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Interaction of two-dimensional localized solutions near a weakly inverted bifurcation
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We study the interaction of two-dimensional (2D) solutions as they arise for the envelope equations
for a subcritical bifurcation to traveling waves. We show that these 2D localized solutions can collide

and reemerge unchanged in size and shape after the collision in contrast to what is found in 2D soliton

systems. Various other types of behavior arise as the impact parameter and the cross coupling be-

tween the waves are varied. We point out that these phenomena should be observable experimentally
for hydrodynamic instabilities in anisotropic liquids such as nematic liquid crystals.

One of the most important discoveries in nonlinear sci-
ence has been that of solitons by Zabusky and Kruskal
[1]. They showed that for a one-dimensional evolution
equation, the Korteweg-de Vries equation, localized solu-
tions could collide and emerge unchanged in speed, size,
and shape when compared to a time well before the col-
lision. Thereafter, solitons have been found in many in-

tegrable systems including the nonlinear Schrodinger
equation and the sine-Gordon equation [2-4]. All known
integrable systems are Hamiltonian or purely dispersive
and thus soliton behavior appears to be restricted to the
domain of nondissipative systems or at best to systems for
which a very small amount of dissipation is taken into ac-
count perturbatively.

Since for many physical systems dissipation is not just a
small perturbation but plays an important role in the dy-
namics, in Refs. [5] and [6] the question was asked wheth-
er or not there are highly dissipative systems that share
some properties with the solitonic systems, i.e., have local-
ized solutions which collide and interpenetrate but which
emerge unchanged in speed, size, and shape as compared
to the state before the collision. It was shown [5,6] that,
indeed, this behavior can occur in a system with both large
dissipation and dispersion: a system of two coupled non-
linear envelope equations for a weakly inverted bifurca-
tion [7,8].

One of the disappointing features of multidimensional
integrable systems has been the lack of stable localized
solutions, with solutions dispersing away as t ~. This
is in contrast to one-dimensional integrable systems where
the solutions tend to form solitons. Recently, stable local-
ized solutions have been found for the two-dimensional
(2D) Davey-Stewartson equations [9-11]. Collisions of
these solutions have been studied, and it has been found
that, in general, there is an exchange of energy between
the localized solutions and that the forms of the solutions
are changed. Only for a special choice of spectral param-
eters are the forms preserved [11]. This is in contrast to
one-dimensional solitons where, in general, the forms are
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The complex fields A and 8 correspond to right and left
traveling waves, respectively (v & 0), and the coefficients
y, P, 8, and g are, in general, complex. Real and imagi-
nary parts are denoted by the subscripts r and i, respec-
tively.

We note that Eqs. (1) are of prototype character, since
equations of this type [13]can be derived for systems with
an intrinsic anisotropy, which show subcritical bifurca-

preserved [4].
Many macroscopic physical systems are highly dissipa-

tive and not purely Hamiltonian. Therefore it is natural
to investigate the interaction of localized solutions in mul-
tidimensional dissipative systems. In this paper we study
the interaction of localized solutions occurring in a two-
dimensional generalization of the system of amplitude
equations studied in Refs. [5], [61, and [12]. In contrast
to soliton systems where an increase from one to two di-
mensions greatly changes the behavior of solutions, we
find in the dissipative system that the behavior of solutions
is preserved in increasing the dimensions from one to two,
with interpenetration of localized solutions in which the
form is preserved, as well as complete annihilation and a
transition from subcritical to supercritical. In addition, a
new parameter —the impact parameter —emerges as a re-
sult of the increase in dimension. We find that whether
the solutions annihilate or preserve their form can depend
on the impact parameter and that the perpendicular dis-
tance between the trajectories after the collision can be
different from that before the collision (the impact param-
eter).

The equations we study are
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tions to traveling waves. Fluid systems with an intrinsic
anisotropy include, for example, nematic liquid crystals,
which show short-range positional order, but for which the
orientation of the molecules aligns on average spontane-
ously along a certain direction. For the onset of stationary
electroconvection in nematic liquid crystals it has been
shown [14] that the spatial derivative term in the resulting
envelope equation can be cast into the form of a 2D La-
placian and the corresponding diffusion coefficient has
been evaluated from the electrohydrodynamic equations
for nematic liquid crystals [14]. A subcritical bifurcation
to traveling waves occurring for hydrodynamic instabili-
ties in nematic liquid crystals recently has been demon-
strated experimentally for the case of electroconvection
[15]. Furthermore, it has been predicted theoretically
some time ago [16] that the onset of thermal convection in
nematic liquid crystals can be via a subcritical oscillatory
bifurcation.

In the following, we take g and P„negative so that
the system is subcritical (sufficiently small perturbations
damp while larger perturbations grow) and 8'„positive to
cause saturation. The cross-coupling terms are responsi-
ble for interactions between the fields, g„)0 correspond-
ing to a stabilizing interaction and („&0 corresponding to
a destabilizing interaction. These equations are solved nu-

merically using a time-splitting method. The equations
are split into their linear and nonlinear parts. The linear
part is solved using Fourier transforms and the nonlinear
part is evolved in time using the second-order Runge-
Kutta method.

It has been shown [17] that (without the cross-coupling
terms) these equations have stable radially symmetric lo-
calized solutions. Just as in the one-dimensional case,
these particlelike solutions form from a wide range of ini-
tial conditions. Figure 1(a) shows two such solutions.
The state was prepared by allowing the system to evolve
with v =0 from two initial Gaussian forms. The final
state is independent of the amplitudes, widths, and sym-
metry of the initial Gaussian forms for a wide range of
amplitudes and widths. The particle states are then set in
motion by taking v different from zero. Figures 1(b) and
1(c) show the two states interacting for $„=0.8. The
reduction in amplitude of the states during interaction is
the result of the stabilizing cross coupling. Figure 1(d)
shows the states well after the interaction. Comparing
Fig. 1(d) with Fig. 1(a) we see that the form of the solu-
tion is preserved.

For larger stabilizing cross coupling the amplitudes will
be reduced even more during interaction. If the reduction
in amplitudes is sufficiently great, the amplitudes will be
brought below the critical amplitude separating growth
from decay (recall that the system is subcritical) and the
solutions will annihilate. For example, for ('„=I the solu-
tions will annihilate in a head-on (impact parameter
b =0) collision. Figure 2 shows a collision with g„=2 and
an impact parameter of b =1. We see that the solutions
annihilate. For a much larger impact parameter, the solu-
tions will not be su%ciently reduced in amplitude to cause
an annihilation and the solutions will emerge from the in-
teraction unchanged from the solutions before the col-
lision. Figure 3 shows such an interaction for impact pa-

rameter b =2. Comparing the initial and final states, we
see that the form of the solution is preserved as in the col-
lision of Fig. 1 ~ An interesting feature of this interaction,
however, is that the perpendicular distance between the
trajectories has increased as a result of the interaction
[compare Fig. 3(c) with Fig. 3(a)].

If the cross coupling is destabilizing (g„&0), the am-
plitudes will be increased as a result of the interaction. If
the destabilizing cross coupling is not too large, the solu-
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FIG. 1. Complete interpenetration of two localized states
upon head-on collision and for stabilizing cross coupling g, =0.8.
The remaining parameter values for this and the other figures
are Z= —0.1, P, = —3, P; = —1, y„=l, y; =0, 8, =2.75,
6; = —1, g; =0, and v = l. (a) The two localized states before
the interaction; (b) contour plot during the interaction; (c) 3D
plot during the interaction, and (d) well after the interaction.
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tions will interact and emerge from the interaction un-
changed. For example, this occurs for a head-on collision
for g„= —0.5 and for impact parameter b 4 for
= —1. For much larger destabilizing cross coupling the
interaction will cause the system to make a transition
from subcritical to absolutely unstable and the interaction
will spread with time in all directions. Figure 4 shows
such an interaction. The initial state is the same as that of
Fig. 3(a), but with impact parameter 6 =3 instead of
b =2. We see that the interaction region grows as a result
of the destabilizing cross coupling. The interaction region
will continue growing with time until the entire system is
filled.

If the group velocity v is sufticiently small, it is possible
for the interaction to cause the states to stop propagating
and to form a stationary compound object. Figure 5
shows such a compound object for v =0.1 and g„=l.
Such a compound state has also been found in the one-
dimensional equations [6].

In this paper we have studied interactions of particlelike
solutions for a two-dimensional generalization of a system
of coupled envelope equations for a weakly inverted bifur-
cation [7,8]. We find that behavior occurring in one spa-
tial dimension [5,6] also occurs in two. This is in contrast
to soliton systems for which an increase in the dimensions
of the system greatly changes the behavior of the solutions
[4,9-11]. We found interactions which preserve the form
of the solutions (a behavior which occurs with one-di-
mensional solitons), as well as interactions which cause
complete annihilation and interactions which cause a
transition from subcritical to supercritical. We have also
found behavior which cannot occur in a one-dimensional
system such as a change in the perpendicular distance be-
tween trajectories as a result of the interaction.

It will be most interesting to see whether the phenome-
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FIG. 2. Complete annihilation of two localized states for im-

pact parameter b = I and stabilizing cross coupling (, =2. (a)
Contour plot well before the interaction; (b) contour plot during
the interaction; (c) 3D plot of the decaying remnants after the
interaction.

FIG. 3. Interaction of two localized states for larger impact
parameter (b =2) shown as contour plots. Note that the per-
pendicular distance between the trajectories is larger after than
before the interaction. (a) Initial state; (b) interaction; (c) final
state after interaction.
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