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Templates and framed braids

P. Melvin
Department of Mathematics, Bryn Mawr College, Bryn Mawr, Pennsylvania 190iO

N. B. Tufillaro'
Nonhnear Systems Laboratory, Mathemat~ cs In'stitute, University of Warwick, Coventry CVg 7AL, United It'sngdom

(Received 28 May 1991)

We show how a template for a dynamical system can be uniquely specified by a framed braid. This
leads to a homological classification of strange attractors in terms of an associated linking matrix.

A recent Letter by Mindlin el al. [1] describes how pe-
riodic orbits embedded in a three-dimensional Row can be
used to provide an integer characterization of a strange
set. The central object in this topological theory of low-
dimensional chaos is the embedded template (or knot
holder), introduced in the general context of hyperbolic
flows by Birman and Williams [2] (see also [3,4]). The
template is a branched surface with a semifiow having
the same spectrum of periodic orbits (up to isotopy) with
the same topological organization as the original fiow.
Mindlin el al. [1,5] give a partial algebraic characteriza-
tion of a k-branch template (and its associated strange
attractor) in terms of two pieces of data: a k x k tern
plate matrix, and a 1 x k layering array. In particular,
these data determine the linking numbers of all pairs of
periodic orbits in the How, as well as the more delicate
relative rotation rates defined by Solari and Gilmore [6].
Since periodic orbits are dense in a hyperbolic strange
set, this provides a type of homological classification of
the strange attractor of the flow. In this Rapid Commu-
nication, we propose an alternative (and equivalent) clas-
sification in terms of a single 0 x k framed-braid linking
matrix. Our formulation arises from a canonical corre-
spondence between templates and framed braids, which
we describe first.

Recall that a framed braid is a geometric braid [7] with
an integer associated to each strand. This integer, called
the framing or local torsion, represents an internal struc-
ture of the strand. More precisely, it represents an iso-
topy class of framings of the normal bundle of the strand
(fixed on the boundary) by giving the winding number
(in multiples of vr) of the normal frame about the strand.

A framed braid can be represented geometrically by a
ribbon graph, obtained from the braid by replacing each
strand by a ribbon. Each ribbon is given the integer
number of half-twists corresponding to its framing, using
the standard crossing conventions illustrated in Fig. 1
(which are opposite to those of Artin [7]). Algebraically,
a framed braid can be specified by a braid word (unique
up to equivalence in Artin's braid group [7]) together
with the framing (a list of integers giving the framings of
the strands, from left to right at the top). For example,
the ribbon graph shown in Fig. 2 is specified by the braid

o 2o s
' o i with framing (0,1,1,-2) .

A closely related notion is that of a layering graph,
made up of a joining part followed by a splitting part.
The joining part consists of a collection of ribbons which
descend from a fixed ordered position (as in a ribbon
graph, but without twisting or intertwining) to a branch
line where they are glued together into one ribbon. In the
splitting part, this ribbon continues to descend, splitting
back up into the original number of ribbons which return
(again without twisting or intertwining) to their origi-
nal positions. Labeling the ribbons 1, . . . , k (from left
to right), a layering graph can be specified algebraically
by a list of integers, the layering array, giving the order
in which the ribbons are glued at the branch line (from
back to front). Thus the first integer gives the label of
the backmost ribbon, and so forth. The layering graph
corresponding to the list (1, . . . , k) will be called the stan
dard layering graph. Figure 3 shows two layering graphs;
the second one is standard.

Now we return to templates. Our discussion will be
limited to simple templates, that is, templates in jk for
which all the branches are joined at the same branch line.
By a result of Franks and Williams [4], any simple tem-
plate can be arranged, via isotopy, as a twisted braid,
which effectively means that it can be viewed as embed-
ded in IR2 x S so that the semiflow is in the S' direction
(as in a forced system). Thus a simple template may be
thought of as the union of a ribbon graph and a layering
graph (identifying the bottom of each with the top of the
other), and can therefore be specified by three pieces of

FIG. 1. Crossing convention: (a) positive, (b) negative.
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framed braid ribbon graph
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FIG. 4. Moving a layering graph to standard form: back
to front.

FIG. 2. Geometric representation of a framed braid as a
ribbon graph.

algebraic data: a braid, a framing, and a layering array.
The decomposition of a simple template as the union

of a ribbon graph and a layering graph is not unique;
the line between the bottom of the ribbon graph and the
top of the layering graph cannot be recovered once the
graphs have been identified. In fact, any layering graph
can be made to look standard near the branch set at the
cost of adding a new ribbon graph at the top (this is
achieved by a sequence of branch moves which are like
Type-II Reidemeister moves, as in Fig. 4). Tacking this
new ribbon graph onto the bottom of the old one gives
a new decomposition with standard layering graph. This
decomposition is unique up to a horizontal Hip. Thus the
template can be specified by the framed braid (unique up
to a flip) associated with the ribbon graph in the standard
decomposition.

The process of obtaining the standard decomposition
of a simple template from a nonstandard one (typical
for drawings in the literature) is illustrated in Fig. 5 for
a series of two-branch templates. This also shows the
associated ribbon graph (framed braid) and its "linking

(o o I

FIG. 5. Examples of two-branch templates, their standard
forms, ribbon graphs, and linking matrices.
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FIG. 3. Layering graph: (a) nonstandard, (b) standard. FIG. 6. A three-branch template as a framed braid.
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matrix, "defined below. In drawing templates, we usually
confine the expanding part of the semiflow to the joining
part of the layering graph, and so the branches of the
layering graph get wider before they are glued at the
branch line, whereas the branches of the ribbon graph
are of uniform width. We also typically put the ribbon
graph (with the local torsion as a series of half twists

at the top) above the joining part of the layering graph,
omitting the splitting part. An example of a (standard)
three-branch template is shown in Fig. 6.

The linking matrix of a framed braid with k strands
(or its associated template) is the symmetric k x k matrix
B = (6;z ) defined by

' the framing of the ith strand if i = j
the sum of the crossings between the ith and jth strands if i g j.

Thus B describes the algebraic linking of the branches
within the template (but not the subtler geometric link-
ing), as well as the local torsion of each branch. For the
example shown in Fig. 6 the linking matrix is

0-I'l
B= 0 2 —1

(—1 —I 0)
From the linking matrix of a template, one can easily

compute the linking numbers (or more generally the rel-
ative rotation rates [6]) of any two periodic orbits in the
underlying flow. For example, the period-1 orbits cor-
responding to the ith and jth branches of the template
have linking number 6;&/2 or (b;z. + 1)/2, according to
whether Ii;z is even or odd. (Thus the template matrix
of Mindlin et at [1] can be r.ecovered from our linking
matrix by adding one to any off diagonal odd entry. ) For
higher-order orbits, there is a simple algorithm once one
has set up the appropriate symbolic dynamics (see [8] for
computer codes).

The linking matrix also gives the permutation of the
strands of the framed braid. At the top of the braid, the
strands are ordered from 1 to k. At the bottom, each
strand occupies some possibly new position, The new
ordering, or permutation o~, of the strands is given by

o~(i) = i+ [n dd(ob, &) with j ) i]
—[n dd(b, ~) with j ( t'], (2)

where n dd(b;~) is the number of odd entries b;~. . Infor-
mally, to calculate the final position of the ith strand,
we examine the ith row of the linking matrix, adding the
number of odd entries to the right of the diagonal ele-
ment to i, and subtracting the number of odd entries to

the left. For example, for the template shown in Fig. 6
we find that o'@(I) = 1+ 1 = 2, o'er(2) = 2+ 1 —0 = 3,
and cr~(3) = 3 —2 = 1, and so the permutation 011 is the
3-cycle (1,2, 3).

Note that for a template, the layering array of Ref. [1]
can be recovered from o ~. In particular, adjusting the
notation of Ref. [1] so that the branches are labeled from
1 to k rather than 0 to k —1, the layering array is just
(&a'(I) " &a'(&)).

Finally, we show how to calculate the linking matrix
of a template from low-order periodic orbits, which can
be extracted from an experimental time series (cf. [1,5]).
Let a;& denote the linking number of the period-1 orbits
corresponding to the ith and the jth branch, and let s;&
denote the (unique) self-rotation rate [6] of the period-
two orbit which traverses the ith and jth branches. By
convention a;; = 8;, is just the local torsion of the ith
branch. Both a;& and s;& are computable from experi-
mental data. Now

b;~ = min(a;, , s;~),

as is readily shown by considering the 2-braid correspond-
ing to the ith and jth branches.

In summary, we show that a "homological" classifica-
tion of strange attractors is provided by a single framed-
braid linking matrix. This single matrix appears to ofI'er
some theoretical and computational advantages over the
original template matrix and layering array characteriza-
tion [1].

It is a pleasure to thank G. B. Mindlin, H. Solari, and
R. Gilmore for patiently describing their ideas about the
topological characterization of strange attractors.
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