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Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems
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We study atomic-beam deflection by adiabatic passage between Zeeman ground levels via Raman
transitions induced by counterpropagating o —-polarized lasers. We show that complete population
transfer between the ground states can be achieved, which corresponds to the scattering of the atomic
wave packet into a single final momentum state by absorption and induced emission of laser photons.
Although the lasers can be resonant, the excited state(s) are never populated during the adiabatic
transfer, which suppresses the effects of spontaneous emission and preserves the coherence of the atom-
ic wave function. This scheme has attractive features as a beam splitter and mirror for atomic inter-
ferometry.

PACS number(s): 42.50.Vk

Matter-wave interferometry with neutral atoms is
currently a focus of research in atomic physics [1-5].
Compared to a neutron interferometer [6], an atomic in-
terferometer (AI) promises enhanced sensitivity for high-
precision experiments in both gravitational and quantum
physics, and a new generation of frequency standards and
rotation sensors. In addition, one of the new perspectives
of atomic interferometry is the wealth of possible experi-
ments to manipulate and probe atoms with laser radiation:
this includes scattering of atomic wave packets from light
waves (e.g., the Kapitza-Dirac effect) to build atomic-
beam splitters and mirrors [1,2,7,8], laser-cooling tech-
niques to prepare slow atomic beams [9], and applications
to laser spectroscopy. Recently, several groups have re-
ported the first experimental observations of atomic in-
terference fringes by scattering atoms from mechanical
gratings [3,4], or by applying a sequence of short tr/2, tr,
and tr/2 laser pulses to atoms in an atomic fountain [5]
similar in concept to optical Ramsey experiments.

The key element of an AI is the atomic-beam splitter
and mirror. An atomic-beam splitter separates the
single-atom wave function into a macroscopic superposi-
tion state corresponding to two center-of-mass wave pack-
ets propagating in different spatial directions. An atomic
mirror, on the other hand, deflects these wave packets so
that the matter waves traveling along two paths of the in-
terferometer can be brought to interference. This in-
terference will, of course, be observed only if these scatter-
ing processes are coherent.

In this paper we discuss and analyze a scheme for
coherent atomic-beam deflection from laser light waves
which combines several attractive features, close to the re-
quirements of an "ideal" atomic-beam splitter and mirror
for atomic interferometry. The proposed scheme is based
on the concept of "coherent adiabatic population transfer
in Raman processes with time-delayed laser guises, " as
first demonstrated in the context of molecular spectrosco-
py by Bergmann and co-workers [10,11] and discussed
theoretically by Oreg, Hioe, and Eberly [12], Hioe and
Carroll [13],and Kuklinski et al. [11].

We consider a stationary collimated beam of atoms
propagating along the x axis of our coordinate system.

The atoms are scattered from two counterpropagating o.+

and a light waves that both have frequency co and wave
vectors k directed along the +z and —z axis, respectively.
The atomic configuration is a three-level system with two
Zeeman ground states ~g -~ t) coupled to an excited
state (e -o) corresponding to a Js =1 to J, =1 transition
as illustrated in Fig. 1. An example of this configuration
is the 2s Sl to 2p Pt transition in metastable helium
[14]. The incident atoins are deflected from the light
waves by absorption and subsequent reemission of laser
photons. For small deflection angles (when the longitudi-
nal atomic momentum p, =Mv, is larger than the photon
recoil h k) our problem can be reduced to solving the one-
dimensional Schrodinger equation for the transverse
atomic motion [1,2]; the corresponding atomic Hamiltoni-
an is [14]

I g, p-fl k) I g, p+%k)

FIG. l. Three-level system with Zeeman ground states ~g+. ~&

which are coupled by cr —-polarized laser light to the upper state
(eo&.

Ho~(t) = ' +hto leo)(eol
pz

2M
—

—, h[n (t)e '"= '"'~eo)(gl~

+n +(t)e'"' ' '~eo)(g-)~+H. c.]. (1)

The time coordinate is related to the atomic motion
x=v t along the x axis. In particular, the time depen-
dence of the Rabi frequencies 0 ~(t) (see Fig. 1) corre-
sponds to the atom moving through the laser interaction
zones. %"e choose 0+ real. m,~ is the atomic transition
frequency. The Hamiltonian Ho~(t) has the property
that it couples only states within the family [(g
p, —hk), ~eo,p, ), (g~,p, + hk)] with p, the transverse
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momentum. In addition to the laser-induced scattering,
we allow for spontaneous decay during the interaction.
Thus the total Hamiltonian is

H

=Hog�

(t)+HpF+ VgF (2)

with Hog(t) the atomic Hamiltonian equation (1), HoF
I

the Hamilton operator of the quantized free radiation
field, and V~r the dipole coupling of the vacuum modes to
the atom [2]. The state vector I+(t)) of the combined
atom-radiation field consists of contributions where the
atom has emitted no spontaneous photon, one photon, two
photons, etc. [2]. Thus the state vector can be expanded
according to

Ie(t))=Ivace dp, [Ig,p, —hk&a (p„t)+Ieli p, &all(p„t)e '"'+Ig+,p, +hk&a~(p„t)]+.

where a ~ o(p„t) are the atomic vacuum amplitudes and
the ellipses represents one-, two-, etc. , photon contribu-
tions. Since the momentum transfer to the atom by spon-
taneous emission corresponds to random momentum
kicks, the vacuum contribution in Eq. (3) is the
(coherent) part of the state vector responsible for interfer-
ence fringes in the AI. It can be shown that these ampli-
tudes obey the Schrodinger equation [2]

2

i a~ = +n)R+'kv, a~ —
2 Q ~an(p„t),

2
. 8 pz

ao(pz, t) = a i—, x—an-
t

——,
' n a+(p„t) —

—,
' nba (p„t),

with h=n) —to,g the detuning from resonance, and x the
spontaneous emission rate of the upper state. The ground
states are shifted from the two-photon Raman resonance
condition due to the Doppler detunings ~kv, (with
v, =pz/M); coR =hk /2M is the recoil shift. In the fol-
lowing we assume that the atom is initially prepared in the
Igo) state with center-of-mass distribution corresponding
to a well-collimated atomic beam. Note that the popula-
tion transfer [Ig,p, —hk) Ig~,p, + hk)j corresponds
to a momentum transfer 2hk, i.e., to a defiection of the
atom.

Equation (4) is analogous to the equations studied in
Refs. [11-13] in the context of optimizing population
transfer in three-level (molecular) systems. Adopting the
arguments presented in these papers in our present case,
we see that an initial state Ig,p, —hk) can be adiabati
cally transferred to Ig+,p, + hk) provided the two pulses
0 ~ (t) are time delayed with respect to each other (but
still overlapping) such that the tr wave, i.e., the light
wave acting on the second transition in Fig. 1, precedes
the o + pulse. This population transfer (and hence
momentum transfer) is illustrated in Fig. 2 where we have
plotted the population of the final state Ig~) (i.e., Ia+ I )
as a function of the time delay r between two pulses. The
curves in Fig. 2 were obtained by numerically integrating
the Schrodinger equation (4) for two Gaussian pulses with
equal pulse durations TI =T2- T (full width at half max-
imum) and intensities (0+ =0 ), and the initial condi-
tion that the atoms are prepared in the Ig —) state. The
dashed and solid curves correspond to 0 T =50, with x =0
and x'T=5 (0/x=10), respectively. In both cases we

I

find a broad maximum for r = —1.57T, which is fairly
insensitive to the presence of spontaneous decay even if
the interaction time is long compared with the lifetime of
the upper state (x T =5, solid curve). For r ~ 0, on the
other hand, the upper-state population shows strong
(Rabi) oscillations for the undamped case (dashed curve),
and is close to zero in the presence of spontaneous emis-
sion (solid curve).

These results can be explained in an adiabatic dressed
state picture [11-13].For v, =0 the Hamiltonian matrix
in Eq. (4) has a adiabatic dressed state eigenvalue E=0.
The associated eigenvector is

IE=O)=
2 2 lt2 Ig phk&—0—

0++ 0—
0+

(n++n )
Ig+,p, + hk),

which is not contaminated by admixtures from the (de-
caying) excited state, and is independent of both d, and x.
Furthermore it follows from Eq. (6) that

Ig-,p, —hk), for o~(t)/o (t)—0 (7)E =0) —Ig+,p, +hk), for n (t)/n+(t) —0. (8)

Thus for a pulse sequence where the 0+(t) pulse is time
delayed with respect to 0 (t), (6) will satisfy condition
(7) at the beginning and (8) at the end of the interaction.
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FIG. 2. Population of the final Ig+ i ) state as a function of the

time delay i between the Gaussian laser pulses. The Rabi fre-

quencies are 0 ~ T =50. The solid curve corresponds to a spon-

taneous decay rate xT=5, while the dashed curve is for a.T=O.
T is the pulse duration of both laser pulses.
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Therefore the pulses transform ~g —,p, —Ak) adiabatical-
ly into )g+,p, + Ak). For 5 =0 the other two dressed
state eigenvalues are E ~ = +'

2 (0++0 —) 't . The con-
dition for the initial state to follow IE =0) adiabatically is
[11-13]

Q ~ T&&1, 0+ && rc. (9)

The pulses must have significant overlap in time so that
the dressed energy level ~E =0) is well separated from the
states lE ~) for all times during the interaction. For
transverse Doppler shifts the above argument is still valid
if 0+ » kv-, typically, we expect v, to be of the order of a
few recoil velocities v„=hk/M so that this assumption is
extremely well fulfilled (Raman-Nath approximation).

The attraction of the above scheme for atomic inter-
ferometry is based on the following features: We have
close to 100% scattering to a single final state correspond-
ing to a fixed momentum transfer 26k. Thus there is no
splitting of the incident wave packet into a superposition
corresponding to many momentum peaks + t'tk, + 26k,
etc. , as for scattering of a two-level system from a stand-
ing light wave. Since the process is adiabatic, it is, within
the validity of the adiabaticity condition equation (9),
quite robust against changes in laser parameters (Rabi
frequencies and detunings), interaction time (atomic ve-
locity), etc. ; this is in contrast to transfer by tr pulses with
Rabi oscillations which is very sensitive to the exact value
of the pulse area. Furthermore, although the interaction
is resonant, the scattering process is immune to spontane-
ous decay, as the excited state is never populated during
the transition. This avoids the common approach of elim-
inating spontaneous decay by detuning the laser far off
resonance to reduce the excited-state population, at the
expense of introducing a weak atom-laser coupling. Fi-
nally, the A configuration of Fig. 1 has the advantage that
it requires only a single laser since the o wave can be de-
rived by reflecting the a+ laser light.

The scheme outlined above for three-level systems is
readily generalized to a chain of Raman transitions. This
leads to an increased deflection angle due to the momen-
tum transfer associated with the multiphoton transition.
As an example consider the five-level system shown in Fig.
3 corresponding to a J~=2 to J, =2 transition with a
transfer of 4A. k. We assume again that the atoms are ini-
tially prepared in the ~g 2) state. Two counterpropagat-
ing circularly polarized waves of frequency m couple a
chain of two A transitions from ~g —q) to ~g+q). We can
show again that there is an adiabatic dressed state eigen-

value E=0 with eigenvector

~E =0& =&(II ' &-' Ig-z,-J.—26k& —&+ II —lgo, p, &

+ II+'II+ Ig+z,p. +26k)), (10)

with N a normalization constant, and 0+, A'+ Rabi fre-
quencies related by appropriate Clebsch-Gordan co-
efficients (compare Fig. 3). From (10) it follows again
that a delay of the cr+ pulse with respect to the cr wave
gives complete adiabatic population transfer from ~g —q)

to the final state ~g~z& with the atom absorbing a momen-
tum 4Ak. In particular, we emphasize that there is no
population left in the middle ground state ~go) after the
interaction. We have again no admixture from the excit-
ed states during the process and find the transfer to be in-
sensitive to variations of the Rabi frequencies and detun-
ings within the validity of the adiabaticity condition. This
adiabatic four-photon process is illustrated in Fig. 4,
which shows the time evolution of the atomic populations
(the modulus squared of the vacuum amplitudes) during
the pulse, obtained by numerical integration of the
Schrodinger equation for two time-delayed Gaussian
pulses. The parameters are AT=50 and ~T=5 with
time delay ~ = —1.2T and T = T i

=T2 the pulse duration.
In both analytical and numerical work we have found that
the adiabatic population transfer works extremely well
even for very-high-order Raman transitions achieving
high-momentum transfer in a single laser interaction
zone.

Another attractive feature of adiabatic passage is the
possibility to achieve large momentum transfer by
deflection of atoms in several successive interaction zones.
We discuss the idea for the case of a A transition interact-
ing with o —light waves (discussed in the context of Figs.
1 and 2). Again we consider an incident atomic wave
packet prepared in a ~g —,p, ) state. The wave packet is
scattered in a first interaction zone into the ~g+,p, +26k)
state with the a — waves propagating in the + z direc-
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FIG. 3. Five-level system with Zeeman ground states ~g+ 2, o&

coupled by o —-polarized laser light to the upper states ~e+ i&.

0.0
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FIG. 4. Time evolution in the five-level system (Fig. 3) corre-

sponding to a J~ =2 to J,. =2 transition. According to the
Clebsch-Gordan coeScients the Rabi frequencies are related by
0'~ (t) =J—, 0+. (t). The population of the initial state ~g —q&

(solid line), the middle state ~go&, and the final state ~g+z& is
plotted as a function of the interaction time for Gaussian laser
pulses with duration T = T l

=T2. The parameters are
0 ~ T =50, r = —1.2T, AT =0, K T =5.
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tions, respectively. In a second interaction zone with the
lasers propagating in opposite directions the electron is
transferred back to the m = —1 state, corresponding to
(g —,p, +4Ak&. Thus we have the sequence

Ig —,p.&-, —Ig+,p, +2&k&—,(g —,p, +4&k&-

Note that after two laser zones the atom is in the same
internal atomic state (g —& that it occupied initially, but it
has received a momentum kick of 4A. k. An advantage of
adiabatic passage is that its eSciency factor for the
transfer is close to unity, which allows us to combine a
large number of these interaction zones. Finally, replac-
ing the A transitions (Fig. I ) by a chain of Raman transi-
tions in a single zone (Fig. 3) promises very-high-order
accumulated momentum transfer into a single final
momentum state of the atom.

So far our discussion has concentrated on coherent
beam deflection corresponding to an atomic mirror. There
are several possibilities to realize a beam splitter. Ideally,
one expects an atomic-beam splitter to produce a superpo-
sition state of two wave packets which diAer by a large
center-of-mass momentum. As a first possibility, Eq. (6)
suggests that in a three-level A system (Fig. I) a coherent
superposition can be formed by pulse shapes 0+(t)/
11 (t)—1,

-(Ig-,p, Iik&+I—g+,p, +Iik&). (12)l

2

A second possibility is to create a coherent superposi-
tion of two atomic ground states prior to the interaction
with the laser light using a radio frequency (rf) field.
Then one component of this superposition state is
deflected selectively by adiabatic passage through a se-
quence of laser interaction zones. Consider again the A
system f(g —&, (eo), (g+)I described in Fig. 1. Typically,

(g ) will be hyperfine structure components for a particu-
lar F value. Consider now a situation where in addition to
F we have a second hyperfine structure state F' with states
(g' ) separated from the F states by a rf transition. Then
a possible sequence of transitions to generate a superposi-
tion state is

(g,p, & cos8(g,p, &+sin8(g'—,p, &

rf

—cos8(g+, p, +2hk&+sin8(g', p&
zone 1

cos8(g —,p, +4Ak)+sin8(go, p, )
zone 2

(13)
Here 8 is the mixing angle due to the rf field. (g'—)
denotes a ground state which is assumed nonresonant with

the laser light and, thus, remains undeflected. The last
line in Eq. (13) corresponds to a macroscopic superposi-
tion state of two wave packets differing by a center-of-
mass momentum 46k.

To summarize, we have shown that adiabatic passage iri

multilevel systems leads to atomic-beam deflection with

the possibility of achieving high-momentum transfer from
the laser to the atomic wave packet to prepare a single
momentuin final state with high efficiency, while at the
same time avoiding the momentum diffusion associated
with spontaneous decay. Details of the theoretical deriva-
tions and further results will be published elsewhere. An

analysis of an atomic interferometer in a triple Laue
configuration with interaction zones using counterpro-
pagating o — light to couple Zeeman levels by Raman
transitions has been given in Ref. [2(a)].
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