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Measure of the nonclassicality of nonclassical states
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A continuous parameter introduced into the convolution transformation between P and Q functions
leads to a measure of how nonclassical quantum states are with values ranging from 0 to 1: For
photon-number states, the value is 1, the maximum possible. For squeezed vacuum states, it is a
monotonically increasing function of the squeeze parameter with values varying from 0 to 2. This
measure is identical to the minimum number of thermal photon necessary to destroy whatever nonclas-
sical effects existing in the quantum states.

In the coherent-state description of radiation fields, ini-
tiated by Glauber [1] and Sudarshan [2] in 1963, there
are P and Q representations corresponding to normal and
antinormal ordering, respectively, of the creation and an-
nihilation operators. Their distribution, or quasidistribu-
tion, functions in the complex plane are related through
the following convolution transformation [3]:

R(z, )z= —— d wexp ——(z —
w~ P(w) .

1 1 2 1

ls

(2)

We shall call R(z, r) the R function from now on. For
the special cases of r 0, —,', and 1, the R function is the
same as P, W, and Q functions, respectively. In general,
the R function is a continuous interpolation between P
and Q functions.

It is well known that the P function for a coherent state
is a b function. It has been shown by Hillery [4] that the
P functions of all the other pure states are more singular
than the b function. On the other hand, the Q function is
actually the diagonal elements of the density operator:

hence, in contrast with the P function, it is a positive-
definite regular function. Such a drastic contrast is, of
course, due to the convolution transformation; we can
think of convolution as a moving average, which is a
smoothness increasing ope-ration [5].

Our primary motivation for introducing the r parame-
ter is to define a measure of how nonclassical quantum
states are.

Radiation fields with certain characteristics that can be
understood only by quantum-mechanical description are
called nonclassical states [6]. The nonclassical nature of a
quantum state can manifest itself in different ways. It is
well known that photon antibunching [71 and sub-
Poissonian distribution of photon numbers [8] are mani-
festations of the nonclassical photon statistics of single-

Q(z) =— d we
—

I
—

I P(w)Z'4

where z and w are complex variables. Following Cahill
and Glauber [3], but in a slightly different way, we intro-
duce a continuous parameter r and define a general distri-
bution function as

mode radiations. Another manifestation occurs when the
noise level of one quadrature component of a radiation
field is below that of the vacuum; then it is called a
squeezed state [9]. The studies on nonclassical properties
of radiation fields in recent years have been more interest-
ed in whether they are nonclassical than how nonclassical
they are. For the latter purpose, we need a precise
definition for the nonclassical depth of a quantum state.

In 1979, Mandel [10] introduced a q parameter defined
as

q
=—(&n "'& —&n&')/&n &, (4)

where &n( )& is the second-order factorial moment of the
photon-number distribution. A negative value of q means
that the distribution is narrower than a Poisson distribu-
tion, hence called sub-Poissonian. We have a nonclassical
photon state whenever the q parameter is negative. The
photon-number distribution of a coherent state is Pois-
sonian; hence its q parameter is 0. Therefore the coherent
states can be considered as on the borderline between clas-
sical and nonclassical states. One attractive feature of
this parameter is that its values are 0 for all coherent
states and —

1 for all Fock (photon-number) states. Since
a Fock state has a photon-number distribution that is as
narrow as it can be, we are inclined to think that a Fock
state is as nonclassical as a quantum state can be. Then
the nonclassical depth can be confined within a convenient
range of —1-0, if we adopt q parameter as the measure.
However, this definition cannot refiect faithfully the non-
classical nature of squeezed states; for example, the q
values of squeezed vacuum states are always positive [11].

In 1987, Hillery [12] gave a definition for the "nonclas-
sical distance" of a quantum state in terms of the trace
norm of the difference between the density operator of the
quantum state and that of the nearest classical state. This
measure can be applied to squeezed states as well as to
nonclassical photon statistics. Unfortunately, it is very
difficult to find the nearest classical state in practical cal-
culations; so, usually, the best one can do is to determine
the upper and lower bounds of this measure.

It is well known in the quantum optics community that
the origin of all nonclassical effects is that the P functions
of quantum states are singular and not positive definite.
The smoothing effect of the convolution transformation of
Eq. (2) is enhanced as z increases. If r is large enough so
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that the R function becomes acceptable as a classical dis-
tribution function, i.e., it is a positive definite regular
function, then we say that the smoothing operation is
complete. Let C denote the set of all the z that will com-
plete the smoothing of the P function of a quantum state
and let the greatest lower bound, or infimum, of all the z
in C be denoted by

hence 1 is an upper bound for z . Therefore, we can
specify the range of z to be

0«z « l.
Following Mehta [13], we shall use the following for-

mal expression for the P function in terms of the density
operator p and the coherent states

I
u& and

I

—u) as

= inf (z).
r6C

(s) P(w) =e'"~ — d'u& —u IpIu)e~"' exp(wu* —w*u),

We propose to adopt z as the nonclassical depth of the
quantum state.

According to this definition, we have z =0 for an arbi-
trary coherent state I a), since its P function is of the form
of a 8 function, tran (z —a). On the other hand, for z =1
we have R(z, l) =Q(z), which is always acceptable as a
classical distribution function for any quantum state;

I

(7)
where the integral may not exist. We need not to be con-
cerned about this point, however, since our real interest is
in the convolution transform of P(w). Substituting Eq.
(7) into Eq. (2), assuming the order of the integrations to
be exchangeable, and carrying out the integration with
respect to ~, we obtain

R(z, z) = exp IzI — d u&
—uIpIu)exp — [(2z —1)IuI +(z*u —zu*)]1 1 2 1 1

1 —z 1 —z z~ 1 —z

We can adjust the value of z to insure not only that
R(z, z) exists as an ordinary function but also that it is
positive definite. The greatest lower bound z of the ac-
ceptable z is, by our definition, the nonclassical depth of
the quantum state.

We now try to determine the nonclassical depths for
two of the most familiar types of nonclassical radiation
states: the photon-nuinber (Fock) states and the squeezed
vacuum states.

The density matrix of the photon-number state In) can
be expressed as p„= In)&n I. So we have

&
—uIp„Iu&=& —uIn&&nIu&= IuI'"e

n!

P„(z)= lim—1 1 —z
r 0

' n

exp

I

vacuum state. From Eqs. (12) and (13), etc. , we see that,
for n )0 and 0 & z & 1, the R„(z,z) are always regular
functions, but they are not positive definite, since each of
them has n real positive roots. However, the R„(z,k) are
positive definite for z ~ 1; So we have z =1, which
reconfirms our belief that the photon-number states are
the most nonclassical quantum states.

As a by-product of our calculation, we have also ob-
tained a new expression, as far as we know, for the P func-
tion of the photon-number state In) as

Using this expression in Eq. (8), we obtain
' n

Izl'
z(i —z) (14)

1 1 —zR.(z, z) =-
z z

Iz I'
z(i z)— (io)

It is interesting to point out that expression similar to
Eq. (10) has been derived by Lachs [14] for the distribu-
tion of photon number in the superposition of a coherent
state Iz) and the thermal radiation as

where L„ is the Laguerre polynomial.
We list the explicit expressions for the first few R„(z,z )

as follows:

Ro(z, z) =—exp
Iz I'

z z

' n
&n, h&

1+&n, h& 1+&n, h&

—Iz I I
' —Iz I

1+&nih&
"

&n, h& +n&i)h
(is)

Ri(z, z) =—exp
Iz I'

z z
(i 2)

where &n ih) = (e " t" ——1) ' is the average photon num
her in the thermal radiation. The two expressions will be
identical if we make the following correspondence:

R2(z, z) =—exp
2(1 —z)

2z4
z- i+&n, h)

This correspondence is by no means accidental; the
photon-number distribution is calculated according to the
formula

etc. From Eq. (11) we see that Ro(z, z) is positive
definite whenever z is positive, so we have z =0 for the

fO

Prob(n) =— d aP(a)I&aIn)IZ4 (i7)
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where

P(a) = exp( —~a —z~ /&nth&)
1

(n, h&

namely,

P,„(z)=— d'z Pj(z —w)P2(w) . (27)

is the P function of the superposed state and ~(a~n)~ is
the Q function of the photon-number state.

The squeezed vacuum states are generated from the
vacuum state by the well-known squeeze operator [15]

5(()—=exp(-,' ga'a' —
—,
' g'aa), (19)

where (=re' is a—complex parameter. So a squeezed vac-
uum can be identified by g and expressed as

~g&=s(g) ~0&

=v sechr g e"' (tanhr )"v (2n)!
~
2n& . (20)1

n p2n

Then we have

&
—u

~ p (g) ~
u) = (sechr )exp [—

~
u

~
+ —,

' (tanhr )

x [e"(u') '+e "(u) ']] .

(2i)
Substitution of Eq. (21) into Eq. (8) gives the Gaussian
function

P,h(z) = exp( —~z~'/&n, h&) .
1

&n, h&

(2S)

We now consider the superposition of the thermal radi-
ation with an arbitrary state of single-mode radiation with
P(z) as its P function. Then the P function of this quan-
tum state with thermal noise can be expressed as

1 1P,„(z)= — d'wexp( —
~z

—
w~ '/(n, h&)P(w) .

&n, j, & n

(29)
Comparing Eqs. (1) and (29) we see that the superposed
P function, P,„(z), is identical to the Q function when
(n, h) =1. The implication of this coincidence can be stat-
ed as follows: One thermal photon is always sufficient to
destroy whatever nonclassical efI'ects any single-mode ra-
diation might have.

The R function for the superposed state of Eq. (29) can
be obtained as

It is well known that the P function for a single-mode
thermal radiation is [17]

Rr(z, z) = (sechr) 1
exp ——(ax +2bxy+cx )2

ia (22)
1 1 ZR,„(z,z) = —„d wexp P(w) .z+ n, h z nth

(3o)
with

a=z+(1 —z)tanh r —cos8tanhr,

b =sin8tanhr,

c=z+(1 —z)tanh r+cos8tanhr,

D =z' —(i —z)'tanh'r.

For Rr(z, z ) to be normalizable we must have

ac —b &0, D &0.
Both conditions lead to the same conclusion that

=tanhr/(1+tanhr) .

(23)

(24)

(25)

This nonclassical depth can be expressed as a function of
the squeeze parameter, s —=e', as follows:

z (s) = (s —1)/2s (26)

From Eq. (26) we see that z is a monotonically increas-
ing function of s; it varies from 0 to 2 as s varies from 1

to ~.
Exactly the same result is obtained when we extend the

study to more general squeezed states of the Stoler [15]
type and of the Yuen [16] type; the latter are also known
as two-photon coherent states.

On the other hand, we consider the superposition of two
quantum states with P j(z) and P2(z) as their P functions.
According to Glauber [17] the P function for the super-
posed state is the convolution product of P j (z) and P2(z );

So the nonclassical depth of a quantum state with and
without thermal noise, respectively, are related by

—(n, h&;

which means that the reduction in the nonclassical depth
of a quantum state with thermal noise is exactly equal to
the number of thermal photon present. This also gives the
following physical meaning to the nonclassical depth we
have defined previously: The nonclassical depth of a
quantum state is the minimum number of thermal pho-
tons necessary to destroy any of its nonclassical charac-
teristics.

We have previously calculated the nonclassical depth of
a Fock state to be exactly 1, so it takes one thermal pho-
ton to ruin the nonclassical nature of a Fock state. We
have also calculated the nonclassical depth of a squeezed
state to vary from 0 to 2 as s varies from 1 to ~; so it
never takes more than 2 of a thermal photon to ruin a
squeezed state.

In conclusion, we have introduced a definition for the
nonclassical depths of quantum states of radiation; and we
have tested it for the examples of photon-number states
and squeezed vacuum states with satisfactory results. We
have also given a physical interpretation of the measure as
the thermal photon number it takes to spoil the nonclassi-
cal characteristics of the quantum states.
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