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We investigate various statistics of energy levels of integrable quantum systems with Hamiltonians
H= —,

' (I —a)-' on the unit torus, with a a parameter. We find strong numerical evidence, by using up

to 10" levels, that for typical a, with respect to uniform distribution in the unit square, the local
empirical statistics of the levels E„=—,

' (n —a)-', n 6 Z"-, converge for large energies to a Poisson limit.

The fluctuation of the total number of levels, E„&E, scales like E'~ and its distribution converges to
a non-Gaussian limit. The variance and skewness of this distribution can be computed analytically.

The nature of the distribution of quantal energy levels is
a long-standing problem. There is much numerical and
theoretical evidence that in the semiclassical or high-
energy regime the levels of classically integrable systems
typically follow Poisson statistics [1-5]. There are two
types of statistics commonly studied: the distribution of
nearest-neighbor spacings and the spectral rigidity 43(L).
The latter measures the mean-square fluctuations in the
number of energy levels in an energy range containing on
the average L levels. It was shown in [2] and later ana-
lyzed in [3] using semiclassical analysis of periodic orbits
that Aq(L) is linear in L, as would be expected from Pois-
son levels, for small L, but then saturates.

In this paper we investigate numerically an integrable
system related to those considered in [1-5]. We use up to
10 levels and sample over many values of a parameter
appearing in the Hamiltonian. Our results lend strong
support to the exponential nature of the nearest-neighbor
spacings by substantially reducing the fluctuations ob-
served earlier. We also find that the actual distribution of
the number of energy levels in small intervals is Poisson.

Finally, we investigated the distribution of the properly
scaled random variable which measures the rigidity for
ranges of L where 63(L) is no longer linear. We find both
numerically and analytically that the distribution is not

Gaussian.
Our choice of system for study was motivated by a re-

cent result of Sinai [6] concerning the eigenvalues of the
integrable Ham iltonian of a free particle, on a two-
dimensional toroidal surface of revolution. Sinai relates
this to the study of the points in the square lattice Z-
which fall in a narrow strip of fixed area surrounding a
"typical" random closed curve in the plane r =Rf(0).
Sinai's results may be paraphrased as follows: For typical
curves let ptt(n) be the probability of having n lattice
points in the strip, as R ranges over an interval [c~R, c2R],
0&c~ (c.. Then pR(n) approaches, for large R, the
Poisson form, (p "/n.')e ", where p is the expected number
of lattice points in the strip.

In Sinai s theorem the probability distribution which
determines the concept of "typicality" of the curves re-
quires an "infinite" number of random parameters to
specify the function f(8), cf. Major [7]. In the present
work we examine curves with much less randomness, i.e.,
circles with center a in the unit square. Using many sta-
tistical tests over wide energy ranges our results suggest
(but of course do not prove) that Poisson statistics hold lo-
cally also for our model, while a-dependent behavior is
found for the global distribution. This is consistent with
the results in [1-5].
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We consider the eigenvalues of an integrable system
whose Hamiltonian is of second degree in the action vari-
ables It and I2 conjugate to angular variables 0] and 02
which live on the unit torus. We can write the Hamiltoni-
an in the form

with a] and a2 some constants. The eigenvalues of this
system will then be

E„(a) =—[(n )
—a ) ) -+ (n 2

—a 2) '], (2)

where n=—( n~, n )2are coordinates of the vertices on the
square lattice Z'-. It is clear that mathematically the
study of the statistics of energy levels becomes the study
of the statistics of the number of lattice sites in domains
defined by circles with center c—= (a~, az). For conveni-

ence, we set 6/2=@ so that the average level density is

one. For a fixed a these levels are just points on the posi-
tive real axis and we label them in increasing order as
E;(a), i =1,2, . . . , including the degeneracies which can
occur if a] and a2 are rationally dependent.

We present numerical studies of three types of statistics
of these energy levels. They are (i) the level spacing (,
(ii) the number t) of levels in an interval of a given length,
and (iii) the fiuctuation g of the total number of levels
below a given energy value:

g(a, E)=E; ~~
—E;, when E; (E~ E;+~,

rl(~, E) =—JV[E; 6 [E,E +c)], c a parameter,

N(a, E) —E
[2(xE) ' '] '" '

(3)

where N(a, E) =IV [E; (Ej, the number of levels below

E, has an average over a equal to E, and 24zE is the
length of the circle enclosing the levels. These quantities
can be regarded as random variables: g and r) measure!o-
cal and g global statistical properties of the levels. We
generate their statistics in three diA'erent ways by sam-

pling uniformly over E in a given large interval keeping a
fixed, uniformly over a in the unit square keeping E fixed,
or over both a and a large interval of E.

Our numerical data consists of three groups. The first
group is designed to examine the statistics for a fixed a,
sampling uniformly over a range of E. In this group, we
randomly picked eight values of a and numerically evalu-
ated the distributions of g, r), and ( over the ranges
[28x10", 133x10 ) [2827x10, 2975x10 ), and
[282.74x 10", 283.12x 10 ). In the second group we have
data for several fixed E ranging from 3x10 to 28x10;
for each E the data is a result of sampling over up to
8x10 randomly picked a. The third group contains
three subgroups of data taken by sampling over both a
and three ranges of E. These three subgroups of data are
G~ with E C [28.27x10", 30.19x10 ] and 4500 centers;
G2 with E E [2.8274 x 10, 2.8293 x 10 ] and 6700
centers; and G3 with E C [282.7433 x 10, 282.7490 x 10 ]
and 2300 centers. The above data were generated using
double precision real numbers in computer programs. The
round-oA' error is not a problem for these data except for

the level spacing data in G3. We, therefore, generated ad-
ditional level spacing data G3 for this energy range using
quadrupole precision numbers.

NUMBER OF LEVELS q IN AN INTERVAL
OF A FIXED LENGTH c

We considered several values of c. Our data indicate
that for a typical a distribution in E, or for a fixed E the
distribution in a, approaches the corresponding Poisson
distribution. When sampled over both a and E the agree-
ment becomes even better. We illustrate our findings us-
ing the data sampled over both a and E for c =2. We plot
in Fig. 2 the data as well as the corresponding Poisson dis-
tribution. To examine them more carefully, we plot the
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FIG. 1. Distribution of level spacings. Shown are histograms
for Gl, G, and G& data. The dotted line is the exponential dis-
tribution. The insets are the relative errors of the distribution
for the same data groups (top) G~, (middle) G~, and (bottom)
G&, normalized by a, the standard deviation from random sam-
pling.

LEVEL SPACING (
The values of spacings are divided into 200 bins that

each has a probability &&& according to the exponential
distribution exp( —x). We find that for a typical a with
sampling over E or for a fixed E with sampling over a, the
data match the exponential distribution quite well. In
general data from energy ranges at higher E give a better
fit. Figure 1 shows data which have been sampled over
both E and a. The agreement with the exponential distri-
bution is excellent. We also plot there the Auctuation of
bin probability normalized by the standard deviation a ex-
pected for a true random sampling of exponential distri-
bution versus the bin position in the inset of Fig. 1. G]
data show a small, but systematic deviation from exponen-
tial distribution. This presumably reAects the fact that we
have not yet reached asymptopia. The Auctuation of the
data at high-energy ranges (G2) with smaller a is compa-
rable with that from randomly sampling.
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relative difference between our data and the Poisson dis-
tribution in the inset of Fig. 2. This figure shows that for
small n the fit is very good and as the energy range be-
comes higher the good fit extends to larger n.

FIG. 2. Distribution of g for c =2. The dotted line connects
the Poisson distribution. The symbols are 0 for G l data; + for
G. data; 0 for G3 data. Inset: The relative error with the Pois-
son distribution for the same data. The dotted lines are + 2a
margin for random sampling.
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randomness. It should also be clear that there is no
conAict between the slow growth of fluctuations in
N(a, E) and the strictly Poisson nature of the level statis-
tics as E ~. Thus the average of g-' over a is given by

(g')(E) = fE tE
1

u (s ~, s 2)dsq ds 2+ E
2i~E '"' "' (4)

FIG. 3. Distribution of g for fixed centers. (a) and (b) are
for two "typical" a's (0.4685. . . , 0.018 14. . .), (0.3437. . . ,
0.4304. . . ), and each contains three histograms for three energy
ranges.

FLUCTUATION g OF NUMBER OF
LEVELS IN A CIRCLE

The fluctuations in N(a, E) for a =0 is a classic prob-
lem in number theory. Kendall [8] was the first to consid-
er the problem with random center a. He showed that the
variance of N(a, E) —E is of order E'~ for typical a.
This can be understood intuitively by noting that the Auc-
tuations in N(a, E) are due solely to the "randomness" in
the location of lattice sites near the boundary which is of
length 2iE+. Kendall found that (g ) averaged over both
a and all values of E is equal to (0.676497. . . ) /(2n)
=0.072 83. . . . Higher-order moments can also be com-
puted. Dyson [9] found that the skewness (g )/(g ) ~

= —0.179. . . . In our simulation we sampled g over both
a and energy. We found a variance of 0.072~0.001 and
a skewness of —0.20~0.03 in good agreement with the
above results.

To examine the distribution of g, we divided the values
of ( into bins of size ~~ . The curves from different
ranges of energy with the same a collapse essentially on a
common curve that depends strongly on a. Figure 3
shows the distributions of g for two randomly selected
centers. When data are sampled over both a and E the
distribution looks symmetric near the center —despite the
negativity of the third moment.

CONCLUDING REMARKS

Our improved statistics suggest that the large variance
in the g statistics of [3] are due to either not using enough
levels at high energy or having a Hamiltonian with less

where [u(s~, s2)+1]ds~ dsq is the average (over a) of the
number of pairs of distinct levels in ds

~ ds2 (remember our
average density is one). For a pure Poisson u(s~, sq) =0,
while in our case (1/E) fo (j )(s)ds a /(2x). This,
however, does not prevent u (s

~
+E, s ~+ E) from going to

zero as E ~ which is required for an approach to local
Poisson. The large E behavior of u(s~+E, s~+E) is an
open interesting question. So is the nature of the asymp-
totic distribution of g.

The problem considered here can be generalized in vari-
ous ways. We describe some further results in [10] (see
also [11—13]). We only note the following very recent re-
sults: Heath-Brown [14] has proven the existence of the
limiting distribution for g(O, E) and Beck [15] has proven
the central limit theorem for a rectangular domain orient-
ed at "very" irrational angles with its center a distributed
as before. The appropriate scaling of g found here is the
square root of lnE, in agreement with Berry's arguments
for nonintegrable systems [3]. Beck has also shown that
the statistics of lattice sites lying in an irrationally orient-
ed thin hyperbolic needle with a random origin a converge
to that of a Poisson set of points.
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