerical result of 6.7 [ll]. If z(T, ) = 2, then the one-
loop RG result from the KPZ equation is P = 2/(d —3)+
O(1) [8]. As shown in Fig. 6, the free-energy fluctuation
(AF)2 grows as (AF)~ ln t at T, . The same behavior
is observed in the surface width of a growth model [8].
Above T„(AF) 2seems to saturate as t ~ oo. However,

the measured transverse displacement fluctuat, ion (x~) is
proportional to t both above T, and at T, . Since the
relation (x2) —(x)z t is exact without any logarithmic
corrections [19], and g(T, ) is a constant, (x2) should be
proportional to t at T, . This behavior is consistent with
to(T, ) = 0 and z(T, ) = 2 [20]. The data for g at high
temperature T = 0.4 ) T, shows a I/Qt behavior for
large t in agreement with Eq. (9).

In summary, we have studied the dimensionless quan-
tity g both by a weak-noise expansion and by transfer-
matrix methods for directed polymers in a random po-
tential. No phase transition is found in d=2+1. Instead,
there is an enormously large crossover length t.', viz.
lnt T . We suspect that this is the origin of previous
claims for a phase transition in d=2+1. The exponents ~
and z and the longitudinal correlation length exponent P
have been determined for the phase transition in d=3+1.
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