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Atomic deflection in the transition between diffractive and diffusive regimes:
A numerical simulation
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The transition between diffractive and diffusive regimes in the deAection of atoms by a standing-
wave light field has recently been observed experimentally by Gould et al. [Phys. Rev. A 43, 585
(1991)]. We describe and present the results of a numerical simulation which allows these results to
be understood in terms of the theory developed by Tanguy, Reynaud, and Cohen-Tannoudji [J. Phys.
B 17, 4623 (1984)].

I. INTRODUCTION

The study of the forces on atoms by light has been the
subject of increasing theoretical and experimental
research [1-3]. An experiment basic to our understand-
ing of these forces has been realized by Gould et al. [4].
In this experiment they measured the momentum distri-
bution of a highly collimated monoenergetic beam of sodi-
um atoms scattered by a plane standing light wave. As an
atom passes through the light field, momentum exchanges
occur between the light field and the atom in multiples of
the photon momentum. The dipole force on the atom re-
sults from the momentum exchanged by absorption and
stimulated emission of photon pairs. Thus the projection
of this momentum along the laser axis is quantized in in-
tegral multiples of 26k. In the absence of spontaneous
emission, that is, for sufficiently detuned atoms, the output
in the far field of the scattered atoms consists of several
sharply defined peaks. This distribution may be viewed as
atomic diffraction of the atoms due to scattering of the
atoms from a phase grating formed by the light intensity
varying with spatial period X/2. As one tunes closer to
resonance, the spontaneous emission becomes important.
The recoil imparted to the atom by a spontaneously emit-
ted photon occurs in a random direction so that its
momentum component in the direction of the standing
wave can range from —Ak to + hk [5]. Thus spontane-
ous emission causes the diffractive peaks to be smeared
out. This can be viewed as a loss of coherence between
parts of the atom wave which scatter from the in-phase
parts of the grating formed by the light field. Whereas
previous experiinents by Pritchard and co-workers were
restricted to the diffractive region [6,7], the recent experi-
rnent has been able to probe the transition from the
diffractive to the diffusive regime. They tuned the laser
field closer to atomic resonance to move from the dif-
fractive into the diffusive region. The experimentally
measured momentum distributions were compared with
calculations based on a purely diffusive model in which
there are assumed to be many spontaneous emissions dur-
ing the interaction with the field. In this limit the atomic
momentum is treated classically and the motion is de-
scribed by a Fokker-Planck equation [8-10]. This
diAusive theory has previously been applied to the stand-
ing-wave problein by several authors [11-14]. When ap-
plied to the experimental data of Gould et al. this model

adequately describes the envelopes of the momentum dis-
tribution but does not accurately predict details of the
def]ection profiles except when many spontaneous emis-
sions occur. In the purely diA'ractive limit a quantum-
rnechanical description of the momentum transfer pro-
cesses has been given in [6,7, 15]. A more general treat-
ment capable of treating the transition region has been
formulated by Tanguy, Reynaud, and Cohen-Tannoudji
[12] who derived a set of generalized Bloch equations val-
id in the Raman-Nath regime. To date computational
complexities in solving these equations have prevented
direct comparison with experiment. In this paper we
present a solution of these equations which enables us to
compare the theory with the experimental results of Gould
et al. in all regions. The method developed is computa-
tionally efficient, and allows the action of the optical field
to be characterized by a relatively small set of numbers
which may then be used to determine its effects on an ar-
bitrary input atomic state, and with arbitrary angular dis-
tributions of spontaneous emission.

II. PROBLEM FORMULATION

Consider a beam of two-level atoms in their ground
state traveling along the z axis which crosses a trans-
verse-optical standing wave along the x axis. We wish to
determine the deflection of the atoms as they traverse the
light field.

We denote the detuning between the atomic and optical
frequencies by bco and let E(x, t) =2EpQ(t)coskxcoscopt
denote the standing-wave electric field encountered in the
frame of the moving atoms. This leads to a Rabi frequen-
cy 0 =pEp/h where p is the atomic dipole moment of the
transition. The spontaneous emission of the atoms is de-
scribed by y, the radiative lifetime of the excited state
and g(t) specifies the amplitude profile of the light field
encountered by the atoms.

The total atomic state is specified by a density matrix p.
We shall write p,b(g, g') and p,b(rl, rl') for the components
of the matrix in the position and momentum representa-
tions, respectively. The subscripts denote the internal
state of the atom and may be e or g for the excited and
ground states, respectively. These are written in terms of
the dimensionless variables g kx cp/pcxand rl p/
(2trhk). With these definitions, the representations are

R2779 1991 The American Physical Society



R2780 S. M. TAN AND D. F. WALLS

where L((,g') is the matrix

—I iQcosg'

i0 cosg' —(I /2+ 2ih)
—iS' cos( 0

I g(g —g') —i 0 cosg

i 9 c—os(
0

—(I-/2 —2is)
i 9cosg'

0
i 5—'cosg

i 9cosg'

0

(2)
Here r =At, h=bco/(20), and I =y/Q. The term I g
describes the transfer of atoms from the excited state to
the ground state by spontaneous emission. If the angular
distribution of spontaneous emission in the direction of the
unit normal vector n is given by p(n), g(u) is given by the
surface integral

g(u) = d'ny(n)exp( ikn u), — (3)

where p(n) is normalized so that its integral over the en-
tire sphere is unity [12].

The generalized optical Bloch equations form an
I

related via a two-dimensional Fourier transform relation-
ship.

The equations of motion of the density matrix are called
the generalized optical Bloch equations [12]. In the
Raman-Nath regime, the transverse motion of the atoms
during the interaction time with the field is neglected.
These equations can be written in matrix form as

p =z(g, g')p,

initial-value problem with p„=p,~ =pz, =0 at z =0 and
p~z(g, g', 0) being given by the incoming distribution of the
atoms. For each pair of coordinates (g, g') we have a sys-
tem of four coupled differential equations to integrate.
For most practical problems, the number of points at
which p(g, g', r ) has to be computed is large and so tech-
niques have to be developed to reduce this load.

We first specialize to the situation in which 9 is con-
stant, which corresponds to the assumption that the inten-
sity of the light field is constant across its profile. The in-
tegration can be performed analytically and the solution
expressed as

p(&, &', r) =exp[/(&, &')el(000 p (g, &',0))'. (4)

The main requirement is to limit the number of points at
which the matrix exponential is evaluated. This is possi-
ble because of three observations. The first is that the
solution for an arbitrary initial state pzz((, $,0) may be
derived from the solution with p~~(g, g', 0) =1, since (4) is
local in ( and g'. In the momentum representation, this
corresponds to using a b function for the initial state
p„(q, g', 0) =b(g) b(~').

Second, using a method similar to that employed by
Tanguy, Reynaud, and Cohen-Tannoudji [12] for finding
the propagator of the Wigner function in the intermediate
regime between the diffractive and diff'usive regimes, it
may be shown that for this initial state, the diagonal terms
of the density matrix for the atoms leaving the interaction
region may be written as

p„=g g QEtI (r )b(ri —(2') 'k)b(ri' —(2ir) 'l) o [g
' (rt)b(ri —g')],r, k I

p =g g g Gt t"'(r )b(ri —(2ir) 'k) b(rt' —(2ir) 'l ) & [g '"'(rt) b(g —rt') ] .r, k
(6)

g(rt) =b(g —a) (7)

We use the & to denote a convolution and g
" to denote

the r-fold self-convolution of the Fourier transform of g.
The coefficients EkI"i and Gkt" are independent of g.

The term in each sum for a particular r refers to those
atoms which undergo r spontaneous emissions during the
interaction with the field. g

" (rt)b(ri —ri') is the momen-
tum spreading imparted to an atom due to the random
directions of emission of these spontaneously emitted pho-
tons. The discrete momentum transfers due to the
coherent processes of absorption and stimulated emission
give rise to the array of b' functions at the lattice of points
spaced (2x) ' apart.

In Eqs. (5) and (6), the angular dependence of the
spontaneous emission enters only through the functions
g ". So if we can calculate Ekt" and Gkt'~, these will en-
able us to find p„and ps+ for any angular dependence of
the spontaneous emission. This leads to the third observa-
tion which is that if g is chosen to be

I

triple (k, l, r) is found at

rt =(2') 'k+ra, rt'=(2') 'i+ra.
Thus in summary, we use the artifice of choosing the

function given by (7) to obtain a numerical solution for
p„and p~~ using (4) and the initial state p~~(g, g', 0) = l.
If we choose a to be a submultiple of (2ir) ', a fast
Fourier transform gives p„and P~z only at those positions
in the (ri, rt') plane iven by (8). This gives the
coefficients Ep~f and Gkt" which completely characterize
the action of the light field, since an arbitrary initial state
and angular distribution of spontaneous emission may be
treated using a sequence of convolutions.

We now consider the range of values of r, k, and l for
which these quantities are required. The average number
of spontaneous emissions during an interaction time t is
given by

0'yS
48co +y

then g" (rt) is easy to evaluate and p„and P~~ consist
onl~ of b functions whose areas give the desired values of
Ekt' and Gzt" directly. The b function associated with the

For the experimental parameters, the largest value of N
used was 4.5, so that summing r from 0 to 15 was found to
include all non-negligible terms. The values of k and l
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TABLE I. Experimental and simulation parameters. In all scans, y =2m&& 10 MHz and t 4.71/y.

Scan

(a)
(b)
(c)

0
4.0y
8.0y

2.36y
3.34y
3.34y

4.5
1.2
0.4

1.00
1.02
1.08

13.93
19.33
18.26

0
0.611
1.293

0.424
0.305
0.323

need to cover the range of momenta that can be imparted
to the atoms. Again for the experimental parameters it
was sufficient to use a 64 X 64 point grid which allows for
momentum transfers up to 326k. The interaction with
the, field is thus characterized completely by 64&64&16
quantities. If we make use of the symmetries in the prob-
lem, this is further reduced by a factor of 2.

The quantity measured experimentally is the probabili-
ty of detecting atoms with different momenta at some dis-
tance following the interaction with the field. Any atoms
leaving the field in the excited state will spontaneously
emit on the way to the detector, changing their momen-
tum due to the recoil. The density matrix for the atoms
detected is

P(rl, q') =P„(ri,rl')+P„(tI, rl') [g(tl) b(rt —tI')] .

The measured probability density is p(iI, tl ).

(10)

III. RESULTS

The experimental results of Gould et al. are for a
monoenergetic, highly collimated atomic sodium beam
crossing a circularly polarized standing-wave laser field
with a Gaussian intensity profile. The angular distribu-
tion of spontaneous emission for this polarization is given

by [10]

P(n) = (1+cos 8),3
16m

where 0 is the angle between the direction of the spon-
taneous emission and propagation direction of the laser.
The experimental parameters are shown in Table I for
three scans, where t is the time taken for the atoms to
travel between the 1/e intensity points of the light field.

In the simulations, there are three adjustable parame-
ters 6, I, and r, which correspond to the normalized de-
tuning, damping, and interaction time, respectively. Since
the simulations use a rectangular rather than a Gaussian
beam profile for the light field, we need to define an
effective interaction time and Rabi frequency. The
effective interaction time used is ax/2t, which gives the
correct result in the case when spontaneous emission may
be neglected [6]. If we use a Rabi frequency correspond-
ing to the maximum light intensity, we find that there is
moderately good agreement with the experimental results,
but the fit to the relative heights of the sharp diffractive
peaks may be much improved by adjusting the effective
Rabi frequency slightly. If we consider the matrix (2)
without the terin I g(( —g'), it is possible to write a
modified Schrodinger equation equivalent to Eq. (1) with
a non-Hermitian effective Hamiltonian. This may be used
to calculate efficiently the structure of the diffractive
peaks alone [corresponding to the term with r =0 in Eq.
(6)] for a variety of parameter values. This was used to
determine the amount by which the Rabi frequency
should be scaled. In the column labeled s in Table I, the
scaling factor applied is tabulated, and the subsequent
columns list the values of the resulting normalized vari-
ables used in the simulations. With this scale factor, we
replace II by 0/s in all the definitions of the normalized
variables given above. Given the 5% uncertainty in the
laser intensity [4] and the nonrectangular beam profile
this adjustment appears to be reasonable. The input beam
was taken to have a full width at half maximum of 1.26k.

In Figs. 1-3, the simulation results (dashed line) are
superimposed upon the experimental results (solid line).
Both simulation and experimental results have been nor-
malized to give an area of unity under the graphs.

Figure 4 shows how the simulation result for scan (a)
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FIG. 1. Comparison of experimental data (solid line) and
simulation results (dashed line) for scan (a) of Table I, N =4.5.

FIG. 2. Comparison of experimental data (solid line) and
simulation results (dashed line) for scan (b) of Table I, N =1.2.
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FIG. 3. Comparison of experimental data (solid line) and
simulation results (dashed line) for scan (c) of Table I, Ã =0.4.

was obtained. The series of graphs show a sequence of
partial sums monotonically converging to the final result.
The lowest solid curve represents those atoms which do
not undergo any spontaneous emissions corresponding to
the r=o term in Eq. (6) which are responsible for the
sharp diffractive peaks. We note that this curve is
different from the result of neglecting spontaneous emis-
sion completely due to the presence of terms involving I
on the diagonal of matrix (2). Each successive curve in
Fig. 4 shows the result of adding the eff'ects of those atoms
undergoing one more spontaneous emission before detec-
tion. The curve involving n or fewer decays corresponds to
terms with r ~ n in Eq. (6) and with r ~ n —1 in Eq. (5).
Due to the eff'ects of multiple convolutions with the distri-
bution of recoil momentum, these tend to be smooth and
give the diffusive structure. In scan (a), the diff'ractive

FIG. 4. Partial sums for the simulation of scan (a) in Table I.
Starting from the bottom, successive curves include the eA'ects

of atoms that have undergone zero, one or fewer, two or fewer,
etc., spontaneous emissions on the way to the detector.

component is only a small part of the total, whereas in the
corresponding set of graphs for scan (c) the diffractive
part is the dominant contribution to the result.

Agreement is quite good in all cases, except for the
height of the central peak which represents those atoms
which are unde[]ected by the standing wave. In each case
the experimental result of this peak exceeds the theoreti-
cal prediction. This may indicate that approximately 5%
of the atoms were not prepared in the correct initial state
and were unaff'ected by the light field. The state prepara-
tion for the experiment is described by Gould er al. [16].
An approximate indication of the size of systematic eff'ects
in the experimental data is the degree of asymmetry in the
profiles.
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