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Chaos, multiplicity, crisis, and synchronicity in higher-order neural networks
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We study a randomly diluted higher-order network of spinlike neurons that interact via Hebbian-

type connections and derive and solve exact dynamical equations for a general block-sequential updat-

ing algorithm. The system has a variety of static and oscillatory solutions. The bifurcation parameters
in the present model include neuronal interaction coefficients, the synchronicity parameter, and a re-

scaled noise level, which represents the combined effects of the random synaptic dilution, interference
between stored patterns, and additional background noise.

Recently there have been extensive research activities in
the area of artificial neural networks (NN's) [1-11].
Model neurons have two states, i.e., active and quiescent.
Each neuron receives signals from its neighboring neu-
rons, and the signals are affected by synaptic weights.
The neuron then either fires if the total signal exceeds a
certain threshold, or remains quiescent otherwise. These
spinlike systems, though crude compared to biological
NN's, already display intriguing features, such as a form
of learning and recalling of associative memory. When
the synapses, which are analogous to spin-spin interac-
tions, are symmetric and the states of neurons are updated
sequentially, the NN can be analyzed by statistical
mechanics [4], which has provided important information
on the role of noise, memory capacity, and retrieval per-
formance. The network dynamics for sequential updating
is a simple nonoscillatory relaxation to an energy mini-
mum [3]. For symmetric interactions but parallel updat-
ing, i.e., all neurons are updated simultaneously at one
time, the network settles down to either a stable state or a
cycle of period 2 (alternating between two states) [5].
When the synapses are asymmetric, as in real neural sys-
tems, the dynamics can be oscillatory or chaotic, e.g. , in a
NN with random synapses [10];however, no patterns can
be stored in this NN with random synapses since no
learning rules are used.

In the present paper we study a diluted [9] NN model
that uses a higher-order modified Hebb learning rule
[3,6, 12,13] so that patterns can be stored in this system.
Our model exhibits a variety of dynamical behaviors be-
sides stable retrieving, such as oscillations, chaos, multi-
plicity, and crisis. In this approach, we consider N two-
state neurons that interact through q orders of Hebbian-
type connections. Thus the total input for the ith neuron
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are the modified Hebbian synaptic efficacies, [Sf, J

=1, . . . , Nj is the (uth stored pattern which is an N-bit
word and each bit is I with equal probability, and p is
the number of patterns stored. The coefficients [yt"),
v=1, . . . , qj measure the relative strengths of different
order of interactions [6]. We have introduced random
asymmetric dilution in the effiacies by choosing random
variables C; «&. . . &.& independently according to the fol-
lowing distributions:
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With v = I, (3) reduces to a prescription first used by Der-
rida, Gardner, and Zippelius (DGZ) in their discussion of
a first-order diluted network [9]. Synaptic dilution is
essential in both modeling the observed incomplete con-
nectivity in real neurophysiological systems and assuring
an exact solution of the network dynamics [9]. We in-
clude a background randoin Gaussian [14] noise ri; with a
standard deviation oo in (1) to account for the presence of
noise (temperature) [2].

The neuron i updates its state according to S;(t+i(t)
=sgn[h;(t)], where sgn(x) = —1 (+1) for negative (pos-
itive) x. Suppose that the initial state of the network is set
in the neighborhood of stored pattern S', i.e., m'(0)
=maxjm" (0), ((& =1,2, . . . ,pj, where m" (t) =(I/N)S"
S(t) is the overlap between the state of the system at

time t and the pth pattern.
Let [j&' . . j(' j, . . . , [j '(.

&
. jII'&.&j be the K '

groups of neurons [jt') . .j ')j such that T; &(&. . . &.&NO.

According to (3), for all v =1, . . . , q, the average of K '
is C, compared with fully connected networks where the
number of synaptic connections of order v is (, ).

We substitute (2) into (1) and separate the first term in
the total local field, i.e., the sum in (1), into two parts:

q g(v)
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where m~(t) =S~'S~(t) The first term. in (4) is propor-
tional to the overlap of the system with pattern S'. We
have dropped the superscript 1 for the overlaps and here-
after we always refer to the overlap with S'. The second
term (,"; is the residual and consists of interferences from
patterns S, . . . , S~, which are independent random vari-
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with a rescaled squared standard deviation of the noise
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which includes the effects of random synaptic dilution, in-
terference between stored patterns, and background noise.

We use a general block-sequential updating algorithm
[5] and select U neurons to update. We have froin (5)

ables with mean of zero if the neuronal states involved in
(4) are uncorrelated. As shown in Ref. [9] for the case of
first-order interaction (q =1), these correlations can be
neglected in the limit of extreme dilution. We now prove
that this result holds in the presence of higher-order in-
teractions as given by (1)-(3). The calculation of the
state of the ith neuron at time t, i.e., S;(t), involves a tree
of ancestors (states of neurons at previous time steps)
which connects the ith neuron to the initial conditions
(t =0). At each time step the state of the ith neuron is
influenced by about vC neurons through interactions of
order v, with v = 1, . . . , q, so the total number of neurons
in this tree is typically of the order of [q(q+1)C/2]'.
Thus as long as C&&lnN, almost all neurons in this tree
are difl'erent. Therefore, in this diluted limit, the neuronal
sta:-es involved in (4) are uncorrelated. According to the
central limit theorem, the interference g; is random and
Gaussian distributed, with a total average of zero and a
total squared deviation

q
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in the limit of large N. From this expression of a.,&, we see
that no generality has been lost by choosing the same dilu-
tion constant C for all orders of interactions in (3), since
the effects of different dilution constants can be absorbed
into coe%cients y

' . The combination of the interference
and the background Gaussian noise g; gives a new

Gaussian random variable with mean of zero and a
squared deviation cr„„~=cr„+era. Furthermore, when we
average over all shapes of the tree of ancestors, all the
m'(t) have the same average m(t) [9]. It follows from
(4) that

tory. Only fully parallel (u -1) and sequential updating
(u 0) were considered [9]. Furthermore, they used
Little's definition of temperature [2] instead of the more
biologically plausible Gaussian noise used in the present
work.

In the following, we show that the overlap m(t) in the
present model exhibits a variety of interesting dynamical
phenomena, such as oscillations, period-doubling bifurca-
tions, chaos, multiplicity, crisis, as well as stable re-
trievals, if higher-order interactions exist (q &1). We
also discuss how synchronicity in updating (0&u ral)
influences the network dynamics.

Let us first consider sequential updating (u 0),
where the network dynamics is described by (7). A one-
dimensional system described by a differential equation
cannot exhibit oscillatory behavior [15]. Hence sequential
dynamics has only two types of nonoscillatory fixed points
m, which can be either stable or unstable, for any orders
of interaction and coe%cients y

" . The fixed points of the
network are obtained by letting dm/dt 0 and m(t)
=m* in (7) or m(i+At) =m(t) =me in (6). It is ap-
parent that the fixed points are independent of synchroni-
city u; however, as we will show shortly, their stability de-
pends strongly on the synchronicity. As an example, the
positive and negative fixed points m for q =3, y

' =1,
y( ) = —4, and yt ) =4, are given in Figs. 1(a) and 1(b),
respectively, as a function of the rescaled noise level o.
For sequential dynamics, the unstable fixed points repre-
sented by the dashed lines are the boundaries of basins of
attractions of the stable fixed points (solid lines).

For any finite synchronicity (0 & u ~ 1), oscillatory be-
haviors begin to emerge as a result of some of the fixed
points between C and 8 in Fig. 1(a) becoming unstable,
whereas stabilities of the rest of the fixed points remain
the same as in the sequential updating. The equation of
motion of the neural network is now given by (6), which is
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where u =U/N is the synchronicity parameter. Parallel
dynamics corresponds to u =1. In sequential dynamics
u=ht=1/N 0, as N ~, and (6) reduces to a dif-
ferential equation:

dm(r) ( )=fotv'(m(r), cr) —m(r) . (7)
t

Equations (6) and (7) are a generalization of the formula-
tion by DGZ [9],who derived an exact solution of a dilut-
ed NN with first-order interactions (q =1) where the
dynamical equations for the overlap m(t) are nonoscilla-

0—

-0.5—

FIG. 1. Fixed points m*, positive in (a), negative in (b), of
the overlap given by (7) vs the rescaled noise o, for q=3,
y =] y( = —4 and y( )=4
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FIG. 2. The mapping function f)("(m) given by (6) vs m: a,
o 0.3 (stable fixed point); b, o 0.12 (oscillation); c, o =0.05
(crisis).

a one-dimensional map [15] of the overlap m(t), with the
following bifurcation parameters: interaction coefficients
[y ', v I, . . . , ] and the rescaled noise level o. For
q 3, t' = I, yt ) = —4, and yt ) =4, the mapping func-
tion f„)(m) has, depending on o, up to four intersecting
points with the diagonal line within the invariant box
0~ m ~ I, 0~f ti)(m) ~ I, and these are the fixed
points. The smallest nonzero intersecting point is respon-
sible for the oscillatory dynamics. Since 0~erf(x) ~ I,
for x~ 0, we have

(I —u)m ~f„"'(m) ~ (I —u)m+ u .

Hence amplitudes of oscillations increase (actual bifurca-
tion diagrams omitted) with increasing synchronicity u
and reach maxima in fully parallel updating algorithm
(u —I), for which we show the mapping function at vari-
ous o in Fig. 2. For cr & o) =—0.191, the system displays
fixed point dynamics (curve a). As the noise level de-
creases below o ~, the slope at the smallest nonzero inter-
secting point becomes less than —I and oscillations start
to appear (curve b in Fig. 2). As shown in Fig. 3, there is
a complete period-doubling sequence between o) and

=0.142. Chaotic structures and periodic windows can
be seen beyond the saturation point cr, e.g. , a period-3
window is marked in Fig. 3. For oi & o & o„;,;,=—0.076,
the oscillatory structures coexist with the upper stable
fixed points [marked D in Fig. 2, portion ED in Fig. 1(a)];
the second smallest intersecting points, e.g., point 8 and C
in Fig. 2, serve as a separatrix [portion CD in Fig. 1(a)].
As o is decreased below o„;„„oscillatory and chaotic
structures suddenly disappear at o„;,;„which is called
"crisis" (marked C in Fig. 3). In Fig. 2 the portion of
curve c represented by a solid line is higher than its corre-
sponding separatrix C and hence acts as a "gate" to the
upper stable fixed points D: all iterations started between
m(0) =0 and the separatrix C will go through this gate
and will then be attracted to D. When cr is below o„;,;, by
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FIG. 3. Oscillatory and chaotic structures for parallel dy-
namics u l.

only a small amount, it takes a long time for the network
to "find" the small gate and then the attractor, which is
referred to as transient chaos.

The above discussions based on analytical results and
numerical simulations are subject to future work. We ex-
pect to see agreement between our results and simulations
if implemented networks are (exponentially) large. We
have concentrated our discussions for oscillations and
chaos (u & 0) on some special choices of q, and yt"). Dis-
cussions for an arbitrary case are similar because the
dynamical equation (6) is always a one-dimensional map
and dynamical universalities of one-dimensional maps
have been thoroughly explored [15]. For instance, if f„t

has one or more inaxima, i.e., q 2, period-doubling bi-
furcations become possible; for q ~ 3, f t&) may have two
or more maxima and thus crisis may occur, though actual
bifurcation diagrams will differ quantitatively from case
to case.

We have presented a simple NN model that is exactly
solvable and that exhibits interesting phenomena such as
oscillations, chaos, multiplicity, and crisis. These dynam-
ics are the result of an interplay among the synchronicity,
the asymmetric dilution, and higher order interactions.
Oscillatory behaviors are not likely for symmetric net-
works with higher order interaetio-ns, since we can gen-
eralize the Hopfield [3] energy function for symmetric
first-order NN to any arbitrary orders of symmetric in-
teractions:

where by "symmetric" we mean that all Tj (I) j( )

remain unchanged when any two subscripts are ex-
changed.

Oscillations and chaos have been discussed in relation
to perception processes by a number of authors [16]. The
discovery of 40-Hz oscillations in electroencephalograms
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seems to support a new point of view that biological NN's
use. chaotic attractors, rather than fixed-point attractors
as suggested in conventional NN theories, to store and
process memory [16]. Cyclic and chaotic attractors
around reference patterns (S") may be stored in and re-
called by using our prescriptions; in earlier work temporal

sequences were usually generated by means of delays
[7,8].

We have benefited from discussions with B. Derrida, K.
E. Kurten, and I. Schreiber. This work was supported in
part by the National Science Foundation.
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