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Manifestations of classical and quantum chaos in nonlinear wave propagation
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We consider the evolution of waves governed by a periodically perturbed nonlinear Schrodinger
equation. The system is a nonlinear generalization of the quantum kicked rotator. We study the soli-
ton chaotic motion, its destruction and reversibility properties. It is found that nonlinearity does not
destroy the quantum suppression of chaotic diff'usion.

At present, the properties of dynamical chaotic motion
in classical Hamiltonian systems with few degrees of free-
dom are reasonably well understood. Their most impor-
tant characteristic is exponential local instability of
motion. This instability results in a practical irreversibili-
ty of dynamics as well as in a mixing in phase space and
correlations decay. A well-known simple example of such
chaotic behavior is given by the standard map [1].

During the last decade much attention was devoted to
the manifestation of these classical features in the corre-
sponding quantum systems [2,3] or in classical linear wave
systems [4,5]. It was shown that the quantum motion is
stable and reversible [6] and that classical local instability
manifests itself only during a short-time interval as a rap-
id destruction of narrow quasiclassical wave packets [7,8].
One of the most important and interesting quantum-
mechanical eA'ects is the suppression of the classically
chaotic diffusive excitation.

The basic model used to understand this behavior is the
quantum version of the standard map: the so-called
"kicked rotator, " namely a rotator under a time-periodic,
8-kick perturbation. Indeed it is known that when the
perturbation strength exceeds a critical value called the
chaos border, the classical motion becomes diAusive and
the energy of the rotator increases, in the average, linearly
with time. Instead, in the quantum case, one observes the
localization phenomenon: the excitation settles after a
while to a steady-state distribution which decays exponen-
tially moving away from the initially excited unperturbed
state [2,6,8,9]. As a consequence, unlike the classical, the
quantum rotator energy is limited by some finite value. It
is interesting to remark that the quantum kicked rotator
describes as well the motion of classical waves such as the
propagation of light in waveguides [4,5]. Highly nontrivi-
al problems arise if these waves propagate in a nonlinear
medium and are governed, for example, by the nonlinear
Schrodinger equation. It is, therefore, extremely interest-
ing to understand how nonlinearity modifies the general
picture drawn from the kicked rotator model. In particu-
lar one would like to know to what extent the main
features of quantum chaos, i.e., destruction of wave pack-
ets, stability and reversibility of motion, quantum suppres-
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sion of diffusion, and localization, etc. survive to the intro-
duction of nonlinearity.

In this paper we study the nonlinear Schrodinger equa-
tion under time-periodic &kick perturbation described by
the following equation:
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where p and k are two parameters which measure the
nonlinearity and the kick strength, respectively. Here and
in the following we set 6 =1. The probability

l yl, being
an integral of motion, is normalized to one. We consider
the motion on a ring, so that y(x, t) = y(x+2tt, t).

The system (1) can be considered as a model for propa-
gation of nonlinear waves in a medium as in optical fibers:
the last term may be interpreted as a change of the optical
density inside the waveguide. Also the same model (1)
approximately describes the propagation in waveguides
with longitudinal sinusoidal modulation of the boundary.
For these cases time in Eq. (1) plays the role of the longi-
tudinal direction along which waves propagate.

In the case k =0 Eq. (1) reduces to the usual complete-
ly integrable nonlinear Schrodinger equation possessing
well-known soliton solutions [10,11]. In the other limiting
case, corresponding to p=0 Eq. (1) reduces to the quan-
tum kicked rotator model [2,8]. In the classical linear
limit (p=0, k ee, T 0, and kT =const) the motion is
described by the standard map. Another connection with
classical mechanics can be obtained by considering soli-
tons as classical particles [12,13]. As shown below the
motion of solitons is governed by the same standard map;
the question arises however for how long a time the soliton
solution will be valid. In the unperturbed case (k =0) the
one-soliton solution is given by
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where v is the velocity of the soliton and xo its initial
center position. The characteristic width of the soliton in
coordinate space Ax =4/P is assumed to be much less than
2z, while the width in Fourier space is hn =P/4. Notice
that the maximum in the Fourier components (in the un-
perturbed levels for the quantum kicked rotator) for such
a solution is located at v/2.

The eff'ect of the kick can be represented by multiplica-
tion of the y function:

Ik cosz ~ .

therefore for large P, when the size of the soliton is small
enough, its center position and velocity can be described
by the standard map:

v =v+2k sinx,

x —x+UT

The map (4) is obtained by inserting Eq. (2) in Eq. (3)
and expanding cosx near the center of the soliton. The
classical chaos parameter is K=2kT and will determine
here whether the soliton motion is stable or chaotic.

In order to check that the map (4) is a good description
for the soliton motion, we numerically integrated Eq. (1)
and computed the average soliton position (x) after the
mth kick, as well as the soliton velocity determined by
((x +~) —(x ))/T. Figure 1 shows a plot of two typical
soliton trajectories in the phase space, one in the stable
and the other in the chaotic region. Classical phase-space
points are here substituted by segments centered at the
soliton position; the length of the segment is equal to the

2.0 =.

soliton width hx. From the computed average positions of
the above chaotic trajectory we calculated the function
g((x) ) =((x) +i —2(x) +(x) —~)/(2kT), and com-
pared it with the curve g(x) =sinx. The comparison be-
tween these two functions shown in Fig. 2 indicates that
the standard map gives a good description of the soliton's
motion.

However the approximation involved in considering the
soliton as a point particle is valid only up to some finite
time after which the eff'ects of finite width must be taken
into account. Indeed, as it is seen from Eq. (3), after the
action of a kick the soliton shape is slightly disturbed due
to second and higher-order terms in the expansion of cosx
riear the center of the soliton. The effect of one kick is a
decrease of soliton amplitude by a quantity proportional
to k /P [14) and a corresponding increase of nonsoliton
wave field. In the approximation in which the radiated
wave field is neglected, the soliton lifetime t, is expected
to be proportional to t, =P /k [14l. Numerical results
obtained for chaotic soliton motion with parameter K =3
show that the soliton lifetime t„defined as the time after
which the width of the soliton becomes two times larger
than the initial value, can be approximated as t, =aP /k .
Numerical data obtained in a wide range of parameters
10~ P ~ 40 and 0.2~ k ~ 3 lead to a =0.33. The dif-
ference from the analytical estimate given above is prob-
ably caused by the inAuence of radiated field on the soli-
ton evolution.

One of the characteristic features of quantum dynamics
of classically chaotic systems is the stability property.
Indeed, as it is known, classically deterministic chaotic
systems are exponentially unstable with respect to the ini-
tial conditions. Therefore they are practically irreversible,
in spite of the exact reversibility of the equations of
motion: this is caused by the exponential growth of errors
and finite precision of the computation. On the contrary,
numerical computations performed on quantum systems
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FIG. l. Two phase-space trajectories with parameters p =25,
k =0.5, and T=2 (classical K is 2), obtained by numerical in-

tegration of Eq. (I) up to 500 periods of the external perturba-
tion. The chaotic and regular trajectories start from an initial
soliton condition with I =O. l, x0=0. 1 and i =0, xo=2.6, re-
spectively. Segments are centered around the soliton center po-
sition (x) and momentum p = I T, and have a length equal to the
soliton width. While the motion is integrated over an unbound-
ed cylindrical phase space, the momentum is plotted modulus 2n
for the sake of clarity.
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FIG. 2. Comparison between the function g((x)„,)
=((x)„,+~

—2(x)„,+(x)„,—~)/(2kT), computed for the chaotic
trajectory of Fig. l (dots), and the kick function g=sinx (solid
line).
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small steps M and in the number of Fourier components.
The other interesting question is whether quantum

(P 0) suppression of diffusive energy growth in the clas-
sically chaotic region survives to nonlinearity. The nu-

merically observed behavior reveals that the energy E and
the width of the wave packet in Fourier space hn (these
quantities are found to have very similar behavior) look
like those in the quantum case. In Fig. 4 we plot hn
versus time for the case P 10, k 2.5, and K =5. It is
seen that the motion, qualitatively, is analogous to the
quantum kicked rotator motion (Refs. [2,6,8]): for some
time scale it follows the classical-like diffusive behavior,
then it deviates and the diffusion process is suppressed.
Notice, that for these parameters values the lifetime of
soliton is very small (t, =2). The energy reached at the
end of the integration time increases with P (which ranged
from 0 to 10) and k (which ranged from 1.25 to 5).

The complexity of the numerical procedure does not al-
low us to push the integration time up to very long times.
At present it is, therefore, not possible to make more
definite statements concerning the asymptotic behavior;
however, the suppression of classical diffusion is evident.
Also our numerical computations indicate that the proba-
bility distribution over the Fourier components is roughly
exponential even if the stationary state is not yet reached
during the interaction time. For example, the amplitude
of the highest Fourier component in the case of Fig. 4 was
of the order of 10 ' after a thousand kicks. The possible

physical explanation for diffusion suppression in the non-
linear case is that after soliton destruction the influence of
nonlinearity decreases and it does not prevent the interfer-
ence effects which are responsible for suppression of
diffusion in the quantum case.

We integrated Eq. (I) also for the case K & 1 and
found that there is no significant energy growth even for
initial conditions not solitonlike or when the lifetime of the
soliton is very short. Therefore it appears that the condi-
tion for stability of the motion K & 1 which is known to be
valid for the standard map, works also for the nonlinear
model (1). In addition, as it is to be expected, in this
latter case the motion is always reversible.

In conclusion, we have shown that the kicked nonlinear
Schrodinger equation (NSE) model contains properties
both of the classical standard map and of the quantum
kicked rotator. The most striking result is that nonlineari-
ty does not destroy the suppression of chaotic diffusion.
When applied to the propagation of light beams in a per-
turbed nonlinear waveguide this implies that the beam an-
gular aperture does not grow significantly even for very
long waveguides.
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